1
|
Tsironi A, Lazaros K, Mendrinou E, Papasotiriou M, Siamoglou S, Kydonopoulou K, John A, Gerou A, Gerou S, Ali BR, Vrahatis AG, Patrinos GP. Impact of CYP3A4 and ABCB1 genetic variants on tacrolimus dosing in Greek kidney transplant recipients. Front Pharmacol 2025; 16:1538432. [PMID: 40176889 PMCID: PMC11962430 DOI: 10.3389/fphar.2025.1538432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Tacrolimus, an approved first-line calcineurin inhibitor, is widely prescribed in organ transplantation to prevent allograft rejection. Its narrow therapeutic index requires precise management to achieve optimal dosing and to minimize adverse drug events (ADEs) while ensuring its therapeutic efficacy. Among several factors, genetic differences contribute significantly to the inter-individual and inter-ethnic variability in pharmacokinetics (PK) of tacrolimus in kidney transplant recipients. As a result, investigating the role of genetic variation in Greek transplant recipients becomes crucial to optimizing therapeutic strategies and enhancing the efficacy of immunosuppressive treatment. Hypothesis Genetic variants which are known to influence the activity of enzymes or drug-transporters critical to tacrolimus pharmacokinetics, may significantly affect the required kidney post-transplant tacrolimus daily dose. Aim To assess the correlation of ABCB1 genetic variants (rs1128503, rs2229109) and CYP3A4 (rs2242480, rs4986910) with tacrolimus dose-adjusted trough concentration (C0/D), in Greek kidney transplant recipients. Methods Ninety-four unrelated Greek kidney transplant recipients were included in this study from the Department of Nephrology and Kidney Transplantation of the University General Hospital of Patras. Patients' dose-adjusted trough levels were measured at five distinct time points after transplantation and analyzed in relation to the possible influence of CYP3A4 and correlated with the abovementioned ABCB1 genetic variants using standard genotyping analysis and Sanger sequencing. Results The genetic variants rs1128503, rs2229109, rs2242480, rs4986910 did not show any significant association with the daily dosing requirements of tacrolimus for at least 1 year, in Greek patients who have undergone kidney transplant. Conclusion It remains uncertain whether these genetic variants influence the assessment of the appropriate tacrolimus dosing 1 year after transplantation in Greek kidney transplant recipients.
Collapse
Affiliation(s)
- Anna Tsironi
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Effrosyni Mendrinou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Marios Papasotiriou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, Patras, Greece
| | - Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Spyridon Gerou
- ANALYSI Biomedical Laboratories S.A., Thessaloniki, Greece
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- ASPIRE Abu Dhabi Precision Medicine Research Institute, Al-Ain, United Arab Emirates
| | | | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- ASPIRE Abu Dhabi Precision Medicine Research Institute, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Batool T, Ahmad F, Bashir R, Rafaqat S. Pharmacogenetic analysis of interleukin-10 variants and tacrolimus metabolism in kidney transplant patients from Pakistani population. Mol Biol Rep 2024; 51:947. [PMID: 39215891 DOI: 10.1007/s11033-024-09873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND End stage renal disease (ESRD) occurs when the kidneys are unable to filter the waste products and excessive fluids from the blood that results into the accumulation of toxins and fluid in the body. Tacrolimus is commonly used immunosuppressant while sirolimus and cyclosporin are rarely used drugs to stop solid organ transplant rejection. The host's immunological response following transplantation produces interleukin-10 (IL-10), which influences the varied CYP3A-dependent drug disposition of tacrolimus. The aim of this study was to determine the genetic polymorphisms of IL-10 (rs1800871, rs1800872 and rs1800896) gene associated with tacrolimus metabolism in kidney transplant patients from Lahore Punjab, Pakistan. METHODS The study collected blood samples of 103 healthy individuals and 137 kidney transplant patients as control and treatment groups, respectively. We employed Tetra ARMS PCR for the genotype analysis of extracted DNA. The alleles were called on 2% agarose gel. Moreover, the study utilized SPSS software to analyze statistical significance of polymorphism. RESULTS It was found that genotypic frequencies of IL-10 (rs1800871), IL-10 (rs1800872), and IL-10 (rs1800896) were (TT: 66.4%; TC: 31.4%; CC: 2.2%), (AA: 27.7%; AC: 54%; CC: 18.2%), (AA: 64.2%; GA: 17.5%; GG: 18.3%), respectively among kidney transplant patients. All parameters show significant association at different points after transplantation. Genetic analysis showed that TC and CC genotypes in rs1800871 (OR (95%CI) = 5.721 (3.231-10.131), P < 0.001; OR (95%CI) = 3.370 (0.642-17.672), P = 0.150), AC and CC genotypes in rs1800872 (OR (95%CI) = 1.294 (0.695-2.410), P = 0.415; OR (95%CI) = 1.453 (0.671-3.147), P = 0.342), GA and GG genotypes in rs1800896 (OR (95%CI) = 42.952 (17.566-105.021), P = 0.001; OR (95%CI) = 7.040 (2.563-19.333), P = 0.342) was associated with risk of renal rejection in kidney transplant patients. Besides, genetic models showed that TT in rs1800871, AA genotypes in rs1800872 and rs1800892 were associated with risk of renal rejection under dominant model when compared to controls (OR (95%CI) = 5.721 (3.231-10.131), P < 0.001; OR (95%CI) = 1.335 (0.735-9.290), P < 0.341; OR (95%CI) = 24.629 (10.599-57.230), P < 0.001), respectively. CONCLUSION From the results, it is concluded that genetic polymorphism of IL-10 (rs1800871, rs1800872 and rs1800896) has a highly significant association with risk of renal rejection in Pakistani kidney transplant patients.
Collapse
Affiliation(s)
- Tuba Batool
- Department of Biotechnology, LCWU, Lahore, Pakistan
| | | | | | - Sana Rafaqat
- Department of Biotechnology, LCWU, Lahore, Pakistan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
3
|
Population Pharmacokinetic Analysis for Model-Based Therapeutic Drug Monitoring of Tacrolimus in Chinese Han Heart Transplant Patients. Eur J Drug Metab Pharmacokinet 2023; 48:89-100. [PMID: 36482138 DOI: 10.1007/s13318-022-00807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus has become the first-line immunosuppressant for preventing rejection after heart transplantation. The present study aimed to investigate genetic variants and clinical factors affecting the variability of tacrolimus in Chinese Han heart transplant patients using a population pharmacokinetic approach. METHODS The retrospective study included 53 hospitalized patients with 547 tacrolimus concentrations for analysis. Nonlinear mixed-effects modeling was used to develop the population pharmacokinetics model for tacrolimus in patients with heart transplants, followed by Monte Carlo simulations to design initial dosing regimens. RESULTS In our study, the mutation rate of CYP3A4*18B (C>T) was 27.36%. An oral one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetics of tacrolimus in heart transplant patients. In the final model, the estimated apparent clearance (CL/F) and volume of distribution (V/F) were 532.5 L/h [12.20% interindividual variability, IIV] and 16.87 L (23.16% IIV), respectively. Albumin, postoperative time, and rs2242480 (CYP3A4*18B) gene polymorphisms were the significant covariates affecting CL/F, and creatinine clearance had significant effects on the V/F. CONCLUSION The population pharmacokinetic model of tacrolimus in heart transplant patients can better estimate the population and individual pharmacokinetic parameters of patients and can provide a reference for the design of individualized dosing regimens.
