1
|
Domingues C, Jarak I, Matos A, Veiga F, Vitorino C, Dourado M, Figueiras A. Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation. Eur J Pharmacol 2025; 997:177466. [PMID: 40064225 DOI: 10.1016/j.ejphar.2025.177466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is expected to rise ca. 40 % by 2040. Rosmarinic acid (RA) has been recognized for its anticancer properties, although its role in OSCC has been neglected. This work exploits the activity of RA in 2D and 3D models of OSCC cells to compel a roadmap for its anticancer properties. The results demonstrated that RA significantly reduced cell mass and metabolic activity in a dose, time, and cell-type-dependent manner, predominantly in highly-invasive OSCC, without compromising normal mucosa in therapeutic doses. RA decreased mitochondria membrane potential and increased redox state, which was corroborated by pioneering observations on the metabolome landscape of OSCC cells (glutathione reduction and acetate and fumarate release). RA triggered autophagy, upregulating BNIP3 and BCNL1 and downregulating BIRC5. The upregulation of CADM1 and downregulation of VIM, CADM2, SNAIL1, and SOX9 highlighted the modulation of epithelial-mesenchymal transition and the remodeling of the extracellular matrix by the downregulation of MMP-2 and MMP-9. RA interacts with P-glycoprotein with the highest docking score of -6.4 kcal/mol. The HSC-3 cell surface charge decreased after RA treatment (-22.6 ± 0.3 mV vs. -26.3 ± 0.3 mV, p < 0.0001), suggesting a reversion of cell polarity and the impairment of invasion. RA also shrank the growth and the metabolic activity of multicellular tumor spheroids. Its modest protein binding with human saliva sheds light on its administration by the oromucosal route. Overall, this work supports the need for further research on the anticancer potential of RA in OSCC, either in monotherapy, combined with conventional treatments, or conveyed in nanosystems.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; REQUIMTE/LAQV, Drug Development and Technologies Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Ana Matos
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Chemical Engineering and Renewable Resources for Sustainability, CERES, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; REQUIMTE/LAQV, Drug Development and Technologies Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carla Vitorino
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Marília Dourado
- Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; REQUIMTE/LAQV, Drug Development and Technologies Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Li G, Liu H, Wang S, Mao E, Zhuang X. Controlling fluid flow rate to separate leukocytes and cancer cells based on stiffness differences. Mikrochim Acta 2025; 192:329. [PMID: 40310506 DOI: 10.1007/s00604-025-07186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Microfluidic techniques for label-free sorting of circulating tumor cells (CTCs) from peripheral blood are generally based on physical characteristic differences between blood cells and cancer cells, especially size differences. However, because the diameter ranges of some leukocytes and CTCs overlap, size-based sorting can certainly be disturbed by leukocytes. This study proposes a microfluidic sorting strategy based on cell stiffness differences, which achieves efficient separation of cells with overlapping sizes by precisely controlling the fluid flow rate. A quantitative relationship model between critical inlet flow rate, cell diameter, and Young's modulus was established based on the cell deformation effect, and its accuracy was verified through fluid dynamics simulation and experiments. The results showed that when the flow rate was between the critical flow rates of leukocytes and CTCs, high-stiffness leukocytes could be captured by the slit, while low-stiffness CTCs passed smoothly, with a separation resolution of 0.3 µm. This method can serve as a supplement to existing size-based sorting techniques, significantly improving the purity of CTCs.
Collapse
Affiliation(s)
- Gaolin Li
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong, China.
- Institute of Modern Agricultural Equipment, Shandong University of Technology, Zibo, Shandong, China.
| | - Huan Liu
- Rehabilitation Department, Linyi Central Hospital, Linyi, Shandong, China
| | - Shiyu Wang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong, China
| | - Enxia Mao
- Rehabilitation Department, Linyi Central Hospital, Linyi, Shandong, China
| | - Xuye Zhuang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
3
|
Iliev I, Tsoneva I, Nesheva A, Staneva G, Robev B, Momchilova A, Nikolova B. Complementary Treatment of Breast Cancer Cells with Different Metastatic Potential with Iscador Qu in the Presence of Clinically Approved Anticancer Drugs. Curr Issues Mol Biol 2024; 46:12457-12480. [PMID: 39590334 PMCID: PMC11593002 DOI: 10.3390/cimb46110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
European mistletoe extract (Iscador Qu) has been studied for decades, but it has not ceased to arouse scientific interest. The purpose was to investigate the impact of Iscador Qu on the antiproliferative potential of 11 standard chemotherapeutic agents on two breast cancer cell lines: MCF-7 low-metastatic and MDA-MB-231 high-metastatic and control cell lines (MCF-10A). MTT-dye reduction assay, FACS analysis, and PI staining were utilized. The most promising combinations acting against the MDA-MB-231 cell line were observed upon the simultaneous application of Iscador Qu (80 µg/mL) and Docetaxel, with 4-fold reduction in IC50. An antagonistic effect was found under treatment with Cisplatin and Iscador Qu (1.5-fold increase in IC50). The response of the low-metastatic breast cancer cell line MCF-7 to the tested combinations was different compared to the high-metastatic one. The most pronounced cytotoxic effect was found for the combination of Oxaliplatin and Iscador Qu (20 µg/mL) (5.2-fold IC50 reduction). An antagonistic effect for MCF-7 line was also observed when combinations with Olaparib and Tamoxifen were applied. This in vitro study offers new combinations between Iscador Qu and standard chemotherapeutic agents that hold great promise in establishing breast cancer therapeutic protocols compared to traditional monotherapies.
