1
|
Garrott K, Bifulco S, Ramirez D, Koop B. Lesion Formation in Cardiac Pulsed-Field Ablation: Acute to Chronic Cellular Level Changes. Pacing Clin Electrophysiol 2025. [PMID: 39871407 DOI: 10.1111/pace.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
As pulsed-field ablation (PFA) emerges as a promising therapy for atrial arrhythmias, an understanding of the cellular injury to cardiac tissue is critical to evaluating and interpreting results for each PFA system. This review aims to detail the mechanism of cell death for PFA, compare the cell death mechanism to thermal ablation modalities, clarify common histology markers, detail the progression of PFA lesions from the acute, to subacute, to chronic maturation states, and discuss clinical indicators of PFA lesions.
Collapse
Affiliation(s)
- Kara Garrott
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - Savannah Bifulco
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - David Ramirez
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - Brendan Koop
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| |
Collapse
|
2
|
Pakhomova ON, Zivla E, Silkuniene G, Silkunas M, Pakhomov AG. Potentiation of Gelonin Cytotoxicity by Pulsed Electric Fields. Int J Mol Sci 2025; 26:458. [PMID: 39859180 PMCID: PMC11764505 DOI: 10.3390/ijms26020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Gelonin is a ribosome-inactivating protein with extreme intracellular toxicity but poor permeation into cells. Targeted disruption of cell membranes to facilitate gelonin entry is explored for cancer and tissue ablation. We demonstrate a hundreds- to thousands-fold enhancement of gelonin cytotoxicity by pulsed electric fields in the T24, U-87, and CT26 cell lines. The effective gelonin concentration to kill 50% of cells (EC50) after electroporation ranged from <1 nM to about 100 nM. For intact cells, the EC50 was unattainable even at the highest gelonin concentration of 1000 nM, which reduced cell survival by only 5-15%. For isoeffective electroporation treatments using 300 ns, 9 µs, and 100 µs pulses, longer pulses were more efficient at lowering gelonin EC50. Increasing the electric field strength of 8, 100 µs pulses from 0.65 to 1.25 kV/cm reduced gelonin EC50 from 128 nM to 0.72 nM. Conversely, the presence of 100 nM gelonin enabled a more than 20-fold reduction in the number of pulses required for equivalent cell killing. Pulsed electric field-mediated delivery of gelonin shows promise for hyperplasia ablation at concentrations sufficiently low to minimize or avoid systemic toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (O.N.P.); (G.S.); (M.S.)
| |
Collapse
|
3
|
Zhang Y, Luo Z, Zhang Y, Guo F. Simulation study on electroporation of cancer cells in multicellular system. Bioelectrochemistry 2024; 160:108789. [PMID: 39128409 DOI: 10.1016/j.bioelechem.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.
Collapse
Affiliation(s)
- Yu Zhang
- Department of gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Zhijun Luo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yapeng Zhang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
4
|
Bougandoura O, Achour Y, Zaoui A. Electroporation in Cancer Therapy: A Simplified Model Derived from the Hodgkin-Huxley Model. Bioelectricity 2024; 6:181-195. [PMID: 39372085 PMCID: PMC11447485 DOI: 10.1089/bioe.2023.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a global health challenge, necessitating effective treatments with fewer side effects. Traditional methods such as chemotherapy and surgery often have complications. Pulsed electric fields and electroporation have emerged as promising approaches to mitigate these challenges. This study presents a comprehensive overview of electroporation as an innovative tool in cancer therapy, encompassing critical elements such as pulse generators and delivery devices. Furthermore, it introduces a simplified reversible electroporation model grounded in the Hodgkin-Huxley model. This model ensures resting potential stability by regulating ionic currents. When membrane charges reach the electroporation threshold, the model swiftly increases the fraction of open pores, resulting in a rapid rise in electroporation current. Conversely, as the transmembrane potential drops below the threshold, the model gradually reduces the fraction of open pores, leading to a gradual decline in electroporation current, indicating pore resealing. This model contributes to easier modeling and implementation of reversible electroporation dynamics, providing a valuable tool for further exploration of electroporation for cancer therapy.
Collapse
Affiliation(s)
| | - Yahia Achour
- UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria
| | - Abdelhalim Zaoui
- Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieure des Technologies Avancées, Algiers, Algeria
| |
Collapse
|
5
|
Fuster MM. Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm. Front Oncol 2024; 14:1417621. [PMID: 39165679 PMCID: PMC11333800 DOI: 10.3389/fonc.2024.1417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
An array of published cell-based and small animal studies have demonstrated a variety of exposures of cancer cells or experimental carcinomas to electromagnetic (EM) wave platforms that are non-ionizing and non-thermal. Overall effects appear to be inhibitory, inducing cancer cell stress or death as well as inhibition in tumor growth in experimental models. A variety of physical input variables, including discrete frequencies, amplitudes, and exposure times, have been tested, but drawing methodologic rationale and mechanistic conclusions across studies is challenging. Nevertheless, outputs such as tumor cytotoxicity, apoptosis, tumor membrane electroporation and leak, and reactive oxygen species generation are intriguing. Early EM platforms in humans employ pulsed electric fields applied either externally or using interventional tumor contact to induce tumor cell electroporation with stromal, vascular, and immunologic sparing. It is also possible that direct or external exposures to non-thermal EM waves or pulsed magnetic fields may generate electromotive forces to engage with unique tumor cell properties, including tumor glycocalyx to induce carcinoma membrane disruption and stress, providing novel avenues to augment tumor antigen release, cross-presentation by tumor-resident immune cells, and anti-tumor immunity. Integration with existing checkpoint inhibitor strategies to boost immunotherapeutic effects in carcinomas may also emerge as a broadly effective strategy, but little has been considered or tested in this area. Unlike the use of chemo/radiation and/or targeted therapies in cancer, EM platforms may allow for the survival of tumor-associated immunologic cells, including naïve and sensitized anti-tumor T cells. Moreover, EM-induced cancer cell stress and apoptosis may potentiate endogenous tumor antigen-specific anti-tumor immunity. Clinical studies examining a few of these combined EM-platform approaches are in their infancy, and a greater thrust in research (including basic, clinical, and translational work) in understanding how EM platforms may integrate with immunotherapy will be critical in driving advances in cancer outcomes under this promising combination.