Collapse
|
4
|
Cheng X, Chen Y, Zhang L, Chen B, Yang D, Chen W, Zhu P, Fang Z, Chen Z. Influence of CYP3A5, IL-10 polymorphisms and metabolism rate on tacrolimus exposure in renal post-transplant recipients. Pharmacogenomics 2022; 23:961-972. [PMID: 36408735 DOI: 10.2217/pgs-2022-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: To investigate the influence of CYP3A5 and IL-10 polymorphisms on tarcolimus metabolism and renal function for renal transplantation recipients at a stable period. Methods: CYP3A5 and IL-10 polymorphisms, together with other clinical factors, were collected for 149 renal transplantation patients at postoperative stable period. Statistics analysis was performed to explore key factors affecting tarcolimus metabolism. Results: CYP3A5 6986A >G and IL-10 -819C >T significantly impacted tacrolimus metabolism (p < 0.001). CYP3A5 6986A >G G allele and IL-10 -819C >T T allele were associated with poorer tacrolimus metabolic capability. Patients with various tacrolimus metabolism rates presented little difference in renal functions at stable period. Conclusion: Genotyping of CYP3A5 and IL-10 might benefit the precision dosage of tacrolimus for renal transplantation recipients.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Yuhao Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Biwen Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Dake Yang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Weihuang Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Pengli Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Zhuo Fang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
5
|
Khaleel B, Yousef AM, Al-Zoubi MS, Al-Ulemat M, Masadeh AA, Abuhaliema A, Al-Batayneh KM, Al-Trad B. Impact of genetic polymorphisms at the promoter area of IL-10 gene on tacrolimus level in Jordanian renal transplantation recipients. J Med Biochem 2022; 41:327-334. [PMID: 36042898 PMCID: PMC9375538 DOI: 10.5937/jomb0-33343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/12/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Tacrolimus is a widely used immunosuppressant that prevents solid organ transplant rejection. The pharmacokinetics of Tacrolimus show considerable varia - bility. Interleukin-10 (IL-10), in the host's immune response after transplantation, contributes to the variable CYP3Adependent drug disposition of Tacrolimus. In the current study, we aim to evaluate the impact of single nucleotide polymorphisms (SNP) in the promoter region of IL-10 on Tacrolimus dose requirements and the Dose Adjusted Concentration (DAC) of Tacrolimus among kidney transplantation recipients. METHODS Blood levels of Tacrolimus were measured using Microparticle Enzyme Immunoassay (MEIA) for six months post-transplantation. Genotyping analysis was utilized using specific Polymerase Chain Reaction (PCR) followed by sequencing methods for 98 Jordanian kidney transplant recipients. RESULTS Genotyping frequencies of IL-10 (-592) were (CC/CA/AA: 38, 46.7, 15.2%); IL-10 (-819) were (CC/CT/TT: 40.4, 44.1, 15.1%); and IL-10 (-1082) were (AA/AG/GG: 42.6, 44.7, 12.8%). The impact of IL-10 (-1082) on Tacrolimus DAC was gender dependent. Men carrying at least one A allele had significantly lower DAC than men carrying GG genotyping only in the first month post-transplantation 88.2±32.1 vs. 117.5±22.5 ng/mL per mg/kg/day, p=0.04 . CONCLUSIONS Our current study showed that the interaction between gender and IL-10 -1082 affects Tacrolimus DAC in Jordanian kidney transplant recipients during the first month post-transplantation.
Collapse
Affiliation(s)
- Bara'ah Khaleel
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| | - Al-Motassem Yousef
- The University of Jordan, School of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy, Amman, Jordan
| | - Mazhar Salim Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | | | | | - Ali Abuhaliema
- The University of Jordan, School of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy, Amman, Jordan
| | - Khalid M. Al-Batayneh
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| | - Bahaa Al-Trad
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| |
Collapse
|
6
|
Impact of Immunosuppressive Drugs on Fibroblasts: An In Vitro Study. J Clin Med 2022; 11:jcm11113107. [PMID: 35683494 PMCID: PMC9181118 DOI: 10.3390/jcm11113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The aim of this study was to compare the direct impact of different agents for immunosuppressive therapy on mouse fibroblasts as a possible cause of drug-induced gingival overgrowth (DIGO). Methods: 3T3 mouse fibroblasts were cultivated in cell-specific media (2 × 104 cells/mL) and treated for 6, 24, 48 and 72 h with one of three immunosuppressive drugs (IsDs): cyclosporin a (CsA), tacrolimus (TaC) and sirolimus (SiR). Different concentrations (10−750 ng/mL) were used to mimic serum levels under active immunosuppressive therapy conditions. Cell population characteristics (cell number, viability and morphology) were assessed using computer-assisted cell analysis. Expression of pro-collagen type I carboxy-terminal propeptide (PICP) was identified using an ELISA assay. Results: The influence of IsDs on the biological status of 3T3 fibroblasts was time- and dose-dependent. Comparing CsA and TaC, the total cell amount was enhanced using concentrations in the range of 10−150 ng/mL (p > 0.05). In contrast, treatment with SiR resulted in a decrease in the average cell number (p < 0.01). PICP and cell diameter of fibroblasts were not susceptible to IsD treatment (p > 0.05). Conclusions: Our results revealed time-dependent effects of IsDs, with distinct influences on cell number. The cell morphology and the PICP balance of the investigated fibroblast cell line remained unaffected. Hence, the potential role of IsDs is not a unilateral mechanism of action but rather a multifactorial process.
Collapse
|
7
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
8
|
Chen Z, Cheng X, Zhang L, Tang L, Fang Y, Chen H, Zhang L, Shen A. The impact of IL-10 and CYP3A5 gene polymorphisms on dose-adjusted trough blood tacrolimus concentrations in early post-renal transplant recipients. Pharmacol Rep 2021; 73:1418-1426. [PMID: 34089513 DOI: 10.1007/s43440-021-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The strong inter-individual pharmacokinetic variability and the narrow therapeutic window of tacrolimus (TAC) have hampered the clinical application. Gene polymorphisms play an important role in TAC pharmacokinetics. Here, we investigate the influence of genotypes of IL-10, CYP3A5, CYP2C8, and ABCB1 on dose-adjusted trough blood concentrations (the C0/D ratio) of TAC to reveal unclear genetic factors that may affect TAC dose requirements for renal transplant recipients. METHODS Genetic polymorphisms of IL-10, CYP3A5, CYP2C8, and ABCB1 in 188 renal transplant recipients were determined using Kompetitive Allele Specific PCR (KASP). Statistical analysis was applied to examine the effect of genetic variation on the TAC C0/D at 5, 10, 15, and 30 days after transplantation. RESULTS Recipients carrying the IL-10 -819C > T TT genotype showed a significantly higher TAC C0/D than those with the TC/CC genotype (p < 0.05). Additionally, the TAC C0/D values of recipients with the capacity for low IL-10 activity (-819 TT) engrafted with CYP3A5 non-expressers were higher compared to the intermediate/high activity of IL-10 -819C > T TC or CC carrying CYP3A5 expressers, and the difference was statistically significant at different time points (p < 0.05). CONCLUSIONS Genetic polymorphisms of IL-10 -819C > T and CYP3A5 6986A > G influence the TAC C0/D, which may contribute to variation in TAC dose requirements during the early post-transplantation period. Detecting IL-10 -819C > T and CYP3A5 6986A > G polymorphisms may allow determination of individualized tacrolimus dosage regimens for renal transplant recipients during the early post-transplantation period.