Collapse
Affiliation(s)
- Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Aleksandrina Nesheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Bozhil Robev
- Department of Medical Oncology, University Hospital “Sv. Ivan Rilski”, 15 Acad. Ivan Geshov Blvd, 1431 Sofia, Bulgaria;
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| |
Collapse
|
4
|
Rastegar-Pouyani N, Dongsar TS, Ataei M, Hassani S, Gumpricht E, Kesharwani P, Sahebkar A. An overview of the efficacy of inhaled curcumin: a new mode of administration for an old molecule. Expert Opin Drug Deliv 2024. [PMID: 38771504 DOI: 10.1080/17425247.2024.2358880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahshid Ataei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Ossowicz-Rupniewska P, Klebeko J, Georgieva I, Apostolova S, Struk Ł, Todinova S, Tzoneva RD, Guncheva M. Tuning of the Anti-Breast Cancer Activity of Betulinic Acid via Its Conversion to Ionic Liquids. Pharmaceutics 2024; 16:496. [PMID: 38675157 PMCID: PMC11053683 DOI: 10.3390/pharmaceutics16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Rumiana Dimitrova Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Iliev I, Mavrova A, Yancheva D, Dimov S, Staneva G, Nesheva A, Tsoneva I, Nikolova B. 2-Alkyl-Substituted-4-Amino-Thieno[2,3- d]Pyrimidines: Anti-Proliferative Properties to In Vitro Breast Cancer Models. Molecules 2023; 28:6347. [PMID: 37687177 PMCID: PMC10489817 DOI: 10.3390/molecules28176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 2-5 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 μg/mL (IC50 0.045 μM), followed by compound 4 (IC50 28.89 μg/mL or IC50 0.11 μM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 μg/mL i.e., 1.4 μM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 μg/mL (IC50 0.16 μM), and 2-ethyl derivative 4 revealed IC50 62.86 μg/mL (IC50 0.24 μM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound's effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness.
Collapse
Affiliation(s)
- Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25, 1113 Sofia, Bulgaria;
| | - Anelia Mavrova
- Department of Organic Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, S8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (A.M.); (S.D.)
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria;
| | - Stefan Dimov
- Department of Organic Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, S8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (A.M.); (S.D.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Alexandrina Nesheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| |
Collapse
|
7
|
Abdel-Nasser M, Abdel-Maksoud G, Eid AM, Hassan SED, Abdel-Nasser A, Alharbi M, Elkelish A, Fouda A. Antifungal Activity of Cell-Free Filtrate of Probiotic Bacteria Lactobacillus rhamnosus ATCC-7469 against Fungal Strains Isolated from a Historical Manuscript. Microorganisms 2023; 11:1104. [PMID: 37317078 DOI: 10.3390/microorganisms11051104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
Herein, twelve fungal strains were isolated from a deteriorated historical manuscript dated back to the 18th century. The obtained fungal strains were identified, using the traditional method and ITS sequence analysis, as Cladosporium herbarum (two strains), Aspergillus fumigatus (five strains), A. ustus (one strain), A. flavus (two strains), A. niger (one strain), and Penicillium chrysogenum (one strain). The ability of these fungal strains to degrade the main components of the paper was investigated by their activity to secrete extracellular enzymes including cellulase, amylase, gelatinase, and pectinase. The cell-free filtrate (CFF) ability of the probiotic bacterial strain Lactobacillus rhamnosus ATCC-7469 to inhibit fungal growth was investigated. The metabolic profile of CFF was detected by GC-MS analysis, which confirmed the low and high molecular weight of various active chemical compounds. The safe dose to be used for the biocontrol of fungal growth was selected by investigating the biocompatibility of CFF and two normal cell lines, Wi38 (normal lung tissue) and HFB4 (normal human skin melanocyte). Data showed that the CFF has a cytotoxic effect against the two normal cell lines at high concentrations, with IC50 values of 525.2 ± 9.8 and 329.1 ± 4.2 µg mL-1 for Wi38 and HFB4, respectively. The antifungal activity showed that the CFF has promising activity against all fungal strains in a concentration-dependent manner. The highest antifungal activity (100%) was recorded for a concentration of 300 µg mL-1 with a zone of inhibition (ZOI) in the ranges of 21.3 ± 0.6 to 17.7 ± 0.5 mm. At a concentration of 100 µg mL-1, the activity of CFF remained effective against all fungal strains (100%), but its effectiveness decreased to only inhibit the growth of eight strains (66%) out of the total at 50 µg mL-1. In general, probiotic bacterial strains containing CFF are safe and can be considered as a potential option for inhibiting the growth of various fungal strains. It is recommended that they be used in the preservation of degraded historical papers.
Collapse
Affiliation(s)
- Mahmoud Abdel-Nasser
- Department of Manuscripts Conservation, Al-Azhar Al-Sharif Library, Cairo 11511, Egypt
| | - Gomaa Abdel-Maksoud
- Conservation Department, Faculty of Archaeology, Cairo University, Giza 12613, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Giza 12622, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
8
|
Thapa P, Singh V, Gupta K, Shrivastava A, Kumar V, Kataria K, Mishra PR, Mehta DS. Point-of-care devices based on fluorescence imaging and spectroscopy for tumor margin detection during breast cancer surgery: Towards breast conservation treatment. Lasers Surg Med 2023; 55:423-436. [PMID: 36884000 DOI: 10.1002/lsm.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Fluorescence-based methods are highly specific and sensitive and have potential in breast cancer detection. Simultaneous fluorescence imaging and spectroscopy during intraoperative procedures of breast cancer have great advantages in detection of tumor margin as well as in classification of tumor to healthy tissues. Intra-operative real-time confirmation of breast cancer tumor margin is the aim of surgeons, and therefore, there is an urgent need for such techniques and devices which fulfill the surgeon's priorities. METHODS In this article, we propose the development of fluorescence-based smartphone imaging and spectroscopic point-of-care multi-modal devices for detection of invasive ductal carcinoma in tumor margin during removal of tumor. These multimodal devices are portable, cost-effective, noninvasive, and user-friendly. Molecular level sensitivity of fluorescence process shows different behavior in normal, cancerous and marginal tissues. We observed significant spectral changes, such as, red-shift, full-width half maximum (FWHM), and increased intensity as we go towards tumor center from normal tissue. High contrast in fluorescence images and spectra are also recorded for cancer tissues compared to healthy tissues. Preliminary results for the initial trial of the devices are reported in this article. RESULTS A total 44 spectra from 11 patients of invasive ductal carcinoma (11 spectra for invasive ductal carcinoma and rest are normal and negative margins) are used. Principle component analysis is used for the classification of invasive ductal carcinoma with an accuracy of 93%, specificity of 75% and sensitivity of 92.8%. We obtained an average 6.17 ± 1.66 nm red shift for IDC with respect to normal tissue. The red shift and maximum fluorescence intensity indicates p < 0.01. These results described here are supported by histopathological examination of the same sample. CONCLUSION In the present manuscript, simultaneous fluorescence-based imaging and spectroscopy is accomplished for the classification of IDC tissues and breast cancer margin detection.