Collapse
Affiliation(s)
- Mark M. Fuster
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Pulmonary & Critical Care Division, University of California, San Diego, San Diego, CA, United States
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, San Diego, CA, United States
- Veterans Medical Research Foundation, San Diego, CA, United States
| |
Collapse
|
6
|
Bougandoura O, Achour Y, Zaoui A, Starzyński J. Characterizing parameters and incorporating action potentials via the Hodgkin-Huxley model in a novel electric model for living cells. Electromagn Biol Med 2024; 43:187-203. [PMID: 38990565 DOI: 10.1080/15368378.2024.2372107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.
Collapse
Affiliation(s)
| | - Yahia Achour
- UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria
| | - Abdelhalim Zaoui
- Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieur de Technologie, Algiers, Algeria
| | - Jacek Starzyński
- Faculty of Electrical Engineering, Warsaw University of Technology, Warszawa, Poland
| |
Collapse
|
7
|
Xu M, Zhang X, Bai Y, Wang X, Yang J, Hu N. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion. APL Bioeng 2024; 8:026103. [PMID: 38638144 PMCID: PMC11026109 DOI: 10.1063/5.0205100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Cell electrofusion is a key process in many research fields, such as genetics, immunology, and cross-breeding. The electrofusion efficiency is highly dependent on the buffer osmotic pressure properties. However, the mechanism by which the buffer osmotic pressure affects cell electrofusion has not been theoretically or numerically understood. In order to explore the mechanism, the microfluidic structure with paired arc micro-cavities was first evaluated based on the numerical analysis of the transmembrane potential and the electroporation induced on biological cells when the electrofusion was performed on this structure. Then, the numerical model was used to analyze the effect of three buffer osmotic pressures on the on-chip electrofusion in terms of membrane tension and cell size. Compared to hypertonic and isotonic buffers, hypotonic buffer not only increased the reversible electroporation area in the cell-cell contact zone by 1.7 times by inducing a higher membrane tension, but also significantly reduced the applied voltage required for cell electroporation by increasing the cell size. Finally, the microfluidic chip with arc micro-cavities was fabricated and tested for electrofusion of SP2/0 cells. The results showed that no cell fusion occurred in the hypertonic buffer. The fusion efficiency in the isotonic buffer was about 7%. In the hypotonic buffer, the fusion efficiency was about 60%, which was significantly higher compared to hypertonic and isotonic buffers. The experimental results were in good agreement with the numerical analysis results.
Collapse
Affiliation(s)
- Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuefeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. Biomed Eng Online 2024; 23:47. [PMID: 38750477 PMCID: PMC11097476 DOI: 10.1186/s12938-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Maša Kandušer
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Di Lodovico S, Petrini M, D'Amico E, Di Fermo P, Diban F, D'Arcangelo S, Piattelli A, Cellini L, Iezzi G, Di Giulio M, D'Ercole S. Complex magnetic fields represent an eco-sustainable technology to counteract the resistant Candida albicans growth without affecting the human gingival fibroblasts. Sci Rep 2023; 13:22067. [PMID: 38086849 PMCID: PMC10716184 DOI: 10.1038/s41598-023-49323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Morena Petrini
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Emira D'Amico
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Sara D'Arcangelo
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107, Murcia, Spain
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Simonetta D'Ercole
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| |
Collapse
|
11
|
Pathak N, Patino CA, Ramani N, Mukherjee P, Samanta D, Ebrahimi SB, Mirkin CA, Espinosa HD. Cellular Delivery of Large Functional Proteins and Protein-Nucleic Acid Constructs via Localized Electroporation. NANO LETTERS 2023; 23:3653-3660. [PMID: 36848135 PMCID: PMC10433461 DOI: 10.1021/acs.nanolett.2c04374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Delivery of proteins and protein-nucleic acid constructs into live cells enables a wide range of applications from gene editing to cell-based therapies and intracellular sensing. However, electroporation-based protein delivery remains challenging due to the large sizes of proteins, their low surface charge, and susceptibility to conformational changes that result in loss of function. Here, we use a nanochannel-based localized electroporation platform with multiplexing capabilities to optimize the intracellular delivery of large proteins (β-galactosidase, 472 kDa, 75.38% efficiency), protein-nucleic acid conjugates (protein spherical nucleic acids (ProSNA), 668 kDa, 80.25% efficiency), and Cas9-ribonucleoprotein complex (160 kDa, ∼60% knock-out and ∼24% knock-in) while retaining functionality post-delivery. Importantly, we delivered the largest protein to date using a localized electroporation platform and showed a nearly 2-fold improvement in gene editing efficiencies compared to previous reports. Furthermore, using confocal microscopy, we observed enhanced cytosolic delivery of ProSNAs, which may expand opportunities for detection and therapy.