Collapse
Affiliation(s)
- Zhaolin Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xi Cheng
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Liwen Zhang
- Department of Data & Analytics, WuXi Diagnostics Limited Corporation, Shanghai, 200131, People's Republic of China
| | - Liqin Tang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Yan Fang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Hongxiao Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Lei Zhang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| | - Aizong Shen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
9
|
Wu Y, Fang F, Wang Z, Wen P, Fan J. The influence of recipient SLCO1B1 rs2291075 polymorphism on tacrolimus dose-corrected trough concentration in the early period after liver transplantation. Eur J Clin Pharmacol 2021; 77:859-867. [PMID: 33386894 PMCID: PMC8128732 DOI: 10.1007/s00228-020-03058-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 01/28/2023]
Abstract
Purpose To explore the relationship between rs2291075 polymorphism in SLCO1B1 gene, which encodes an influx transmembrane protein transporter, and tacrolimus dose–corrected trough concentration (C/D, ng ml−1 mg−1 kg−1) in the early period after liver transplantation. Methods CYP3A5 rs776746 and SLCO1B1 rs2291075 polymorphisms of 210 liver transplantation patients and their corresponding donor livers were assessed by PCR amplification and DNA sequencing. The influence of gene polymorphisms on C/D values of tacrolimus was analyzed. The early postoperative period after liver transplantation was divided into the convalescence phase (1–14 days) and stationary phase (15–28 days) according to the change of liver function and tacrolimus C/D values. Results The combined analysis of donor and recipient CYP3A5 rs776746 could distinguish the metabolic phenotype of tacrolimus into three groups: fast elimination (FE), intermediate elimination (IE), and slow elimination (SE), which was entitled the FIS classification system. Tacrolimus C/D ratios of recipient SLCO1B1 rs2291075 CT and TT carriers were very close and were significantly lower than those of recipient SLCO1B1 rs2291075 CC genotype carriers in convalescence phase (p = 0.0195) and in stationary phase (p = 0.0152). There were no statistically significant differences between tacrolimus C/D ratios of patients carried with SLCO1B1 rs2291075 CT, TT genotype donors, and those carried with SLCO1B1 rs2291075 CC genotype donors. A model consisting of tacrolimus daily dose, total bilirubin, FIS classification, and recipient SLCO1B1 rs2291075 could predict tacrolimus C/D ratios in the convalescence phase by multivariate analysis. However, recipient SLCO1B1 rs2291075 genotype failed to enter forecast model for C/D ratios in stationary phase. Recipient SLCO1B1 rs2291075 genotype had significant effect on tacrolimus C/D ratios in convalescence phase (p = 0.0300) and stationary phase (p = 0.0400) in subgroup, which excluded the interference come from donor and recipient CYP3A5 rs776746. Conclusion SLCO1B1 rs2291075 could be a novel genetic locus associated with tacrolimus metabolism. The combined analysis of donor and recipient CYP3A5 rs776746, recipient SLCO1B1 rs2291075 genotypes, could be helpful to guide the personalized administration of tacrolimus in early period after liver transplantation. Supplementary Information The online version contains supplementary material available at 10.1007/s00228-020-03058-w.
Collapse
Affiliation(s)
- Yi Wu
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Department of Nursing, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Fang Fang
- Department of Nursing, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhaowen Wang
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China. .,Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
10
|
Bogacz A, Polaszewska A, Bartkowiak-Wieczorek J, Tejchman K, Dziewanowski K, Ostrowski M, Czerny B, Grześkowiak E, Sieńko M, Machaliński B, Sieńko J, Kotowski M. The effect of genetic variations for interleukin-10 (IL-10) on the efficacy of immunosuppressive therapy in patients after kidney transplantation. Int Immunopharmacol 2020; 89:107059. [PMID: 33039969 DOI: 10.1016/j.intimp.2020.107059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Kidney transplantation is the target method of treating chronic kidney disorders. It improves the comfort of patient life by eliminating the need for repeated dialysis. The aim of the study was to examine the correlation between tacrolimus (TAC) dose and genetic variation for interleukin-10 (IL-10) and its effect on the therapeutic outcome. In addition, the correlations between the IL-10 polymorphism andthe clinical and the biochemical parameters of TAC patients were also analyzed. The study included 209 subjects after kidney transplantation, who received TAC every 12 and 24 h. Drug concentrations in blood, selected morphological and biochemical parameters, and the genetic variation of IL-10 (-1082A > G) which may affect immunosuppressant dosage and risk of acute graft rejection were analyzed. Genetic analyses were performed using real-time PCR. No significant correlations between the clinical and the biochemical parameters and IL-10-1082A > G polymorphism for patients receiving TAC after kidney transplantation were found. The analysis of the correlation between TAC dose and IL-10 genetic variation for the -1082A > G polymorphism revealed that patients with the AA genotype required lower immunosuppressive drug doses (AA: 3.54 ± 2.38 mg/day vs AG: 6.18 ± 5.10 mg/day, GG: 4.44 ± 3.01 mg/day). Furthermore, frequencies of the genotypes for the IL-10 -1082A > G polymorphism were characterized by a significantly higher frequency of the AA genotype among TAC 24 as compared to TAC 12 patients. The results of the study indicated that the IL-10 -1082A > G polymorphism may in fact influence the TAC dose. The biochemical parameters of the renal profile in relation to the IL-10 genetic variations were not indicative of higher risk of acute rejection after transplantation.
Collapse
Affiliation(s)
- Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland; Department of Histocompatibility with Laboratory of Genetic Diagnostics, Regional Blood Center, 60-354 Poznan, Poland.