Collapse
Affiliation(s)
- Pramila Thapa
- Department of Physics, Bio-photonics and Green-photonics Laboratory, Indian Institute of Technology Delhi, New Delhi, India
| | - Veena Singh
- Department of Physics, Bio-photonics and Green-photonics Laboratory, Indian Institute of Technology Delhi, New Delhi, India
| | - Komal Gupta
- Department of Surgical Disciplines, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Shrivastava
- Department of Surgical Disciplines, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Virendra Kumar
- Department of Physics, Bio-photonics and Green-photonics Laboratory, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamal Kataria
- Department of Surgical Disciplines, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Piyush R Mishra
- Department of Surgical Disciplines, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dalip S Mehta
- Department of Physics, Bio-photonics and Green-photonics Laboratory, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
9
|
Lobry M, Loyez M, Debliquy M, Chah K, Goormaghtigh E, Caucheteur C. Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber. Biosens Bioelectron 2022; 220:114867. [DOI: 10.1016/j.bios.2022.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
|
10
|
Sukhanova A, Bozrova S, Gerasimovich E, Baryshnikova M, Sokolova Z, Samokhvalov P, Guhrenz C, Gaponik N, Karaulov A, Nabiev I. Dependence of Quantum Dot Toxicity In Vitro on Their Size, Chemical Composition, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2734. [PMID: 36014600 PMCID: PMC9416395 DOI: 10.3390/nano12162734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Semiconductor nanocrystals known as quantum dots (QDs) are of great interest for researchers and have potential use in various applications in biomedicine, such as in vitro diagnostics, molecular tracking, in vivo imaging, and drug delivery. Systematic analysis of potential hazardous effects of QDs is necessary to ensure their safe use. In this study, we obtained water-soluble core/shell QDs differing in size, surface charge, and chemical composition of the core. All the synthesized QDs were modified with polyethylene glycol derivatives to obtain outer organic shells protecting them from degradation. The physical and chemical parameters were fully characterized. In vitro cytotoxicity of the QDs was estimated in both normal and tumor cell lines. We demonstrated that QDs with the smallest size had the highest in vitro cytotoxicity. The most toxic QDs were characterized by a low negative surface charge, while positively charged QDs were less cytotoxic, and QDs with a greater negative charge were the least toxic. In contrast, the chemical composition of the QD core did not noticeably affect the cytotoxicity in vitro. This study provides a better understanding of the influence of the QD parameters on their cytotoxicity and can be used to improve the design of QDs.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Evgeniia Gerasimovich
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Maria Baryshnikova
- Laboratory of Experimental Diagnostics and Biotherapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Zinaida Sokolova
- Laboratory of Experimental Diagnostics and Biotherapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Chris Guhrenz
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Nikolai Gaponik
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| |
Collapse
|
11
|
Çağlayan Arslan Z, Demircan Yalçın Y, Külah H. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis 2022; 43:1531-1544. [PMID: 35318696 DOI: 10.1002/elps.202100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%-98% at a frequency of 1 MHz and a magnitude of 10-12 Vpp . Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| |
Collapse
|
12
|
Moleón Baca JA, Ontiveros Ortega A, Aránega Jiménez A, Granados Principal S. Cells electric charge analyses define specific properties for cancer cells activity. Bioelectrochemistry 2022; 144:108028. [PMID: 34890991 DOI: 10.1016/j.bioelechem.2021.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
The surface electrical charge of cells is conditioned by the ionic medium in which they are immersed. This charge is specific for each cell type and is especially important in tumour cells because it determines their state of aggregation and their adhesion in the different organs. This study analyses the variations in surface charge of cells when pH, electrolytes, and their concentration are modified. The modification of these factors leads to changes in the surface charge of tumour cells; therefore, their states of aggregation and behaviour can be modified. This may even have a use in the prognosis and treatment of various tumours. Some studies conclude that the activity associated with the glycolysis process is accompanied by a change in the surface charge of cells. Notably, there is a high rate of glycolysis in tumours. Our results show that surface charge of cells strongly depends on nature of ionic medium in which they are found, with the valence of the majority ion being the most important factor. When ionic strength was high, the charge decreased dramatically. On the other hand, charge becomes zero or positive in an acidic pH, while in a basic pH, the negative charge increases.
Collapse
Affiliation(s)
| | | | | | - S Granados Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Spain
| |
Collapse
|
13
|
DNA adsorption on like-charged surfaces mediated by polycations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Shawki MM, Azmy MM, Salama M, Shawki S. Mathematical and deep learning analysis based on tissue dielectric properties at low frequencies predict outcome in human breast cancer. Technol Health Care 2021; 30:633-645. [PMID: 34366303 DOI: 10.3233/thc-213096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The early detection of human breast cancer represents a great chance of survival. Malignant tissues have more water content and higher electrolytes concentration while they have lower fat content than the normal. These cancer biochemical characters provide malignant tissue with high electric permittivity (ε´) and conductivity (σ). OBJECTIVE To examine if the dielectric behavior of normal and malignant tissues at low frequencies (α dispersion) will lead to the threshold (separating) line between them and find the threshold values of capacitance and resistance. These data are used as input for deep learning neural networks, and the outcomes are normal or malignant. METHODS ε´ and σ in the range of 50 Hz to 100 KHz for 15 human malignant tissues and their corresponding normal ones have been measured. The separating line equation between the two classes is found by mathematical calculations and verified via support vector machine (SVM). Normal range and the threshold value of both normal capacitance and resistance are calculated. RESULTS Deep learning analysis has an accuracy of 91.7%, 85.7% sensitivity, and 100% specificity for instant and automatic prediction of the type of breast tissue, either normal or malignant. CONCLUSIONS These data can be used in both cancer diagnosis and prognosis follow-up.