Collapse
Affiliation(s)
- Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
13
|
Sowa PW, Kiełbik AS, Pakhomov AG, Gudvangen E, Mangalanathan U, Adams V, Pakhomova ON. How to alleviate cardiac injury from electric shocks at the cellular level. Front Cardiovasc Med 2022; 9:1004024. [PMID: 36620647 PMCID: PMC9812960 DOI: 10.3389/fcvm.2022.1004024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Electric shocks, the only effective therapy for ventricular fibrillation, also electroporate cardiac cells and contribute to the high-mortality post-cardiac arrest syndrome. Copolymers such as Poloxamer 188 (P188) are known to preserve the membrane integrity and viability of electroporated cells, but their utility against cardiac injury from cardiopulmonary resuscitation (CPR) remains to be established. We studied the time course of cell killing, mechanisms of cell death, and protection with P188 in AC16 human cardiomyocytes exposed to micro- or nanosecond pulsed electric field (μsPEF and nsPEF) shocks. A 3D printer was customized with an electrode holder to precisely position electrodes orthogonal to a cell monolayer in a nanofiber multiwell plate. Trains of nsPEF shocks (200, 300-ns pulses at 1.74 kV) or μsPEF shocks (20, 100-μs pulses at 300 V) produced a non-uniform electric field enabling efficient measurements of the lethal effect in a wide range of the electric field strength. Cell viability and caspase 3/7 expression were measured by fluorescent microscopy 2-24 h after the treatment. nsPEF shocks caused little or no caspase 3/7 activation; most of the lethally injured cells were permeable to propidium dye already at 2 h after the exposure. In contrast, μsPEF shocks caused strong activation of caspase 3/7 at 2 h and the number of dead cells grew up to 24 h, indicating the prevalence of the apoptotic death pathway. P188 at 0.2-1% reduced cell death, suggesting its potential utility in vivo to alleviate electric injury from defibrillation.
Collapse
Affiliation(s)
- Pamela W. Sowa
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany,Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany,*Correspondence: Pamela W. Sowa,
| | - Aleksander S. Kiełbik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Olga N. Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
14
|
Mahdi AK, Medrano JF, Ross PJ. Single-Step Genome Editing of Small Ruminant Embryos by Electroporation. Int J Mol Sci 2022; 23:ijms231810218. [PMID: 36142132 PMCID: PMC9499182 DOI: 10.3390/ijms231810218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the possibility of single-step genome editing in small ruminants by CRISPR-Cas9 zygote electroporation. We targeted SOCS2 and PDX1 in sheep embryos and OTX2 in goat embryos, utilizing a dual sgRNA approach. Gene editing efficiency was compared between microinjection and three different electroporation settings performed at four different times of embryo development. Electroporation of sheep zygotes 6 h after fertilization with settings that included short high-voltage (poring) and long low-voltage (transfer) pulses was efficient at producing SOCS2 knock-out blastocysts. The mutation rate after CRISPR/Cas9 electroporation was 95.6% ± 8%, including 95.4% ± 9% biallelic mutations; which compared favorably to 82.3% ± 8% and 25% ± 10%, respectively, when using microinjection. We also successfully disrupted the PDX1 gene in sheep and the OTX2 gene in goat embryos. The biallelic mutation rate was 81 ± 5% for PDX1 and 85% ± 6% for OTX2. In conclusion, using single-step CRISPR-Cas9 zygote electroporation, we successfully introduced biallelic deletions in the genome of small ruminant embryos.
Collapse
|
15
|
Scuderi M, Dermol-Černe J, Amaral da Silva C, Muralidharan A, Boukany PE, Rems L. Models of electroporation and the associated transmembrane molecular transport should be revisited. Bioelectrochemistry 2022; 147:108216. [DOI: 10.1016/j.bioelechem.2022.108216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
|
16
|
Zhang X, Ewing AG. Pore-Opening Dynamics of Single Nanometer Biovesicles at an Electrified Interface. ACS NANO 2022; 16:9852-9858. [PMID: 35647887 PMCID: PMC9245343 DOI: 10.1021/acsnano.2c03929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Release from nanobiovesicles via a pore generated by membrane electroporation at an electrified interface can be monitored by vesicle impact electrochemical cytometry (VIEC) and provides rich information about the various vesicular content transfer processes, including content homeostasis, intraphase content transfer, or the transient fusion of vesicles. These processes are primarily influenced by the vesicular pore-opening dynamics at the electrified interface which has not been disclosed at the single nanobiovesicle level yet. In this work, after simultaneously measuring the size and release dynamics of individual vesicles, we employed a moving mesh-finite element simulation algorithm to reconstruct the accurate pore-opening dynamics of individual vesicles with different sizes during VIEC. We investigated the expansion times and maximal pore sizes as two characteristics of different vesicles. The pore expansion times between nanobiovesicles and pure lipid liposomes were compared, and that of the nanobiovesicles is much longer than that for the liposomes, 2.1 ms vs 0.18 ms, respectively, which reflects the membrane proteins limiting the electroporation process. For the vesicles with different sizes, a positive relationship of pore size (Rp,max) with the vesicle size (Rves) and also their ratio (Rp,max/Rves) versus the vesicle sizes is observed. The mechanism of the pore size determination is discussed and related to the membrane proteins and the vesicle size. This work accurately describes the dynamic pore-opening process of individual vesicles which discloses the heterogeneity in electroporation of different sized vesicles. This should allow us to examine the more complicated vesicular content transfer process between intravesicular compartments.
Collapse
|
17
|
Electroporation safety factor of 300 nanosecond and 10 millisecond defibrillation in Langendorff-perfused rabbit hearts. PLoS One 2021; 16:e0257287. [PMID: 34559811 PMCID: PMC8462679 DOI: 10.1371/journal.pone.0257287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
AIMS Recently, a new defibrillation modality using nanosecond pulses was shown to be effective at much lower energies than conventional 10 millisecond monophasic shocks in ex vivo experiments. Here we compare the safety factors of 300 nanosecond and 10 millisecond shocks to assess the safety of nanosecond defibrillation. METHODS AND RESULTS The safety factor, i.e. the ratio of median effective doses (ED50) for electroporative damage and defibrillation, was assessed for nanosecond and conventional (millisecond) defibrillation shocks in Langendorff-perfused New Zealand white rabbit hearts. In order to allow for multiple shock applications in a single heart, a pair of needle electrodes was used to apply shocks of varying voltage. Propidium iodide (PI) staining at the surface of the heart showed that nanosecond shocks had a slightly lower safety factor (6.50) than millisecond shocks (8.69), p = 0.02; while PI staining cross-sections in the electrode plane showed no significant difference (5.38 for 300 ns shocks and 6.29 for 10 ms shocks, p = 0.22). CONCLUSIONS In Langendorff-perfused rabbit hearts, nanosecond defibrillation has a similar safety factor as millisecond defibrillation, between 5 and 9, suggesting that nanosecond defibrillation can be performed safely.