| | - Anna Polaszewska
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 60-781 Poznan, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantation, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Dziewanowski
- Nephrology-Transplant Center, Department of the Regional Public Hospital in Szczecin, 70-001 Szczecin, Poland
| | - Marek Ostrowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bogusław Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, 60-630 Poznan, Poland; Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Edmund Grześkowiak
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 60-781 Poznan, Poland
| | - Magdalena Sieńko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, 71-242 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Jerzy Sieńko
- Department of General Surgery and Transplantation, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, 70-111 Szczecin, Poland; Department of General Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| |
Collapse
|
11
|
Coller JK, Ramachandran J, John L, Tuke J, Wigg A, Doogue M. The impact of liver transplant recipient and donor genetic variability on tacrolimus exposure and transplant outcome. Br J Clin Pharmacol 2019; 85:2170-2175. [PMID: 31219197 DOI: 10.1111/bcp.14034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effect of recipient and donor genetic variability on dose-adjusted steady-state tacrolimus concentrations (Css ) and clinical outcomes 3 and 6 months after liver transplant. Twenty-nine recipients and matched donor blood samples were genotyped for 27 single nucleotide polymorphisms including CYP3A5*3 (rs776746), ABCB1 haplotype and immune genes. Associations between genetic variability and clinical parameters and Css and the occurrence of rejection and nephrotoxicity were analysed by multivariate and multinomial logistic regression modelling and Jonckheere-Terpstra tests examined the impact of combined donor/recipient CYP3A5 expression on Css . At 3 months post-transplant modelling revealed an association between tacrolimus Css and recipient CASP1 rs580523 genotype (P = 0.005), accounting for 52% Css variance. Jonckheere-Terpstra tests revealed that as combined donor/recipient CYP3A5 expression increased, Css decreased (P = 0.010 [3 months], 0.018 [6 months]). As this is the first report of CASP1 genetic variability influencing tacrolimus Css , further validation in larger cohorts is required.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jeyamani Ramachandran
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Libby John
- South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.,ARC Centre of Excellence for Mathematical & Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Alan Wigg
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Matthew Doogue
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
12
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
13
|
Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose after liver transplantation: A systematic review and meta-analysis. Clin Transplant 2018; 32:e13306. [DOI: 10.1111/ctr.13306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Fatemeh Hendijani
- Endocrinology and Metabolism Research Center; Hormozgan University of Medical Sciences; Bandar Abbas Iran
- Faculty of Pharmacy; Hormozgan University of Medical Sciences; Bandar Abbas Iran
| | - Negar Azarpira
- Transplant Research Center; Shiraz Institute for Stem Cell and Regenerative Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - Maryam Kaviani
- Transplant Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
14
|
Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018; 19:175-184. [PMID: 29318894 PMCID: PMC6021962 DOI: 10.2217/pgs-2017-0187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
AIM Multiple genetic variants have been associated with variation in tacrolimus (TAC) trough concentrations. Unfortunately, additional studies do not confirm these associations, leading one to question if a reported association is accurate and reliable. We attempted to validate 44 published variants associated with TAC trough concentrations. MATERIALS & METHODS Genotypes of the variants in our cohort of 1923 kidney allograft recipients were associated with TAC trough concentrations. RESULTS Only variants in CYP3A4 and CYP3A5 were significantly associated with variation in TAC trough concentrations in our validation. CONCLUSION There is no evidence that common variants outside the CYP3A4 and CYP3A5 loci are associated with variation in TAC trough concentrations. In the future rare variants may be important and identified using DNA sequencing.
Collapse
Affiliation(s)
- William S Oetting
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baolin Wu
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David P Schladt
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roslyn B Mannon
- Division of Nephrology, University of Alabama, Birmingham, AL 35233, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ajay K Israni
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN 55415, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
A new donors' CYP3A5 and recipients' CYP3A4 cluster predicting tacrolimus disposition, and new-onset hypertension in Chinese liver transplant patients. Oncotarget 2017; 8:70250-70261. [PMID: 29050276 PMCID: PMC5642551 DOI: 10.18632/oncotarget.19606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
AIM The purpose of the current study was to investigate individualized therapy of tacrolimus (Tac), as well as complications after liver transplantation (LT) with the known genetic determinants and clinical factors. METHODS In this retrospective study, two cohorts (n=170) from the China Liver Transplant Registry (CLTR) database from July 2007 to March 2015 were included. RESULTS Both donors' CYP3A5*3 and recipients' CYP3A4*1G had a correlation with Tac pharmacokinetics at four weeks (all P<0.05), except recipients' CYP3A4*1G nearly had an association at week 2 (P=0.055). The model of donors' CYP3A5*3, recipients' CYP3A4*1G, and total bilirubin (TBL), for the prediction of Tac disposition, was better than donors' CYP3A5*3 only at week 1, 2, and 3 (P=0.010, P=0.007, and P=0.010, respectively), but not apparent at week 4 (P=0.297). Besides, when the P value was greater than or equal to 0.6685 after considering the false-positive rate R=10%, the patients were considered to have a faster metabolism, according to the mentioned model. Interestingly, we found that if more than or equal to two alleles A were present in the combination of donors' CYP3A5*3 and recipients' CYP3A4*1G genotype, there was a lower Tac C/D ration at week 1, 2, and 3 (P<0.001, P=0.001, and P<0.001), except at week 4 (P=0.082), and the probability of new-onset hypertension was lesser (P<0.001). CONCLUSIONS These data provided a potential basis for a comprehensive approach to predicting the Tac dose requirement in individual patients and provided a strategy for the effective prevention, early diagnosis of new-onset hypertension in Chinese LT recipients.
Collapse
|
16
|
Liao JH, Li CC, Wu SH, Fan JW, Gu HT, Wang ZW. Gene Variations of Sixth Complement Component Affecting Tacrolimus Metabolism in Patients with Liver Transplantation for Hepatocellular Carcinoma. Chin Med J (Engl) 2017; 130:1670-1676. [PMID: 28685716 PMCID: PMC5520553 DOI: 10.4103/0366-6999.209886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) improves the prognosis of patients with hepatocellular carcinoma (HCC). Moreover, the complement system is a powerful immune effector that can affect liver function and process of liver cirrhosis. However, studies correlating the complement system with tacrolimus metabolism after OLT are scarce. In this study, the role of single nucleotide polymorphisms (SNPs) associated with the sixth complement component (C6) in tacrolimus metabolism was investigated during the early stages of liver transplantation. METHODS The study enrolled 135 adult patients treated with OLT for HCC between August 2011 and October 2013. Ten SNPs in C6 gene and rs776746 in cytochrome P450 3A5 (CYP3A5) gene were investigated. The tacrolimus levels were monitored daily during 4 weeks after transplantation. RESULTS Both donor and recipient CYP3A5 rs776746 allele A were correlated with decreased concentration/dose (C/D) ratios. Recipient C6 rs9200 allele G and donor C6 rs10052999 homozygotes were correlated with lower C/D ratios. Recipient CYP3A5 rs776746 allele A (yielded median tacrolimus C/D ratios of 225.90 at week 1 and 123.61 at week 2), C6 rs9200 allele G (exhibited median tacrolimus C/D ratios of 211.31 at week 1, 110.23 at week 2, and 99.88 at week 3), and donor CYP3A5 rs776746 allele A (exhibited median C/D ratios of 210.82 at week 1, 111.06 at week 2, 77.49 at week 3, and 85.60 at week 4) and C6 rs10052999 homozygote (exhibited median C/D ratios of 167.59 at week 2, 157.99 at week 3, and 155.36 at week 4) were associated with rapid tacrolimus metabolism. With increasing number of these alleles, patients were found to have lower tacrolimus C/D ratios at various time points during the 4 weeks after transplantation. In multiple linear regression analysis, recipient C6 rs9200 group (AA vs. GG/GA) was found to be related to tacrolimus metabolism at weeks 1, 2, and 3 (P = 0.005, P = 0.045, and P = 0.033, respectively), whereas donor C6 rs10052999 group (CC/TT vs. TC) was demonstrated to be correlated with tacrolimus metabolism only at week 4 (P = 0.001). CONCLUSIONS Recipient C6 gene rs9200 polymorphism and donor C6 gene rs10052999 polymorphism are new genetic loci that affect tacrolimus metabolism in patients with HCC after OLT.