Collapse
Affiliation(s)
- Mamdouh M Shawki
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Moustafa Azmy
- Biomedical Engineering Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed Salama
- Histochemistry and Cell Biology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sanaa Shawki
- Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Yokota K, Hashimoto M, Kajimoto K, Tanaka M, Murayama S, Tsutsui M, Nakajima Y, Taniguchi M, Kataoka M. Effect of Electrolyte Concentration on Cell Sensing by Measuring Ionic Current Waveform through Micropores. BIOSENSORS-BASEL 2021; 11:bios11030078. [PMID: 33809382 PMCID: PMC7998150 DOI: 10.3390/bios11030078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022]
Abstract
Immunostaining has been widely used in cancer prognosis for the quantitative detection of cancer cells present in the bloodstream. However, conventional detection methods based on the target membrane protein expression exhibit the risk of missing cancer cells owing to variable protein expressions. In this study, the resistive pulse method (RPM) was employed to discriminate between cultured cancer cells (NCI-H1650) and T lymphoblastoid leukemia cells (CCRF-CEM) by measuring the ionic current response of cells flowing through a micro-space. The height and shape of a pulse signal were used for the simultaneous measurement of size, deformability, and surface charge of individual cells. An accurate discrimination of cancer cells could not be obtained using 1.0 × phosphate-buffered saline (PBS) as an electrolyte solution to compare the size measurements by a microscopic observation. However, an accurate discrimination of cancer cells with a discrimination error rate of 4.5 ± 0.5% was achieved using 0.5 × PBS containing 2.77% glucose as the electrolyte solution. The potential application of RPM for the accurate discrimination of cancer cells from leukocytes was demonstrated through the measurement of the individual cell size, deformability, and surface charge in a solution with a low electrolyte concentration.
Collapse
Affiliation(s)
- Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Muneaki Hashimoto
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Kazuaki Kajimoto
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masato Tanaka
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Yoshihiro Nakajima
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Masatoshi Kataoka
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
- Correspondence: ; Tel.: +81-87-869-3576
| |
Collapse
|
16
|
Chen WF, Malacco CMDS, Mehmood R, Johnson KK, Yang JL, Sorrell CC, Koshy P. Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111663. [PMID: 33545829 DOI: 10.1016/j.msec.2020.111663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023]
Abstract
The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the {111} planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.
Collapse
Affiliation(s)
- Wen-Fan Chen
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kochurani K Johnson
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
18
|
Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD. Ratite oils for local transdermal therapy of 4-OH tamoxifen: development, characterization, and ex vivo evaluation. J Liposome Res 2020; 31:217-229. [PMID: 32648792 DOI: 10.1080/08982104.2020.1777155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-inflammatory property of ratite oils as well as its ability to act as a penetration enhancer makes it an ideal agent to be used in transdermal formulations. The present study aims to develop an effective transfersomal delivery of 4-hydroxytamoxifen (4-OHT), an anti-cancer drug, using ratite oil as a carrier agent for the treatment of breast cancer (BC). The 4-OHT transfersomes were prepared with and without ratite oils using soy phosphatidylcholine and three different edge activators (EAs) in five different molar ratios using the rotary evaporation-ultrasonication method. Optimal transfersome formulations were selected using physical-chemical characterization and ex vivo studies. Results from physical-chemical characterization of the developed formulations found sodium taurocholate to be the most suitable EA, which recorded highest entrapment efficiency of 95.1 ± 2.70% with 85:15, (w/w) and lowest vesicle size of 82.3 ± 0.02 nm with 75:25, (w/w) molar ratios. TEM and DSC studies showed that the vesicles were readily identified and present in a nearly perfect spherical shape. In addition, formulations with emu oil had better stability than formulations with ostrich oil. Physical stability studies at 4 °C showed that ratite oil transfersomes were stable up to 4 weeks, while transfersomes without ratite oils were stable for 8 weeks. Ex vivo permeability studies using porcine skin concluded that 4-OHT transfersomal formulations with (85:15, w/w) without emu oil have the potential to be used in transdermal delivery approach to enhance permeation of 4-OHT, which may be beneficial in the treatment of BC.
Collapse
Affiliation(s)
- Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | | | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | - Uma D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| |
Collapse
|
19
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Ambrico M, Lasalvia M, Ligonzo T, Ambrico PF, Perna G, Capozzi V. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy. Med Phys 2020; 47:5373-5382. [PMID: 32750750 DOI: 10.1002/mp.14425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The response of human cells to applied electrical signals depends on the cellular health status, because it is influenced by the composition and structure of the main cellular components. Therefore, electrical impedance-based techniques can be considered as sensitive tools to investigate healthy or disease state at cellular level. The goal of this study is to show that different types of in vitro cellular lines, related to different health status, can be differentiated using impedance spectra analysis. METHODS Three different types of human breast cell line, corresponding to healthy, cancerous, and metastatic adenocarcinoma cells, were measured by means of electrical impedance spectroscopy. By modeling the investigated cells with proper resistive and capacitive circuital elements, the magnitude of the cell electrical components and spectra of real and imaginary part of dielectric permittivity were obtained. The latter were subsequently examined with a commonly adopted mathematical model, in order to estimate the values of specific dielectric parameters for the three different cellular lines. RESULTS The relative variation of cellular capacitance with respect to that of the culture medium, estimated at 100 Hz, has a larger value for the two types of cancerous cells with respect to the noncancerous type. Furthermore, the ratio between the real and imaginary part of the dielectric permittivity function has larger values for metastatic cells with respect to the normal and nonmetastatic ones. Therefore, the mentioned relative capacitance allows to discriminate between normal and cancerous cells, whereas the results obtained for the dielectric function can discriminate between metastatic and nonmetastatic cells. CONCLUSIONS This study can be considered as an exploratory investigation of evaluating in vitro the health status of humans cells using selected electrical impedance parameters as potential markers. The obtained results highlight that a standard cultureware system, provided with interdigitated electrodes and appropriate impedance parameters, that is, cellular capacitance and the ratio between the imaginary and real part of cellular dielectric function, can be used to discriminate between healthy and cancerous breast cell lines, as well as different malignancy degrees.