Collapse
|
18
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
19
|
Aycock KN, Zhao Y, Lorenzo MF, Davalos RV. A Theoretical Argument for Extended Interpulse Delays in Therapeutic High-Frequency Irreversible Electroporation Treatments. IEEE Trans Biomed Eng 2021; 68:1999-2010. [PMID: 33400646 PMCID: PMC8291206 DOI: 10.1109/tbme.2021.3049221] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is a tissue ablation modality employing bursts of electrical pulses in a positive phase-interphase delay (d1)-negative phase-interpulse delay (d2) pattern. Despite accumulating evidence suggesting the significance of these delays, their effects on therapeutic outcomes from clinically-relevant H-FIRE waveforms have not been studied extensively. OBJECTIVE We sought to determine whether modifications to the delays within H-FIRE bursts could yield a more desirable clinical outcome in terms of ablation volume versus extent of tissue excitation. METHODS We used a modified spatially extended nonlinear node (SENN) nerve fiber model to evaluate excitation thresholds for H-FIRE bursts with varying delays. We then calculated non-thermal tissue ablation, thermal damage, and excitation in a clinically relevant numerical model. RESULTS Excitation thresholds were maximized by shortening d1, and extension of d2 up to 1,000 μs increased excitation thresholds by at least 60% versus symmetric bursts. In the ablation model, long interpulse delays lowered the effective frequency of burst waveforms, modulating field redistribution and reducing heat production. Finally, we demonstrate mathematically that variable delays allow for increased voltages and larger ablations with similar extents of excitation as symmetric waveforms. CONCLUSION Interphase and interpulse delays play a significant role in outcomes resulting from H-FIRE treatment. SIGNIFICANCE Waveforms with short interphase delays (d1) and extended interpulse delays (d2) may improve therapeutic efficacy of H-FIRE as it emerges as a clinical tissue ablation modality.
Collapse
Affiliation(s)
- Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
20
|
Aguilar AA, Ho MC, Chang E, Carlson KW, Natarajan A, Marciano T, Bomzon Z, Patel CB. Permeabilizing Cell Membranes with Electric Fields. Cancers (Basel) 2021; 13:2283. [PMID: 34068775 PMCID: PMC8126200 DOI: 10.3390/cancers13092283] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields' action, it is by no means complete. The standard theory does not account for exogenously applied AEFs' influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs' actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs' effects: the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.
Collapse
Affiliation(s)
- Alondra A. Aguilar
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Michelle C. Ho
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Edwin Chang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Kristen W. Carlson
- Beth Israel Deaconess Medical Center, Department of Neurosurgery, Harvard Medical School, Boston, MA 02215, USA;
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Tal Marciano
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Ze’ev Bomzon
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
- Department of Neurology & Neurological Sciences, Division of Neuro-Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
22
|
Potočnik T, Miklavčič D, Maček Lebar A. Gene transfer by electroporation with high frequency bipolar pulses in vitro. Bioelectrochemistry 2021; 140:107803. [PMID: 33975183 DOI: 10.1016/j.bioelechem.2021.107803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
High-frequency bipolar pulses (HF-BP) have been demonstrated to be efficient for membrane permeabilization and irreversible electroporation. Since membrane permeabilization has been achieved using HF-BP pulses we hypothesized that with these pulses we can also achieve successful gene electrotransfer (GET). Three variations of bursts of 2 µs bipolar pulses with 2 µs interphase delay were applied in HF-BP protocols. We compared transfection efficiency of monopolar micro and millisecond pulses and HF-BP protocols at various plasmid DNA (pDNA) concentrations on CHO - K1 cells. GET efficiency increased with increasing pDNA concentration. Overall GET obtained by HF-BP pulse protocols was comparable to overall GET obtained by longer monopolar pulse protocols. Our results, however, suggest that although we were able to achieve similar percent of transfected cells, the number of pDNA copies that were successfully transferred into cells seemed to be higher when longer monopolar pulses were used. Interestingly, we did not observe any direct correlation between fluorescence intensity of pDNA aggregates formed on cell membrane and transfection efficiency. The results of our study confirmed that we can achieve successful GET with bipolar microsecond i. e. HF-BP pulses, although at the expense of higher pDNA concentrations.
Collapse
Affiliation(s)
- Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Goldberg E, Soba A, Gandía D, Fernández ML, Suárez C. Coupled mathematical modeling of cisplatin electroporation. Bioelectrochemistry 2021; 140:107788. [PMID: 33838515 DOI: 10.1016/j.bioelechem.2021.107788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
The use of electrochemotherapy (ECT) is a well-established technique to increase the cellular uptake of cytotoxic agents within certain cancer treatment strategies. The study of the mechanisms that take part in this complex process is of high interest to gain a deeper knowledge of it, enabling the improvement of these strategies. In this work, we present a coupled multi-physics electroporation model based on a related previous one, to describe the effect of a set of electric pulses on cisplatin transport across the plasma membrane. The model applies a system of partial differential equations that includes Poisson's equation for the electric field, Nernst-Planck's equation for species transport, Maxwell's tensor and mechanical equilibrium equation for membrane deformation and Smoluchowski's equation for pore creation dynamics. Our numerical results were compared with previous numerical and experimental published data with good qualitative and quantitative agreement. These results indicate that pore aperture is favored at the cell poles by the electric field and mechanical stress forces, giving support to the dominant hypothesis of hydrophilic pore creation as the main mechanism of drug entry during an ECT treatment.