Collapse
Affiliation(s)
- Jian-Hua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chang-Can Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shao-Han Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Wei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Tao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhao-Wen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
17
|
Liu MZ, He HY, Zhang YL, Hu YF, He FZ, Luo JQ, Luo ZY, Chen XP, Liu ZQ, Zhou HH, Shao MJ, Ming YZ, Xin HW, Zhang W. IL-3 and CTLA4 gene polymorphisms may influence the tacrolimus dose requirement in Chinese kidney transplant recipients. Acta Pharmacol Sin 2017; 38:415-423. [PMID: 28112181 PMCID: PMC5342670 DOI: 10.1038/aps.2016.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
The highly variable pharmacokinetics and narrow therapeutic window of tacrolimus (TAC) has hampered its clinical use. Genetic polymorphisms may contribute to the variable response, but the evidence is not compelling, and the explanation is unclear. In this study we attempted to find previously unknown genetic factors that may influence the TAC dose requirements. The association of 105 pathway-related single nucleotide polymorphisms (SNPs) with TAC dose-adjusted concentrations (C0/D) was examined at 7, 30 and 90 d post-operation in 382 Chinese kidney transplant recipients. In CYP3A5 non-expressers, the patients carrying the IL-3 rs181781 AA genotype showed a significantly higher TAC logC0/D than those with the AG genotype at 30 and 90 d post-operation (AA vs AG, 2.21±0.06 vs 2.01±0.03, P=0.004; and 2.17±0.06 vs 2.03±0.03, P=0.033, respectively), and than those with the GG genotype at 30 d (AA vs GG, 2.21±0.06 vs 2.04±0.03, P =0.011). At 30 d, the TAC logC0/D in the grouped AG+GG genotypes of CTLA4 rs4553808 was significantly lower than that in the AA genotype (P =0.041) in CYP3A5 expressers, but it was higher (P=0.008) in the non-expressers. We further validated the influence of CYP3A5 rs776746, CYP3A4 rs2242480 and rs4646437 on the TAC C0/D; other candidate SNPs were not associated with the differences in TAC C0/D. In conclusion, genetic polymorphisms in the immune genes IL-3 rs181781 and CTLA4 rs4553808 may influence the TAC C0/D. They may, together with CYP3A5 rs776746, CYP3A4 rs2242480 and rs4646437, contribute to the variation in TAC dose requirements. When conducting individualized therapy with tacrolimus, these genetic factors should be taken into account.
Collapse
Affiliation(s)
- Mou-ze Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Hai-yan He
- International Medical Department, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yue-li Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Yong-fang Hu
- Peking University Third Hospital, Beijing 100191, China
| | - Fa-zhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Jian-quan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhi-ying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xiao-ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhao-qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Hong-hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Ming-jie Shao
- Research Center of Chinese Health, Ministry of Transplantation Medicine, Engineering and Technology, Third Affiliated Hospital, Central South University, Changsha, 410013, China
| | - Ying-zi Ming
- Research Center of Chinese Health, Ministry of Transplantation Medicine, Engineering and Technology, Third Affiliated Hospital, Central South University, Changsha, 410013, China
| | - Hua-wen Xin
- Department of Clinical Pharmacology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| |
Collapse
|
18
|
Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients. DISEASE MARKERS 2017; 2017:7834035. [PMID: 28246425 PMCID: PMC5299197 DOI: 10.1155/2017/7834035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Aims. The influence of interleukin-10 (IL-10) and interleukin-18 (IL-18) polymorphisms on tacrolimus pharmacokinetics had been described in liver and kidney transplantation. The expression of cytokines varied in different kinds of transplantation. The influence of IL-10 and IL-18 genetic polymorphisms on the pharmacokinetic parameters of tacrolimus remains unclear in lung transplantation. Methods. 51 lung transplant patients at Shanghai Pulmonary Hospital were included. IL-18 polymorphisms (rs5744247 and rs1946518), IL-10 polymorphisms (rs1800896, rs1800872, and rs3021097), and CYP3A5 rs776746 were genotyped. Dose-adjusted trough blood concentrations (C/D ratio, mg/kg body weight) in lung transplant patients during the first 4 postoperative weeks were calculated. Results. IL-18 rs5744247 allele C and rs1946518 allele A were associated with fast tacrolimus metabolism. Combined analysis showed that the numbers of low IL-18 mRNA expression alleles had positive correlation with tacrolimus C/D ratios in lung transplant recipients. The influence of IL-18 polymorphisms on tacrolimus C/D ratios was observed in CYP3A5 expresser recipients, but not in CYP3A5 nonexpresser recipients. No clinical significance of tacrolimus C/D ratios difference of IL-10 polymorphisms was found in our data. Conclusions. IL-18 polymorphisms may influence tacrolimus elimination in lung transplantation patients.
Collapse
|
19
|
Ren L, Teng M, Zhang T, Zhang X, Sun B, Qin S, Zhong L, Peng Z, Fan J. Donors FMO3 polymorphisms affect tacrolimus elimination in Chinese liver transplant patients. Pharmacogenomics 2017; 18:265-275. [PMID: 28084894 DOI: 10.2217/pgs-2016-0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Flavin-containing monooxygenase (FMO) variants were potentially involved in tacrolimus metabolism in kidney transplantion. The influences of FMO3 genotypes on tacrolimus elimination in Chinese liver transplant patients remained unclear. PATIENTS & METHODS FMO3 SNPs and CYP3A5 rs776746 were analyzed in 110 Chinese patients. RESULTS Donor FMO3 rs1800822 allele T and rs909530 allele T were associated with fast tacrolimus elimination. Combination of polymorphisms of donor FMO3 rs1800822 and rs909530 genotype impacted on tacrolimus elimination (p = 0.0221). The number of donor rs1800822 allele T and rs909530 allele T was confirmed to be an independent predictor of the tacrolimus concentration-to-dose ratios for weeks 2, 3 and 4 in the multivariate analysis. CONCLUSION Donor's FMO3 polymorphisms might affect tacrolimus elimination.