Collapse
Affiliation(s)
- M Ambrico
- CNR-ISTP Istituto per la Scienza e Tecnologia dei Plasmi - Sede di Bari, Via Amendola 122/D, Bari, 70125, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy
| | - M Lasalvia
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| | - T Ligonzo
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento Interateneo di Fisica "M. Merlin" Università degli Studi di Bari, Via Amendola 173, Bari, 70125, Italy
| | - P F Ambrico
- CNR-ISTP Istituto per la Scienza e Tecnologia dei Plasmi - Sede di Bari, Via Amendola 122/D, Bari, 70125, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy
| | - G Perna
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| | - V Capozzi
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| |
Collapse
|
21
|
HSA-curcumin nanoparticles: a promising substitution for Curcumin as a Cancer chemoprevention and therapy. ACTA ACUST UNITED AC 2020; 28:209-219. [PMID: 32270402 DOI: 10.1007/s40199-020-00331-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Many solutions have been evaluated to deal with "chemotherapy and radiation-resistant cancer cells' as well as "severe complications of chemotherapy drugs". One of these solutions is the use of herbal compounds with antioxidant properties. Among these antioxidant compounds, curcumin is identified as the strongest one to inhibit cancerous cells proliferation. However, its clinical trials have encountered many constraints, because curcumin is insoluble in water and unstable in physiological conditions. To overcome these limitations, in this study, curcumin was conjugated with human serum albumin (HSA) and its effects on breast cancer cell lines were also measured. METHODS After making of HSA-curcumin nanoparticles (NPs) by the desolvation technique, they were characterized by the FTIR, DLS, TEM, and SEM method. At the end, its anticancer effects have been examined using MTT test and apoptosis assay. RESULTS The FTIR graph confirmed that curcumin and HSA have been conjugated along with each other. Particles size was reported to be 220 nm and 180 nm by DLS and SEM, respectively. The zeta potential of HSA-curcumin NPs was -7 mV, while it was -37 mV for curcumin. The MTT and apoptosis assay results indicated that the toxicity of HSA-curcumin NPs on the normal cell are less than curcumin; however, its anti-cancer effects on the cancer cells are much greater, compared to curcumin. CONCLUSION HSA-curcumin NPs increase curcumin solubility in water as well as its stability in physiological and acidic conditions. These factors have the ability of overwhelming the limitations on using curcumin alone, and they could result in a significant increase in the toxicity of curcumin on the cancer cells without increasing its toxicity on the normal cells. Grapical abstract.
Collapse
|
22
|
Xu X, Jiang Z, Wang J, Ren Y, Wu A. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Electrophoresis 2020; 41:933-951. [PMID: 32144938 DOI: 10.1002/elps.201900402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Xiawei Xu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China.,Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|
23
|
Jaiswal J, Dhayal M. Electroanalytical Method for Quantification of Hepatocellular Carcinoma Cells as Charge Transport Barriers in Culture Media. ELECTROANAL 2020. [DOI: 10.1002/elan.201900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Juhi Jaiswal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi UP-221005 India
| | - Marshal Dhayal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi UP-221005 India
| |
Collapse
|
24
|
Çağlayan Z, Demircan Yalçın Y, Külah H. Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes. Electrophoresis 2020; 41:345-352. [PMID: 31925804 DOI: 10.1002/elps.201900374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022]
Abstract
The detection of circulating tumor cells (CTCs) in blood is crucial to assess metastatic progression and to guide therapy. Dielectrophoresis (DEP) is a powerful cell surface marker-free method that allows intrinsic dielectric properties of suspended cells to be exploited for CTC enrichment/isolation from blood. Design of a successful DEP-based CTC enrichment/isolation system requires that the DEP response of the targeted particles should accurately be known. This paper presents a DEP spectrum method to investigate the DEP spectra of cells without directly analyzing their membrane and cytoplasmic properties in contrast to the methods in literature, which employ theoretical assumptions and complex modeling. Integrating electric field simulations based on DEP theory with the experimental data enables determination of the DEP spectra of leukocyte subpopulations, polymorphonuclear and mononuclear leukocytes, and MCF7 breast cancer cells as a model of CTC due to their metastatic origin over the frequency range 100 kHz-50 MHz at 10 Vpp . In agreement with earlier findings, differential DEP responses were detected for mononuclear and polymorphonuclear leukocytes due to the richness of the cell surface features and morphologies of the different leukocyte types. The data reveal that the strength of the DEP force exerted on MCF7 cells was particularly high between 850 kHz and 20 MHz. These results illustrate that the proposed technique has the potential to provide a generic platform to identify DEP responses of different biological particles.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.,METU MEMS Research and Application Center, Ankara, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.,Mikro Biyosistemler Electronics Inc., Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.,METU MEMS Research and Application Center, Ankara, Turkey.,Mikro Biyosistemler Electronics Inc., Ankara, Turkey
| |
Collapse
|
25
|
Jafari M, Hasanzadeh M. Cell-specific frequency as a new hallmark to early detection of cancer and efficient therapy: Recording of cancer voice as a new horizon. Biomed Pharmacother 2019; 122:109770. [PMID: 31918289 DOI: 10.1016/j.biopha.2019.109770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Early detection is the most important strategy for controlling and management of cancer, which can significantly increase the survival rate by detecting disease in the early stages and rapid treating and preventing the progression of the disease. There are a number of methods to differentiate the normal and cancerous cells including pH changes, temperature change, variation in electrical properties and also preliminary evidence on specific frequency of some cancer cells which are reviewed in this work. The results obtained in cancer treatment using the amplitude-modulated electromagnetic fields indicate that each type of cell has a specific response to the emitted frequencies. Also, the results reveal that the recorded frequencies of prostate and breast cancers are lower compared to the normal cells associated with these tissues. There are more evidences for the existence of specific cell frequencies in the form of the response of each cell to its own specific frequency and the difference between normal and tumor cell frequency levels. Based on these evidences, it can be introduced as a hallmark with the ability to the distinction between normal and tumor cells for cancer detection. Our suggestion is to hear the voice of cancer, by designing and developing a non-invasive, biocompatible, affordable and miniaturized tools, such as nano-antennas and implantable biosensors that able to detect and record cell-specific frequencies. Designing transducers to convert the cell-specific frequency to a sound or other measurable signal will accomplish the job. To the best of our knowledge, this is the first time that the cell-specific frequency measurement, which is derived from cell activity, is introduced as a biomarker for early detection of cancer. The development of studies aimed at expanding research and designing instruments for detection of the frequency with the goal of establishing a comparative library of cell-specific frequency for all cell types, especially non-communicable diseases such as cancer. The main goal of the project is to plan the idea of developing modern tools and hallmark for early detection of cancer as one of the most important global strategies for managing the disease by introducing new parameters with a high-accuracy and in proportion and direct relationship with the activity and functioning of the body, without any affecting exogenous interferer.
Collapse
Affiliation(s)
- Mohsen Jafari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Cytotoxic Effects of Smp24 and Smp43 Scorpion Venom Antimicrobial Peptides on Tumour and Non-tumour Cell Lines. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09932-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Smp24 and Smp43 are novel cationic AMPs identified from the venom of the Egyptian scorpion Scorpio maurus palmatus, having potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards three non-tumour cell lines (CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HACAT (human skin keratinocytes) and two acute leukaemia cell lines (myeloid (KG1a) and lymphoid (CCRF-CEM) leukaemia cell lines) using a combination of biochemical and imaging techniques. Smp24 and Smp43 (4–256 µg/mL) decreased the cell viability (as measured by intracellular ATP) of all cells tested, although keratinocytes were markedly less sensitive. Cell membrane leakage as evidenced by the release of lactate dehydrogenase was evident throughout and was confirmed by scanning electron microscope studies.