Collapse
Affiliation(s)
- Ezequiel Goldberg
- Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Alejandro Soba
- Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Daniel Gandía
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina
| | - María Laura Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
| | - Cecilia Suárez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina.
| |
Collapse
|
24
|
2-ns Electrostimulation of Ca 2+ Influx into Chromaffin Cells: Rapid Modulation by Field Reversal. Biophys J 2020; 120:556-567. [PMID: 33359835 PMCID: PMC7895993 DOI: 10.1016/j.bpj.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular effects of nanosecond-pulsed electric field exposures can be attenuated by an electric field reversal, a phenomenon called bipolar pulse cancellation. Our investigations of this phenomenon in neuroendocrine adrenal chromaffin cells show that a single 2-ns, 16 MV/m unipolar pulse elicited a rapid, transient rise in intracellular Ca2+ levels due to Ca2+ influx through voltage-gated calcium channels. The response was eliminated by a 2-ns bipolar pulse with positive and negative phases of equal duration and amplitude and fully restored (unipolar-equivalent response) when the delay between each phase of the bipolar pulse was 30 ns. Longer interphase intervals evoked Ca2+ responses that were greater in magnitude than those evoked by a unipolar pulse (stimulation). Cancellation was also observed when the amplitude of the second (negative) phase of the bipolar pulse was half that of the first (positive) phase but progressively lost as the amplitude of the second phase was incrementally increased above that of the first phase. When the amplitude of the second phase was twice that of the first phase, there was stimulation. By comparing the experimental results for each manipulation of the bipolar pulse waveform with analytical calculations of capacitive membrane charging/discharging, also known as accelerated membrane discharge mechanism, we show that the transition from cancellation to unipolar-equivalent stimulation broadly agrees with this model. Taken as a whole, our results demonstrate that electrostimulation of adrenal chromaffin cells with ultrashort pulses can be modulated with interphase intervals of tens of nanoseconds, a prediction of the accelerated membrane discharge mechanism not previously observed in other bipolar pulse cancellation studies. Such modulation of Ca2+ responses in a neural-type cell is promising for the potential use of nanosecond bipolar pulse technologies for remote electrostimulation applications for neuromodulation.
Collapse
|
25
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
26
|
Santra TS, Kar S, Chang HY, Tseng FG. Nano-localized single-cell nano-electroporation. LAB ON A CHIP 2020; 20:4194-4204. [PMID: 33047768 DOI: 10.1039/d0lc00712a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to deliver foreign cargos into single living cells is of great interest in cell biology and therapeutic research. Here, we have reported a single or multiple position based nano-localized single-cell nano-electroporation platform. The device consists of an array of triangular shape ITO nano-electrodes with a 70 nm gap between two nano-electrodes, each having a 40 nm tip diameter. The voltage is applied between nano-electrodes to generate an intense electric field, which electroporates multiple nano-localized regions of the targeted single-cell membrane, and biomolecules are gently delivered into cells by pressurizing pump flow, without affecting cell viability. The platform successfully delivers dyes, QDs, and plasmids into different cell types with the variation of field strength, pulse duration, and the number of pulses. This new approach allows us to analyze delivery of different biomolecules into single living cells with high transfection efficiency (>96%, for CL1-0 cells) and high cell viability (∼98%), which are potentially beneficial for cellular therapy and diagnostic purposes.
Collapse
Affiliation(s)
- Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 60036, India.
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 60036, India. and Electrical Engineering, University of Cambridge, CB3 0FA, UK
| | - Hwan-You Chang
- Department of Life Science, National Tsing Hua University, Hsinchu 30012, Taiwan and Department of Medical Science, National Tsing Hua University, Hsinchu 30012, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30012, Taiwan and Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan and Frontier Research Center of Fundamental and Applied Sciences, National Tsing Hua University, Hsinchu 30012, Taiwan
| |
Collapse
|
27
|
Sözer EB, Haldar S, Blank PS, Castellani F, Vernier PT, Zimmerberg J. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics. Biophys J 2020; 119:1724-1734. [PMID: 33096018 DOI: 10.1016/j.bpj.2020.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Although transport of molecules into cells via electroporation is a common biomedical procedure, its protocols are often based on trial and error. Despite a long history of theoretical effort, the underlying mechanisms of cell membrane electroporation are not sufficiently elucidated, in part, because of the number of independent fitting parameters needed to link theory to experiment. Here, we ask if the electroporation behavior of a reduced cell membrane is consistent with time-resolved, atomistic, molecular dynamics (MD) simulations of phospholipid bilayers responding to electric fields. To avoid solvent and tension effects, giant unilamellar vesicles (GUVs) were used, and transport kinetics were measured by the entry of the impermeant fluorescent dye calcein. Because the timescale of electrical pulses needed to restructure bilayers into pores is much shorter than the time resolution of current techniques for membrane transport kinetics measurements, the lifetimes of lipid bilayer electropores were measured using systematic variation of the initial MD simulation conditions, whereas GUV transport kinetics were detected in response to a nanosecond timescale variation in the applied electric pulse lifetimes and interpulse intervals. Molecular transport after GUV permeabilization induced by multiple pulses is additive for interpulse intervals as short as 50 ns but not 5-ns intervals, consistent with the 10-50-ns lifetimes of electropores in MD simulations. Although the results were mostly consistent between GUV and MD simulations, the kinetics of ultrashort, electric-field-induced permeabilization of GUVs were significantly different from published results in cells exposed to ultrashort (6 and 2 ns) electric fields, suggesting that cellular electroporation involves additional structures and processes.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Sourav Haldar
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Federica Castellani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; Biomedical Engineering Institute, Frank Batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|
28
|
Nathamgari SSP, Pathak N, Lemaitre V, Mukherjee P, Muldoon JJ, Peng CY, McGuire T, Leonard JN, Kessler JA, Espinosa HD. Nanofountain Probe Electroporation Enables Versatile Single-Cell Intracellular Delivery and Investigation of Postpulse Electropore Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002616. [PMID: 33006271 PMCID: PMC7646188 DOI: 10.1002/smll.202002616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Indexed: 05/13/2023]
Abstract
Introducing exogenous molecules into cells with high efficiency and dosage control is a crucial step in basic research as well as clinical applications. Here, the capability of the nanofountain probe electroporation (NFP-E) system to deliver proteins and plasmids in a variety of continuous and primary cell types with appropriate dosage control is reported. It is shown that the NFP-E can achieve fine control over the relative expression of two cotransfected plasmids. Finally, the dynamics of electropore closure after the pulsing ends with the NFP-E is investigated. Localized electroporation has recently been utilized to demonstrate the converse process of delivery (sampling), in which a small volume of the cytosol is retrieved during electroporation without causing cell lysis. Single-cell temporal sampling confers the benefit of monitoring the same cell over time and can provide valuable insights into the mechanisms underlying processes such as stem cell differentiation and disease progression. NFP-E parameters that maximize the membrane resealing time, which is essential for increasing the sampled volume and in meeting the challenge of monitoring low copy number biomarkers, are identified. Its application in CRISPR/Cas9 gene editing, stem cell reprogramming, and single-cell sampling studies is envisioned.