Collapse
Affiliation(s)
- Lei Ren
- Department of Hepatobiliary Pancreatic Surgery, Shandong Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Mujian Teng
- Department of Hepatobiliary Pancreatic Surgery, Shandong Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Tao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Sun
- Department of Pharmacy, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Zhong
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Zhihai Peng
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
20
|
Jiang T, Li C, Duan B, Liu Y, Wang L, Lu S. Risk factors for and management of ischemic-type biliary lesions following orthotopic liver transplantation: A single center experience. Ann Hepatol 2016; 15:41-6. [PMID: 26626639 DOI: 10.5604/16652681.1184204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Biliary complications can cause morbidity, graft loss, and mortality after liver transplantation. The most troublesome biliary complications are ischemic-type biliary lesions (ITBL), which occur since transplants can now be performed after the donor has undergone circulatory death. The exact origin of this type of biliary complication remains unknown. MATERIAL AND METHODS A total of 528 patients were retrospectively analyzed following liver transplantation after excluding 30 patients with primary sclerosing cholangitis and those lost to follow-up from January 2007 to January 2014. The incidence of and risk factors for ITBL were evaluated. RESULTS Cold ischemia time (CIT) (P = 0.042) and warm ischemia time (WIT) (P = 0.006) were found to be independent risk factors for the development of ITBL. Use of the cytochrome P450 (CYP) 3A5 genotype assay to guide individualization of immunosuppressive medications resulted in significantly fewer ITBL (P = 0.027. Autoimmune hepatitis might be a risk factor for ITBL, as determined using univariate analysis (P = 0.047). CONCLUSIONS Efforts should be taken to minimize risk factors associated with ITBL, such as CIT and WIT. The CYP3A5 genotype assay should be used to guide selection of immunosuppressive therapy in an effort to reduce the occurrence of ITBL.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hepatobiliary Surgery and You-An Liver Transplant Center, Beijing You-An Hospital, Capital Medical University, Beijing, P.R. China
| | - Chuanyun Li
- Department of Hepatobiliary Surgery and You-An Liver Transplant Center, Beijing You-An Hospital, Capital Medical University, Beijing, P.R. China
| | - Binwei Duan
- Department of Hepatobiliary Surgery and You-An Liver Transplant Center, Beijing You-An Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuan Liu
- Department of Hepatobiliary Surgery and You-An Liver Transplant Center, Beijing You-An Hospital, Capital Medical University, Beijing, P.R. China
| | - Lu Wang
- Department of Hepatobiliary Surgery and You-An Liver Transplant Center, Beijing You-An Hospital, Capital Medical University, Beijing, P.R. China
| | - Shichun Lu
- Institute & Hospital of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Chinese PLA Medical School
| |
Collapse
|
21
|
Quispel WT, Stegehuis-Kamp JA, Santos SJ, Egeler RM, van Halteren AGS. Activated Conventional T-Cells Are Present in Langerhans Cell Histiocytosis Lesions Despite the Presence of Immune Suppressive Cytokines. J Interferon Cytokine Res 2015; 35:831-9. [PMID: 26381039 DOI: 10.1089/jir.2014.0190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) lesions are characterized by neoplastic CD1a(+)/Langerin(+) histiocytes (LCH-cells) and display many features of chronic inflammation. Cancer cells can escape immune-surveillance through intra-tumoral secretion of immune-suppressive cytokines. We therefore studied by immunohistochemistry the local cytokine milieu and phenotypic characteristics of T-cells and LCH-cells present in LCH lesions collected from 25 therapy naïve patients. LCH biopsies predominantly expressed interleukin-10 (IL-10) (10/25), transforming growth factor-beta (TGF-β) (9/25), or both cytokines (6/25). The absolute number of CD3(+)T-cells and the CD3(+)FOXP3(-) conventional cell (T-CONV) versus the CD3(+)FOXP3(+) regulatory T-cell (T-REG) was comparable for each suppressive cytokine profile (5:1). IL-10-expressing lesions contained, however, a higher proportion of T-CONV expressing the activation markers CD25 98% (38%-100%) and inducible costimulatory molecule (ICOS) 86% (47%-100%) than lesions wherein solely TGF-β was detected (CD25(+) 20% (6%-54%); ICOS(+) 29% (7%-51%)). Virtually all T-REG expressed CD25 and ICOS in IL-10 lesions, whereas TGF-β(+) lesions contained a lower proportion of ICOS(+) T-REG (P=0.05). IL-10(+) lesions contained more LCH-cells expressing high intensity of ICOS ligand (ICOSL) compared with TGF-β(+) lesions (P=0.03). ICOS expression by lesion-infiltrating T-CONV and T-REG positively correlated to the extent of ICOSL expression by LCH-cells (P=0.004). Our study points out that the combined detection of interlesional IL-10 and ICOSL expression by LCH-cells is associated with the highest prevalence of activated T-CONV. Immune profiling of LCH-affected tissues obtained at the time of diagnosis may set the stage for the development of new types of therapies, which aim at local boosting of immune cells that recognize and eliminate neoplastic LCH-cells.
Collapse
Affiliation(s)
- Willemijn T Quispel
- 1 Immunology Laboratory, Willem Alexander Children's Hospital (WAKZ), Leiden University Medical Center , Leiden, The Netherlands
| | - Janine A Stegehuis-Kamp
- 1 Immunology Laboratory, Willem Alexander Children's Hospital (WAKZ), Leiden University Medical Center , Leiden, The Netherlands
| | - Susy J Santos
- 1 Immunology Laboratory, Willem Alexander Children's Hospital (WAKZ), Leiden University Medical Center , Leiden, The Netherlands
| | - R Maarten Egeler
- 1 Immunology Laboratory, Willem Alexander Children's Hospital (WAKZ), Leiden University Medical Center , Leiden, The Netherlands .,2 Division of Hematology/Oncology, Hospital for Sick Children, University of Toronto , Toronto, Canada
| | - Astrid G S van Halteren
- 1 Immunology Laboratory, Willem Alexander Children's Hospital (WAKZ), Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
22
|
Fan J, Zhang X, Ren L, Chen D, Wu S, Guo F, Qin S, Wang Z, Lin Z, Xing T, Sun X, Peng Z. Donor IL-18 rs5744247 polymorphism as a new biomarker of tacrolimus elimination in Chinese liver transplant patients during the early post-transplantation period: results from two cohort studies. Pharmacogenomics 2015; 16:239-50. [PMID: 25712187 DOI: 10.2217/pgs.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: This study evaluated the relationships between IL-18 polymorphisms and tacrolimus elimination in Chinese liver transplant patients. Patients & methods: Eighty-four liver transplant patients from Shanghai (training set) and 50 patients from Shandong (validating set) were inculded. IL-18 polymorphisms (rs5744247, rs7106524, rs549908, rs187238 and rs1946518) and CYP3A5 rs776746 were genotyped. Results: In training set, daily drug dose, total bilirubin, donor CYP3A5 rs776746 and IL-18 rs5744247 genotypes were screened to construct prediction model for tacrolimus elimination. This model was confirmed in validating set (p < 0.001). Donor IL-18 rs5744247 polymorphism was an independent predictor of tacrolimus elimination in the first week after transplantation in both training (p = 0.008) and validating cohorts (p = 0.033). Conclusion: Donor IL-18 rs5744247 polymorphism may influence on tacrolimus elimination. Original submitted 16 July 2014; Revision submitted 12 November 2014
Collapse
Affiliation(s)
- Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ren
- Department of Hepatobiliary Pancreatic Surgery, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dawei Chen
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shaohan Wu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Feng Guo
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhong Lin
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tonghai Xing
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xing Sun
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Li CJ, Li L. Tacrolimus in preventing transplant rejection in Chinese patients--optimizing use. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:473-85. [PMID: 25609922 PMCID: PMC4298305 DOI: 10.2147/dddt.s41349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tacrolimus is a product of fermentation of Streptomyces, and belongs to the family of calcineurin inhibitors. It is a widely used immunosuppressive drug for preventing solid-organ transplant rejection. Compared to cyclosporine, tacrolimus has greater immunosuppressive potency and a lower incidence of side effects. It has been accepted as first-line treatment after liver and kidney transplantation. Tacrolimus has specific features in Chinese transplant patients; its in vivo pharmacokinetics, treatment regimen, dose and administration, and adverse-effect profile are influenced by multiple factors, such as genetics and the spectrum of primary diseases in the Chinese population. We reviewed the clinical experience of tacrolimus use in Chinese liver- and kidney-transplant patients, including the pharmacology of tacrolimus, the immunosuppressive effects of tacrolimus versus cyclosporine, effects of different factors on tacrolimus metabolism on Chinese patients, personalized medicine, clinical safety profile, and patient satisfaction and adherence. This article provides guidance for the rational and efficient use of tacrolimus in Chinese organ-transplant patients.