Collapse
|
27
|
Jing H, Sinha S, Sachar HS, Das S. Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics. Colloids Surf B Biointerfaces 2019; 177:433-439. [PMID: 30798064 DOI: 10.1016/j.colsurfb.2019.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
Making a nanoparticle (NP) approach and interact with a plasma membrane (PM) through the receptor-ligand interaction is key for applications like targeted drug delivery, cellular imaging, and theranostics. In this paper, we show that the van der Waals (vdW) interactions dominate the electrostatics ensuring that a gold NP approached the PM more spontaneously as compared to a silica NP. The negative σ (charge density) of a PM induces a negative electrostatic potential at the surface of the approaching gold NP and the silica NP; however, there is very little difference between these induced values due to a small electric double layer at the physiological salt concentration (c∞). Hence there is very little difference in the electrostatic repulsion between the two cases, while the PM-NP vdW attraction is much more for the gold NP as a result of a larger Hamaker constant. Therefore, in comparison to the gold NP, the silica NP would (a) undergo a promotion of the specific adhesion and a prevention of the non-specific adhesion simultaneously for a larger σ - c∞ phase space including the physiological conditions, (b) necessitate a larger length of the ligands to trigger spontaneous receptor-ligand interactions, and (c) require a larger driving force for force-driven receptor-ligand interactions.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
28
|
Biological Effect of Organically Coated Grias neuberthii and Persea americana Silver Nanoparticles on HeLa and MCF-7 Cancer Cell Lines. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/9689131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the biological effect of organically coated Grias neuberthii (piton) fruit and Persea americana (avocado) leaves nanoparticles (NPs) on cervical cancer (HeLa) and breast adenocarcinoma (MCF-7) cells with an emphasis on gene expression (p53 transcription factor and glutathione-S-transferase GST) and cell viability. UV-Vis spectroscopy analysis showed that synthesized AgNPs remained partially stable under cell culture conditions. HeLa cells remained viable when exposed to piton and avocado AgNPs. A statistically significant, dose-dependent cytotoxic response to both AgNPs was found on the breast cancer (MCF-7) cell line at concentrations above 50 µM. While expression levels of transcription factor p53 showed downregulation in treated MCF-7 and HeLa cells, GST expression was not affected in both cell lines treated. Cell viability assays along with gene expression levels in treated MCF-7 cells support a cancer cell population undergoing cell cycle arrest. The selective toxicity of biosynthesized piton/avocado AgNPs on MCF-7 cells might be of value for novel therapeutics.
Collapse
|
29
|
Avand A, Akbari V, Shafizadegan S. In Vitro Cytotoxic Activity of a Lactococcus lactis Antimicrobial Peptide Against Breast Cancer Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1867. [PMID: 31457026 PMCID: PMC6697826 DOI: 10.15171/ijb.1867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nisin, an effective natural food preservative, is an antimicrobial peptide produced by Lactococcus lactis. Although it has been mainly studied and developed as a potential alternative for antibiotics, other pharmacological effects of the nisin including cytotoxic and anti-tumor activity have been attracted many attentions. OBJECTIVES Here, we aimed to evaluate in vitro cytotoxic activity of the nisin against breast cancer cells. MATERIALS AND METHODS The effect of temperature, pH, and chemical composition of the medium on the yield of nisin production was evaluated. As well, the anti-proliferative effect of nisin against a breast cancer cell line (i. e., MCF-7) and a non-cancerous cell line (i.e, HUVEC) was determined using MTT assay. Furthermore, the potential of the synergistic effect of the nisin on the doxorubicin cytotoxicity was evaluated. RESULTS The optimum culture condition for the nisin production by L. lactis was found to be MRS medium (pH 6.3) supplemented with the tryptone and incubation at 30 °C. MTT assay results indicate that nisin exhibits a high and selective cytotoxicity against MCF-7 cell line with IC50 value of 5 μM. Furthermore, a combination of nisin and doxorubicin at sub-inhibitory concentrations were more cytotoxic compared to either of drugs alone. CONCLUSION It could be suggested that nisin, either alone or in combination with other chemotherapeutic agents, could be a potential therapeutic for the breast cancer cells.
Collapse
Affiliation(s)
- Abasaleh Avand
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahin Shafizadegan
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Joshi S, Cooke JRN, Chan DKW, Ellis JA, Hossain SS, Singh-Moon RP, Wang M, Bigio IJ, Bruce JN, Straubinger RM. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv Transl Res 2018; 6:225-33. [PMID: 27091339 DOI: 10.1007/s13346-016-0294-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanoparticles such as liposomes may be used as drug delivery vehicles for brain tumor therapy. Particle geometry and electrostatic properties have been hypothesized to be important determinants of effective tumor targeting after intraarterial injection. In this study, we investigate the combined roles of liposome size and surface charge on the effectiveness of delivery to gliomas after intraarterial injection. Intracarotid injection of liposomes was performed in separate cohorts of both healthy and C6 glioma-bearing Sprague Dawley rats after induction of transient cerebral hypoperfusion. Large (200 nm) and small (60-80 nm) fluorescent dye-loaded liposomes that were either cationic or neutral in surface charge were utilized. Delivery effectiveness was quantitatively measured both with real-time, in vivo and postmortem diffuse reflectance spectroscopy. Semi-quantitative multispectral fluorescence imaging was also utilized to assess the pattern and extent of liposome targeting within tumors. Large cationic liposomes demonstrated the most effective hemispheric and glioma targeting of all the liposomes tested. Selective large cationic liposome retention at the site of glioma growth was observed. The liposome deposition pattern within tumors after intraarterial injection was variable with both core penetration and peripheral deposition observed in specific tumors. This study provides evidence that liposome size and charge are important determinants of effective brain and glioma targeting after intraarterial injection. Our results support the future development of 200-nm cationic liposomal formulations of candidate intraarterial anti-glioma agents for further pre-clinical testing.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA.