Collapse
Affiliation(s)
- Samba Shiva Prasad Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph J Muldoon
- Department of Chemical and Biological Engineering and Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Tammy McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering and Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Horacio Dante Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
29
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
30
|
Rems L, Kasimova MA, Testa I, Delemotte L. Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels. Biophys J 2020; 119:190-205. [PMID: 32559411 PMCID: PMC7335976 DOI: 10.1016/j.bpj.2020.05.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Pulsed electric fields are increasingly used in medicine to transiently increase the cell membrane permeability via electroporation to deliver therapeutic molecules into the cell. One type of event that contributes to this increase in membrane permeability is the formation of pores in the membrane lipid bilayer. However, electrophysiological measurements suggest that membrane proteins are affected as well, particularly voltage-gated ion channels (VGICs). The molecular mechanisms by which the electric field could affects these molecules remain unidentified. In this study, we used molecular dynamics simulations to unravel the molecular events that take place in different VGICs when exposing them to electric fields mimicking electroporation conditions. We show that electric fields can induce pores in the voltage-sensor domains (VSDs) of different VGICs and that these pores form more easily in some channels than in others. We demonstrate that poration is more likely in VSDs that are more hydrated and are electrostatically more favorable for the entry of ions. We further show that pores in VSDs can expand into so-called complex pores, which become stabilized by lipid headgroups. Our results suggest that such complex pores are considerably more stable than conventional lipid pores, and their formation can lead to severe unfolding of VSDs from the channel. We anticipate that such VSDs become dysfunctional and unable to respond to changes in transmembrane voltage, which is in agreement with previous electrophysiological measurements showing a decrease in the voltage-dependent transmembrane ionic currents after pulse treatment. Finally, we discuss the possibility of activation of VGICs by submicrosecond-duration pulses. Overall, our study reveals a new, to our knowledge, mechanism of electroporation through membranes containing VGICs.
Collapse
Affiliation(s)
- Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Ilaria Testa
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
31
|
Ultrastructural changes in hepatocellular carcinoma cells induced by exponential pulses of nanosecond duration delivered via a transmission line. Bioelectrochemistry 2020; 135:107548. [PMID: 32408094 DOI: 10.1016/j.bioelechem.2020.107548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
Abstract
Clinical applications of high-intensity pulsed electric fields have proven useful in ablating solid tumors. However, novel ideas for the development of an effective tumor ablation device are urgently needed. Here, we studied cellular effects of the nanosecond exponential pulse, which is generated by a capacitor-discharging circuit and delivered via a transmission line. Pulses of peak voltage boosted by transmission line oscillation possess high capability to induce swelling and to cause loss of viability in cells. The appropriate parameter of the pulse was selected to investigate the ultrastructural changes in swollen cells, which present smoothened plasma membrane, loss of microvilli, and lowered cytoplasm electron density. We propose the equivalent force field hypothesis to understand the mechanism underlying cell swelling induced by pulsing. Wrinkles on the plasma membrane might indicate recovery from cell swelling, and this was verified by co-culture of pulsed PKH26-Cells with sham-treated PKH67-Cells. We concluded that the ultrastructural changes, such as irregular pores formed on the plasma membrane, were mainly induced by the effect of electric pulse applied on the charged molecules in the membrane.
Collapse
|
32
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
Sachdev S, Feijoo Moreira S, Keehnen Y, Rems L, Kreutzer MT, Boukany PE. DNA-membrane complex formation during electroporation is DNA size-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183089. [DOI: 10.1016/j.bbamem.2019.183089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
34
|
Wimberger T, Peham JR, Ehmoser EK, Wassermann KJ. Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields. LAB ON A CHIP 2019; 19:3997-4006. [PMID: 31667478 DOI: 10.1039/c9lc00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high-k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation.
Collapse
Affiliation(s)
- Terje Wimberger
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria. and University of Natural Resources and Life Sciences, Department for Nanobiotechnology, Vienna, Austria
| | - Johannes R Peham
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria.
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences, Department for Nanobiotechnology, Vienna, Austria
| | - Klemens J Wassermann
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria.
| |
Collapse
|
35
|
Stirke A, Celiesiute-Germaniene R, Zimkus A, Zurauskiene N, Simonis P, Dervinis A, Ramanavicius A, Balevicius S. The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Sci Rep 2019; 9:14731. [PMID: 31611587 PMCID: PMC6791849 DOI: 10.1038/s41598-019-51184-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
An investigation of the yeast cell resealing process was performed by studying the absorption of the tetraphenylphosphonium (TPP+) ion by the yeast Saccharomyces cerevisiae. It was shown that the main barrier for the uptake of such TPP+ ions is the cell wall. An increased rate of TPP+ absorption after treatment of such cells with a pulsed electric field (PEF) was observed only in intact cells, but not in spheroplasts. The investigation of the uptake of TPP+ in PEF treated cells exposed to TPP+ for different time intervals also showed the dependence of the absorption rate on the PEF strength. The modelling of the TPP+ uptake recovery has also shown that the characteristic decay time of the non-equilibrium (PEF induced) pores was approximately a few tens of seconds and this did not depend on the PEF strength. A further investigation of such cell membrane recovery process using a florescent SYTOX Green nucleic acid stain dye also showed that such membrane resealing takes place over a time that is like that occurring in the cell wall. It was thus concluded that the similar characteristic lifetimes of the non-equilibrium pores in the cell wall and membrane after exposure to PEF indicate a strong coupling between these parts of the cell.