Collapse
Affiliation(s)
- Chuan-Jiang Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Association between interleukin-18 promoter variants and tacrolimus pharmacokinetics in Chinese renal transplant patients. Eur J Clin Pharmacol 2014; 71:191-8. [PMID: 25487141 DOI: 10.1007/s00228-014-1785-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/13/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Interleukin 18 (IL-18) is a potent proinflammatory cytokine thought to down-regulate cytochrome P450 (CYP) enzyme activities. This study aimed to assess the potential influence of two functional single nucleotide polymorphisms (SNPs) in the IL-18 promoter region on the tacrolimus pharmacokinetics in Chinese renal transplant patients. METHODS We enrolled 96 renal allograft recipients receiving tacrolimus-based immunosuppressive regiments. Two functional SNPs in the IL-18 gene promoter region at the positions -137G/C (rs187283) and -607A/C (rs1946518) and one SNP (rs776746) of CYP3A5 were genotyped using a Mass ARRAY platform. Tacrolimus daily doses (mg/day) and trough tacrolimus concentration (ng/ml) were continuously recorded for 1 month after transplantation. RESULTS The tacrolimus C/D ratio was significantly associated with the IL-18 rs1946518 gene polymorphism in the first month after transplantation (P = 0.0225). We studied the influence of its polymorphism on tacrolimus C/D ratios in subjects with different CYP3A5 genotype backgrounds, and among patients with CYP3A5 expressers, the difference among the three genotypes was even more striking (P < 0.001). We did not find significant differences in tacrolimus C/D ratios between the IL-18 rs187238 genotypes, either nominally or according to the CYP3A5 genotype. In a simple linear regression model, age, hemoglobin (Hb), CYP3A5 gene polymorphisms, and IL-18 A-607C gene polymorphisms were associated with log-transformed tacrolimus C/D ratios (P < 0.05). In the final multiple linear regression model, CYP3A5 polymorphisms were the most important variant, accounting for 19.5 % of total variation involved in tacrolimus pharmacokinetics. CONCLUSION Our findings suggest that a combined analysis of CYP3A5 and IL-18 promoter polymorphisms may help clinicians develop individualized tacrolimus treatment, which is based on determining CYP3A5 genotype.
Collapse
|
25
|
Hronová K, Šíma M, Světlík S, Matoušková O, Slanař O. Pharmacogenetics and immunosuppressive drugs. Expert Rev Clin Pharmacol 2014; 7:821-35. [PMID: 25301406 DOI: 10.1586/17512433.2014.966811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate genes have been proposed as potential biomarkers for altered pharmacodynamics or pharmacokinetics of immunosuppressive drugs. However, there is usually only limited clinical evidence substantiating the implementation of biomarkers into clinical practice. Testing for thiopurine-S-methyltransferase polymorphisms has been put into routine clinical use quite widely, while the other pharmacogenetic tests are much less frequently used. Relatively good evidence appeared for tacrolimus-related biomarkers; thus, their utilization may be envisaged in the near future. Although the biomarkers related to mycophenolate, sirolimus or other drugs in the therapeutic class may be promising, further research is necessary to provide more robust evidence. The present review focuses on immunosuppressive drugs, excluding biological treatment.
Collapse
Affiliation(s)
- Karolína Hronová
- Department of Pharmacology, First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Albertov 4, CZ-128 00 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Wang Z, Wu S, Chen D, Guo F, Zhong L, Fan J, Peng Z. Influence of TLR4 rs1927907 locus polymorphisms on tacrolimus pharmacokinetics in the early stage after liver transplantation. Eur J Clin Pharmacol 2014; 70:925-31. [DOI: 10.1007/s00228-014-1673-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
|
27
|
Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, Zhang YJ, Zheng P, Tan XH, Zhou L. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One 2014; 9:e86206. [PMID: 24465960 PMCID: PMC3897654 DOI: 10.1371/journal.pone.0086206] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Tacrolimus is a widely used immunosuppressive drug for preventing the rejection of solid organ transplants. The efficacy of tacrolimus shows considerable variability, which might be related to genetic variation among recipients. We conducted a retrospective study of 240 Chinese renal transplant recipients receiving tacrolimus as immunosuppressive drug. The retrospective data of all patients were collected for 40 days after transplantation. Seventeen SNPs of CYP3A5, CYP3A4, COMT, IL-10 and POR were identified by the SNaPshot assay. Tacrolimus blood concentrations were obtained on days 1-3, days 6-8 and days 12-14 after transplantation, as well as during the period of the predefined therapeutic concentration range. Kruskal-Wallis test was used to examine the effect of genetic variation on the tacrolimus concentration/dose ratio (C 0/D) at different time points. Chi-square test was used to compare the proportions of patients who achieved the target C 0 range in the different genotypic groups at weeks 1, 2, 3 and 4 after transplantation. After correction for multiple testing, there was a significant association of C 0/D with CYP3A5*3, CYP3A4*1G and CYP3A4 rs4646437 T>C at different time points after transplantation. The proportion of patients in the IL-10 rs1800871-TT group who achieved the target C 0 range was greater (p = 0.004) compared to the IL-10 rs1800871-CT and IL-10 rs1800871-CC groups at week 3 after transplantation. CYP3A5*3, CYP3A4 *1G, CYP3A4 rs4646437 T>C and IL-10 rs1800871 C>T might be potential polymorphisms affecting the interindividual variability in tacrolimus metabolism among Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Chuan-Jiang Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
- * E-mail:
| | - Li Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Hai-Xia Jiang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ze-Yan Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Wei-Mo Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan-Jun Zhang
- College of Pharmacy, University of Cincinnati Academic Health Centre, Cincinnati, Ohio, United States of America
| | - Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xu-Hui Tan
- Department of Biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, PR China
| | - Lin Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
28
|
Chen D, Guo F, Shi J, Zhang C, Wang Z, Fan J, Peng Z. Association of Hemoglobin Levels, CYP3A5, and NR1I3 Gene Polymorphisms with Tacrolimus Pharmacokinetics in Liver Transplant Patients. Drug Metab Pharmacokinet 2014; 29:249-53. [DOI: 10.2133/dmpk.dmpk-13-rg-095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Liu YY, Li C, Cui Z, Fu X, Zhang S, Fan LL, Ma J, Li G. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: a meta-analysis. Gene 2013; 531:476-88. [PMID: 24042126 DOI: 10.1016/j.gene.2013.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The effect of ABCB1 C3435T SNP on the pharmacokinetics of immunosuppressive drug tacrolimus in different studies was conflicting. So a meta-analysis was employed to study the correlation of ABCB1 C3435T SNP and the pharmacokinetics of tacrolimus at different post-transplantation times. METHOD Several studies about ABCB1 C3435T polymorphism and the pharmacokinetics of tacrolimus were collected through the search on PubMed and the Cochrane Library. After the extraction of pharmacokinetic parameters from these studies, a meta-analysis was performed on the software STATA version 11.0. RESULTS A total of 9 studies were adopted including 558 liver transplant recipients. For the dose of tacrolimus, the subjects with wild-type CC had a significantly higher tacrolimus dose than homozygous mutated genotype TT within 1 week (WMD=0.01 (0.00, 0.02), P=0.014) and the similar result in recipients with heterozygous CT compared with TT after transplantation for 1 month (WMD=0.01 (0.00, 0.02), P=0.002). For the tacrolimus concentration/dose ratio, subjects with CT had higher C/D ratio than those with CC and TT at different post-transplantation times. A subgroup analysis based on different ethnic populations was also carried out. Donors' genotypes were also considered in this meta-analysis. CONCLUSION Through this meta-analysis for the including studies about the pharmacokinetics of tacrolimus and ABCB1 C3435T SNP, several significant associations were obtained. Particularly, the Caucasians showed more significant associations between the C/D ratio and ABCB1 C3435T polymorphism; however, the correlations were not steady at different post-transplantation times.