| | - Johann R N Cooke
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA
| | - Darren K W Chan
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jason A Ellis
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Shaolie S Hossain
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| | | | - Mei Wang
- Department of Anesthesiology, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA
| | - Irving J Bigio
- Department of Electrical Engineering and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
31
|
Kamyabi N, Khan ZS, Vanapalli SA. Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation. Cell Mol Bioeng 2017; 10:563-576. [PMID: 31719874 PMCID: PMC6816673 DOI: 10.1007/s12195-017-0499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Circulating tumor cells (CTCs) in microcirculation undergo significant deformation and frictional interactions within microcapillaries. To understand the physical parameters governing their flow-induced transport, we studied the pressure-driven flow of cancer cells in a microfluidic model of a capillary network. METHODS Our microfluidic device contains an array of parallel constrictions separated by regions where cells can repetitively deform and relax. To characterize the transport behavior, we measured the entry time, transit time, and shape deformation of tumor cells as they squeeze through the network. RESULTS We found that entry and transit times of cells are much lower after repetitive deformation as their elongated shape enables easy transport in subsequent constrictions. Furthermore, upon repetitive deformation, the cells were able to relieve only 25% of their 40% imposed compressional strain, suggesting that tumor cells might have undergone plastic deformation or fatigue. To investigate the influence of surface friction, we characterized the transport behavior in the absence and presence of bovine serum albumin (BSA) coating on the constriction walls. We observed that BSA coating reduces the entry and transit time significantly. Finally, using two breast tumor cell lines, we investigated the effect of metastatic potential on transport properties. We found that the cell lines could be distinguished only upon surface treatment with BSA, thus surface-induced friction is an indicator of metastatic potential. CONCLUSIONS Our results suggest that pre-deformation can enhance the transport of CTCs in microcirculation and that frictional interactions with capillary walls can play an important role in influencing the transport of metastatic CTCs.
Collapse
Affiliation(s)
- Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| | - Zeina S. Khan
- Department of Mechanical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| |
Collapse
|
32
|
Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine 2017; 12:6841-6855. [PMID: 28979122 PMCID: PMC5602452 DOI: 10.2147/ijn.s139212] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to synthesize selenium nanoparticles (SeNPs) using cell suspension and total cell protein of Acinetobacter sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells. Cell suspension of Acinetobacter sp. SW30 was exposed to various physiological and physicochemical conditions in the presence of sodium selenite to study their effects on the synthesis and morphology of SeNPs. Breast cancer cells (4T1, MCF-7) and noncancer cells (NIH/3T3, HEK293) were exposed to different concentrations of SeNPs. The 18 h grown culture with 2.7×109 cfu/mL could synthesize amorphous nanospheres of size 78 nm at 1.5 mM and crystalline nanorods at above 2.0 mM Na2SeO3 concentration. Polygonal-shaped SeNPs of average size 79 nm were obtained in the supernatant of 4 mg/mL of total cell protein of Acinetobacter sp. SW30. Chemical SeNPs showed more anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30 (BSeNPs), but they were found to be toxic to noncancer cells also. However, BSeNPs were selective against breast cancer cells than chemical ones. Results suggest that BSeNPs are a good choice of selection as anticancer agents.
Collapse
Affiliation(s)
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | | | - Richa Singh
- Department of Microbiology, Savitribai Phule Pune University
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Balu A Chopade
- Department of Microbiology, Savitribai Phule Pune University.,Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
33
|
Joshi S, Cooke JRN, Ellis JA, Emala CW, Bruce JN. Targeting brain tumors by intra-arterial delivery of cell-penetrating peptides: a novel approach for primary and metastatic brain malignancy. J Neurooncol 2017; 135:497-506. [PMID: 28875440 DOI: 10.1007/s11060-017-2615-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022]
Abstract
Computational modeling shows that intra-arterial delivery is most efficient when the delivered drugs rapidly and avidly bind to the target site. The cell-penetrating peptide trans-activator of transcription (TAT) is a candidate carrier molecule that could mediate such specificity for brain tumor chemotherapeutics. To test this hypothesis we first performed in vitro studies testing the uptake of TAT by one primary and three potentially metastatic brain cancer cell lines (9L, 4T-1, LLC, SKOV-3). Then we performed in vivo studies in a rat model where TAT was delivered either intra-arterially (IA) or intravenously (IV) to 9L brain tumors. We observed robust uptake of TAT by all tumor cell lines in vitro. Flow cytometry and confocal microscopy revealed a rapid uptake of fluorescein-labeled TAT within 5 min of exposure to the cancer cells. IA injections done under transient cerebral hypoperfusion (TCH) generated a four-fold greater tumor TAT concentration compared to conventional IV injections. We conclude that it is feasible to selectively target brain tumors with TAT-linked chemotherapy by the IA-TCH method.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA.
| | - Johann R N Cooke
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA
| | - Jason A Ellis
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Dobrzyńska I, Skrzydlewska E, Figaszewski ZA. Effects of Novel Dinuclear Cisplatinum(II) Complexes on the Electrical Properties of Human Molt-4 Leukemia Cells. Cell Biochem Biophys 2016; 71:1517-23. [PMID: 25399303 PMCID: PMC4449378 DOI: 10.1007/s12013-014-0375-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the membrane electrical properties and lipid peroxidation levels of the Molt-4 human leukemia cell line. Changes in cell function may affect the basal electrical surface properties of cell membranes. These changes can be detected using electrokinetic measurements. Surface charge densities of Molt-4 cells were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the ions in solution and on cell membrane surfaces. Agreement was found between the experimental and theoretical charge variation curves of the leukemia cells at pH 2.5–9. Lipid peroxidation was estimated by measuring levels of 8-iso-prostaglandine F2α [isoprostanes]. Acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in cisplatin- or dinuclear platinum(II) complex-treated leukemia cell membranes compared to those in untreated cancer cells, and the average association constants with hydrogen ions were higher. Levels of lipid peroxidation products in cisplatin- or dinuclear platinum(II) complex-treated leukemia cell were higher than those found in untreated cancer cells.