Collapse
Affiliation(s)
- Arunas Stirke
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | | | - Aurelijus Zimkus
- Department of Biochemistry and Biophysics, Life Sciences Center, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Nerija Zurauskiene
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Povilas Simonis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Aldas Dervinis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.,Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225, Vilnius, Lithuania
| | - Saulius Balevicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
36
|
van Es R, Konings MK, Du Pré BC, Neven K, van Wessel H, van Driel VJHM, Westra AH, Doevendans PAF, Wittkampf FHM. High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform. Biomed Eng Online 2019; 18:75. [PMID: 31221146 PMCID: PMC6585075 DOI: 10.1186/s12938-019-0693-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Background Irreversible electroporation (IRE) using direct current (DC) is an effective method for the ablation of cardiac tissue. A major drawback of the use of DC-IRE, however, are two problems: requirement of general anesthesia due to severe muscle contractions and the formation of bubbles containing gaseous products from electrolysis. The use of high-frequency alternating current (HF-IRE) is expected to solve both problems, because HF-IRE produces little to no muscle spasms and does not cause electrolysis. Methods In the present study, we introduce a novel asymmetric, high-frequency (aHF) waveform for HF-IRE and present the results of a first, small, animal study to test its efficacy. Results The data of the experiments suggest that the aHF waveform creates significantly deeper lesions than a symmetric HF waveform of the same energy and frequency (p = 0.003). Conclusion We therefore conclude that the use of the aHF enhances the feasibility of the HF-IRE method.
Collapse
Affiliation(s)
- René van Es
- Div. Heart and Lungs, Dept. of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maurits K Konings
- Dept. of Medical Technology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Bastiaan C Du Pré
- Div. Heart and Lungs, Dept. of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kars Neven
- Div. Heart and Lungs, Dept. of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Witten/Herdecke University, Witten, Germany.,Dept. of Electrophysiology, Alfried Krupp Krankenhaus, Essen, Germany
| | | | | | - Albert H Westra
- Dept. of Medical Technology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pieter A F Doevendans
- Div. Heart and Lungs, Dept. of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Holland Heart House, Utrecht, The Netherlands
| | - Fred H M Wittkampf
- Div. Heart and Lungs, Dept. of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Modulation of biological responses to 2 ns electrical stimuli by field reversal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1228-1239. [DOI: 10.1016/j.bbamem.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
|
38
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
39
|
Gowrishankar TR, Stern JV, Smith KC, Weaver JC. Nanopore occlusion: A biophysical mechanism for bipolar cancellation in cell membranes. Biochem Biophys Res Commun 2018; 503:1194-1199. [DOI: 10.1016/j.bbrc.2018.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
40
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
41
|
Moisescu MG, Savopol T, Dimitriu L, Cemazar J, Kovacs E, Radu M. Noninvasive detection of changes in cells' cytosol conductivity by combining dielectrophoresis with optical tweezers. Anal Chim Acta 2018; 1030:166-171. [PMID: 30032766 DOI: 10.1016/j.aca.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/05/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
Cellular electrical properties are modulated by various physical and/or chemical stresses and detection of these changes is a challenging issue. Optical tweezers (OT) and dielectrophoresis (DEP) are frequently integrated to devices dedicated to the investigation of cells properties. Here we provide a technique to detect changes in cytosol conductivity of cells by using a combination of DEP and OT. The method was exemplified for the case of cells electroporation and is based on balancing the DEP force by a controlled OT force. We observed a decrease of the DEP force in the case of electroporated cells which was correlated to a decrease of cytosol conductivity by means of Clausius-Mossotti factor modeling. For highly stressing electroporation pulses, the cytosol conductivity drops to values close to those of the cells suspending medium. These results are consistent with those reported in the literature proving the robustness of our proposed sensing method.
Collapse
Affiliation(s)
- Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Dept., Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania; Research Excellence Center in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Dept., Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania; Research Excellence Center in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania.
| | - Liviu Dimitriu
- Biophysics and Cellular Biotechnology Dept., Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Jaka Cemazar
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, 25 Trzaskacesta, 1000, Ljubljana, Slovenia
| | - Eugenia Kovacs
- Biophysics and Cellular Biotechnology Dept., Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Mihai Radu
- Life and Environmental Physics Dept., Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele, 077125, Romania
| |
Collapse
|
42
|
Sözer EB, Pocetti CF, Vernier PT. Transport of charged small molecules after electropermeabilization - drift and diffusion. BMC BIOPHYSICS 2018; 11:4. [PMID: 29581879 PMCID: PMC5861730 DOI: 10.1186/s13628-018-0044-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022]
Abstract
Background Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small molecules commonly used in electroporation research — YO-PRO-1, propidium, and calcein — after exposure of cells to minimally perturbing, 6 ns electric pulses. Results Influx of YO-PRO-1 from the external medium into the cell exceeds that of propidium, consistent with many published studies. Both are much greater than the influx of calcein. In contrast, the normalized molar efflux of calcein from pre-loaded cells into the medium after electropermeabilization is roughly equivalent to the influx of YO-PRO-1 and propidium. These relative transport rates are correlated not with molecular size or cross-section, but rather with molecular charge polarity. Conclusions This comparison of the kinetics of molecular transport of three small, charged molecules across electropermeabilized cell membranes reveals a component of the mechanism of electroporation that is customarily taken into account only for the time during electric pulse delivery. The large differences between the influx rates of propidium and YO-PRO-1 (cations) and calcein (anion), and between the influx and efflux of calcein, suggest a significant role for the post-pulse transmembrane potential in the migration of ions and charged small molecules across permeabilized cell membranes, which has been largely neglected in models of electroporation. Electronic supplementary material The online version of this article (10.1186/s13628-018-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esin B Sözer