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Health Statistics, School of Public Health, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Heping District, Tianjin 300070, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen D, Fan J, Guo F, Qin S, Wang Z, Peng Z. Novel single nucleotide polymorphisms in interleukin 6 affect tacrolimus metabolism in liver transplant patients. PLoS One 2013; 8:e73405. [PMID: 23991193 PMCID: PMC3753270 DOI: 10.1371/journal.pone.0073405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tacrolimus is the first-line immunosuppressant after organ transplantation. It is mainly metabolized by cytochrome P450, family 3, subfamily A (CYP3A) enzymes, but there are large individual differences in metabolism. Interleukin 6 (IL6) has been shown to cause a pan-suppression of mRNA levels of ten major CYP enzymes in human hepatocyte cultures. IL6 has been shown to provide hepatoprotection in various models of liver injury. Rs1800796 is a locus in the IL6 gene promoter region which regulates cytokine production. We speculated that IL6 rs1800796 polymorphisms may lead to individual differences in tacrolimus metabolism by affecting CYP3A enzymes levels and liver function after liver transplantation. METHODOLOGY/PRINCIPAL FINDINGS Ninety-six liver transplant patients receiving tacrolimus were enrolled in the study. Two single nucleotide polymorphisms (SNP), CYP3A5 rs776746 and IL6 rs1800796, were genotyped in both donors and recipients. The effects of SNPs on tacrolimus concentration/dose (C/D ratio) at four weeks after transplantation were studied, as well as the effects of donor IL6 rs1800796 polymorphisms on liver function. Both donor and recipient CYP3A5 rs776746 allele A showed association with lower C/D ratios, while donor IL6 rs1800796 allele G showed an association with higher C/D ratios. Donor CYP3A5 rs776746 allele A, IL6 rs1800796 allele C, and recipient CYP3A5 rs776746 allele A were associated with fast tacrolimus metabolism. With increasing numbers of these alleles, patients were found to have increasingly lower tacrolimus C/D ratios at time points after transplantation. Donor IL6 rs1800796 allele G carriers showed an association with higher glutamic-pyruvic transaminase (GPT) levels. CONCLUSIONS Combined analysis of donor CYP3A5 rs776746, IL6 rs1800796, and recipient CYP3A5 rs776746 polymorphisms may distinguish tacrolimus metabolism better than CYP3A5 rs776746 alone. IL6 may lead to individual differences in tacrolimus metabolism mainly by affecting liver function.
Collapse
Affiliation(s)
- Dawei Chen
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University; Shanghai Genomepilot Institutes for Genomics and Human Health, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZW); (ZP)
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZW); (ZP)
| |
Collapse
|
31
|
Knops N, Levtchenko E, van den Heuvel B, Kuypers D. From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int J Pharm 2013; 452:14-35. [PMID: 23711732 DOI: 10.1016/j.ijpharm.2013.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
Abstract
Since their introduction circa 35 years ago, calcineurin-inhibitors (CNI) have become the cornerstone of immunosuppressive therapy in solid organ transplantation. However, CNI's possess a narrow therapeutic index with potential severe consequences of drug under- or overexposure. This demands a meticulous policy of Therapeutic Drug Monitoring (TDM) to optimize outcome. In clinical practice optimal dosing is difficult to achieve due to important inter- and intraindividual variation in CNI pharmacokinetics. A complex and often interdependent set of factors appears relevant in determining drug exposure. These include recipient characteristics such as age, race, body composition, organ function, and food intake, but also graft-related characteristics such as: size, donor-age, and time after transplantation can be important. Fundamental (in vitro) and clinical studies have pointed out the intrinsic relation between the aforementioned variables and the functional capacity of enzymes and transporters involved in CNI metabolism, primarily located in intestine, liver and kidney. Commonly occurring polymorphisms in genes responsible for CNI metabolism (CYP3A4, CYP3A5, CYP3A7, PXR, POR, ABCB1 (P-gp) and possibly UGT) are able to explain an important part of interindividual variability. In particular, a highly prevalent SNP in CYP3A5 has proven to be an important determinant of CNI dose requirements and drug-dose-interactions. In addition, a discrepancy in genotype between graft and receptor has to be taken into account. Furthermore, common phenomena in solid organ transplantation such as inflammation, ischemia- reperfusion injury, graft function, co-medication, altered food intake and intestinal motility can have a differential effect on the expression enzymes and transporters involved in CNI metabolism. Notwithstanding the built-up knowledge, predicting individual CNI pharmacokinetics and dose requirements on the basis of current clinical and experimental data remains a challenge.
Collapse
Affiliation(s)
- Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Belgium.
| | | | | | | |
Collapse
|
32
|
Brunet M. Cytokines as predictive biomarkers of alloreactivity. Clin Chim Acta 2012; 413:1354-8. [DOI: 10.1016/j.cca.2012.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
|
33
|
Sonderegger FL, Ma Y, Maylor-Hagan H, Brewster J, Huang X, Spangrude GJ, Zachary JF, Weis JH, Weis JJ. Localized production of IL-10 suppresses early inflammatory cell infiltration and subsequent development of IFN-γ-mediated Lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2011; 188:1381-93. [PMID: 22180617 DOI: 10.4049/jimmunol.1102359] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL-10 is a nonredundant inflammatory modulator that suppresses arthritis development in Borrelia burgdorferi-infected mice. Infected C57BL/6 (B6) IL-10(-/-) mice were previously found to have a prolonged IFN-inducible response in joint tissue. Infection of B6 IL-10 reporter mice identified macrophages and CD4(+) T cells as the primary sources of IL-10 in the infected joint tissue, suggesting that early local production of IL-10 dampened the proarthritic IFN response. Treatment of B6 IL-10(-/-) mice with anti-IFN-γ reduced the increase in arthritis severity and suppressed IFN-inducible transcripts to wild-type levels, thereby linking dysregulation of IFN-γ to disease in the B6 IL-10(-/-) mouse. Arthritis in B6 IL-10(-/-) mice was associated with elevated numbers of NK cell, NKT cell, α/β T cell, and macrophage infiltration of the infected joint. FACS lineage sorting revealed NK cells and CD4(+) T cells as sources of IFN-γ in the joint tissue of B6 IL-10(-/-) mice. These findings suggest the presence of a positive-feedback loop in the joint tissue of infected B6 IL-10(-/-) mice, in which production of inflammatory chemokines, infiltration of IFN-γ-producing cells, and additional production of inflammatory cytokines result in arthritis. This mechanism of arthritis is in contrast to that seen in C3H/He mice, in which arthritis development is linked to transient production of type I IFN and develops independently of IFN-γ. Due to the sustained IFN response driven by NK cells and T cells, we propose the B6 IL-10(-/-) mouse as a potential model to study the persistent arthritis observed in some human Lyme disease patients.
Collapse
Affiliation(s)
- F Lynn Sonderegger
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|