Collapse
Affiliation(s)
- Izabela Dobrzyńska
- Institute of Chemistry, University in Białystok, Al. Piłsudskiego 11/4, 15-443, Białystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2, 15-230, Białystok, Poland
| | - Zbigniew A Figaszewski
- Institute of Chemistry, University in Białystok, Al. Piłsudskiego 11/4, 15-443, Białystok, Poland
- Laboratory of Electrochemical Power Sources, Faculty of Chemistry, University of Warsaw, Pasteur St. 1, 02-093, Warsaw, Poland
| |
Collapse
|
35
|
Hosseini SA, Zanganeh S, Akbarnejad E, Salehi F, Abdolahad M. Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach; suitable in urinalysis assays. J Pharm Biomed Anal 2016; 134:36-42. [PMID: 27871055 DOI: 10.1016/j.jpba.2016.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
This paper introduces an integrated microfluidic chip as a promising tool to measure the concentration of bladder cancer cells (BCC) in urine samples. Silicon microchannels were used as trapping gates for both floated BCC and leukocytes which are found in the urine of patients. By the assistance of the gold electrodes patterned at the bottom of the micro gates, the capacitance of captured cancerous and blood cells were measured. Different membrane capacitance between BCC and leukocyte was the indicative signal for diagnosing the nature of captured cells in a urine like solution. The concentration range of the target that could be detected was about 10 BCCs per one chip. Such response has been achieved without applying any biochemical or florescent markers. Thus, it could be a simple and cheap approach to support cytological and immune-fluorescent assays. The limit of detection was approximately 1 cancerous cell/11 leukocytes in 1ml of the urine like solution. The entire measurement time was less than an hour. Consequently, this electrical microfluidic device promises significant potential in urinalysis.
Collapse
Affiliation(s)
- Seied Ali Hosseini
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Somayeh Zanganeh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Elaheh Akbarnejad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Fatemeh Salehi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, P.O. Box 14395/515, Iran.
| |
Collapse
|
36
|
Cationizable lipid micelles as vehicles for intraarterial glioma treatment. J Neurooncol 2016; 128:21-28. [PMID: 26903015 DOI: 10.1007/s11060-016-2088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
The relative abundance of anionic lipids on the surface of endothelia and on glioma cells suggests a workable strategy for selective drug delivery by utilizing cationic nanoparticles. Furthermore, the extracellular pH of gliomas is relatively acidic suggesting that tumor selectivity could be further enhanced if nanoparticles can be designed to cationize in such an environment. With these motivating hypotheses the objective of this study was to determine whether nanoparticulate (20 nm) micelles could be designed to improve their deposition within gliomas in an animal model. To test this, we performed intra-arterial injection of micelles labeled with an optically quantifiable dye. We observed significantly greater deposition (end-tissue concentration) of cationizable micelles as compared to non-ionizable micelles in the ipsilateral hemisphere of normal brains. More importantly, we noted enhanced deposition of cationizable as compared to non-ionizable micelles in glioma tissue as judged by semiquantitative fluorescence analysis. Micelles were generally able to penetrate to the core of the gliomas tested. Thus we conclude that cationizable micelles may be constructed as vehicles for facilitating glioma-selective delivery of compounds after intraarterial injection.
Collapse
|
37
|
Lin CC, Huang WL, Wei F, Su WC, Wong DT. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer. Expert Rev Mol Diagn 2015; 15:1427-40. [PMID: 26420338 DOI: 10.1586/14737159.2015.1094379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations. However, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer.
Collapse
Affiliation(s)
- Chien-Chung Lin
- a 1 Department of Internal Medicine, Institute of Clinical Medicine, National Cheng Kung University, Hospital, College of Medicine , Tainan, Taiwan
| | - Wei-Lun Huang
- a 1 Department of Internal Medicine, Institute of Clinical Medicine, National Cheng Kung University, Hospital, College of Medicine , Tainan, Taiwan
| | - Fang Wei
- b 2 UCLA - Dentistry, 73-034 CHS UCLA School of Dentistry , 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Wu-Chou Su
- a 1 Department of Internal Medicine, Institute of Clinical Medicine, National Cheng Kung University, Hospital, College of Medicine , Tainan, Taiwan
| | - David T Wong
- b 2 UCLA - Dentistry, 73-034 CHS UCLA School of Dentistry , 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Low WS, Wan Abas WAB. Benchtop technologies for circulating tumor cells separation based on biophysical properties. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239362. [PMID: 25977918 PMCID: PMC4419234 DOI: 10.1155/2015/239362] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.
Collapse
Affiliation(s)
- Wan Shi Low
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells. Asian Pac J Cancer Prev 2015; 16:169-74. [DOI: 10.7314/apjcp.2015.16.1.169] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Ning R, Wang S, Wu J, Wang F, Lin JM. ZnO nanowire arrays exhibit cytotoxic distinction to cancer cells with different surface charge density: cytotoxicity is charge-dependent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4113-4117. [PMID: 25044640 DOI: 10.1002/smll.201400734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/01/2014] [Indexed: 06/03/2023]
Abstract
Using distinct ZnO NW arrays to provide positively charged surface, charge effect on cytotoxicity is investigated. 1-D structure of ZnO NWs is the main factor leads to apoptosis accompanied by ROS enrichment and GSH depletion, and electrostatic interaction between positively charged ZnO NWs and negatively charged cells make important contribution to the degree of ZnO NW arrays damaging cell membrane.
Collapse
Affiliation(s)
- Ruizhi Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P. R. China
| | | | | | | | | |
Collapse
|
41
|
Dobrzyńska I, Skrzydlewska E, Figaszewski ZA. Effects of novel dinuclear cisplatinum(II) complexes on the electric properties of human breast cancer cells. J Membr Biol 2013; 247:167-73. [PMID: 24343572 PMCID: PMC3905183 DOI: 10.1007/s00232-013-9620-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the electrical properties of the membrane and the level of lipid peroxidation in the human breast cancer cell lines MDA-MB-231 and MCF-7. The basal electrical surface properties of cells are known. Changes in cell function may affect these surface properties, and those changes can be detected by electrokinetic measurements. The surface charge density of the breast cancer cell lines MDA-MB-231 and MCF-7 were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the solution ions and the breast cancer cell surface. The experimental and the theoretical charge variation curves of the breast cancer cells at pH 2.5-9 were in agreement. Measurements of the cellular malondialdehyde levels with high performance liquid chromatography were used to determine the extent of lipid peroxidation. The acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in breast cancer cell membranes treated with cisplatin or novel dinuclear platinum(II) complexes compared with untreated cancer cells, and the average association constants with hydrogen ions were higher. The levels of lipid peroxidation products in breast cancer cells treated with cisplatin or novel dinuclear platinum(II) complexes were also higher than in untreated cancer cells.
Collapse
Affiliation(s)
- Izabela Dobrzyńska
- Institute of Chemistry, University in Białystok, Al. Piłsudskiego 11/4, 15-443, Białystok, Poland,
| | | | | |
Collapse
|