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| | - C Florencia Pocetti
- 2Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| |
Collapse
|
43
|
Schoenbach KH. From the basic science of biological effects of ultrashort electrical pulses to medical therapies. Bioelectromagnetics 2018. [DOI: 10.1002/bem.22117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Karl H. Schoenbach
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk Virginia
| |
Collapse
|
44
|
Sweeney DC, Weaver JC, Davalos RV. Characterization of Cell Membrane Permeability In Vitro Part I: Transport Behavior Induced by Single-Pulse Electric Fields. Technol Cancer Res Treat 2018; 17:1533033818792491. [PMID: 30236040 PMCID: PMC6154305 DOI: 10.1177/1533033818792491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023] Open
Abstract
Most experimental studies of electroporation focus on permeabilization of the outer cell membrane. Some experiments address delivery of ions and molecules into cells that should survive; others focus on efficient killing of the cells with minimal temperature rise. A basic method for quantifying electroporation effectiveness is measuring the membrane's diffusive permeability. More specifically, comparisons of membrane permeability between electroporation protocols often rely on relative fluorescence measurements, which are not able to be directly connected to theoretical calculations and complicate comparisons between studies. Here we present part I of a 2-part study: a research method for quantitatively determining the membrane diffusive permeability for individual cells using fluorescence microscopy. We determine diffusive permeabilities of cell membranes to propidium for electric field pulses with durations of 1 to 1000 μs and strengths of 170 to 400 kV/m and show that diffusive permeabilities can reach 1.3±0.4×10-8 m/s. This leads to a correlation between increased membrane permeability and eventual propidium uptake. We also identify a subpopulation of cells that exhibit a delayed and significant propidium uptake for relatively small single pulses. Our results provide evidence that cells, especially those that uptake propidium more slowly, can achieve large permeabilities with a single electrical pulse that may be quantitatively measured using standard fluorescence microscopy equipment and techniques.
Collapse
Affiliation(s)
- Daniel C. Sweeney
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| | - James C. Weaver
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts
Institute of Technology, Cambridge, MA, USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| |
Collapse
|
45
|
Sweeney DC, Douglas TA, Davalos RV. Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport. Technol Cancer Res Treat 2018; 17:1533033818792490. [PMID: 30231776 PMCID: PMC6149036 DOI: 10.1177/1533033818792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Electroporation is the process by which applied electric fields generate nanoscale defects in biological membranes to more efficiently deliver drugs and other small molecules into the cells. Due to the complexity of the process, computational models of cellular electroporation are difficult to validate against quantitative molecular uptake data. In part I of this two-part report, we describe a novel method for quantitatively determining cell membrane permeability and molecular membrane transport using fluorescence microscopy. Here, in part II, we use the data from part I to develop a two-stage ordinary differential equation model of cellular electroporation. We fit our model using experimental data from cells immersed in three buffer solutions and exposed to electric field strengths of 170 to 400 kV/m and pulse durations of 1 to 1000 μs. We report that a low-conductivity 4-(2-hydroxyethyl)-1 piperazineethanesulfonic acid buffer enables molecular transport into the cell to increase more rapidly than with phosphate-buffered saline or culture medium-based buffer. For multipulse schemes, our model suggests that the interpulse delay between two opposite polarity electric field pulses does not play an appreciable role in the resultant molecular uptake for delays up to 100 μs. Our model also predicts the per-pulse permeability enhancement decreases as a function of the pulse number. This is the first report of an ordinary differential equation model of electroporation to be validated with quantitative molecular uptake data and consider both membrane permeability and charging.
Collapse
Affiliation(s)
- Daniel C. Sweeney
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| | - Temple A. Douglas
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| |
Collapse
|
46
|
Electropore Formation in Mechanically Constrained Phospholipid Bilayers. J Membr Biol 2017; 251:237-245. [DOI: 10.1007/s00232-017-0002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/06/2017] [Indexed: 01/10/2023]
|
47
|
Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D, Leveque P, O'Connor RP. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2040-2050. [DOI: 10.1016/j.bbamem.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
|
48
|
Numerical study of the effect of soft layer properties on bacterial electroporation. Bioelectrochemistry 2017; 123:261-272. [PMID: 29146422 DOI: 10.1016/j.bioelechem.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022]
Abstract
We present a numerical model of electroporation in a gram-positive bacterium, which accounts for the presence of a negatively charged soft polyelectrolyte layer (which may include a periplasmic space, peptidoglycan layer, cilia, flagella, and other surface appendages) surrounding its plasma membrane. We model the ion transport within and outside the soft layer using the soft layer electrokinetics-based Poisson-Nernst-Planck formalism. Additionally, we model the electroporation dynamics on the plasma membrane using the pore nucleation-based electroporation formalism developed by Krassowska and Filev. We find that ion transport within the soft layer (surface conduction), which depends on the relative importance of the soft layer charged group concentration compared to the buffer concentration, significantly alters the transmembrane voltage across the plasma membrane and hence the pore characteristics. Our numerical simulations suggest that surface conduction significantly lowers the pore number in the plasma membrane. This observation is consistent with experimental studies that show that gram-positive bacteria, in general, have lower transformation efficiencies compared to gram-negative bacteria. Our studies highlight a strong dependence of bacterial electroporation on cell envelope properties and buffer conditions, which need to be taken into consideration when designing electroporation protocols.
Collapse
|
49
|
Merla C, Pakhomov AG, Semenov I, Vernier PT. Frequency spectrum of induced transmembrane potential and permeabilization efficacy of bipolar electric pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1282-1290. [DOI: 10.1016/j.bbamem.2017.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022]
|
50
|
Sözer EB, Pocetti CF, Vernier PT. Asymmetric Patterns of Small Molecule Transport After Nanosecond and Microsecond Electropermeabilization. J Membr Biol 2017; 251:197-210. [PMID: 28484798 PMCID: PMC5910485 DOI: 10.1007/s00232-017-9962-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with our measurement system. Immediately after a microsecond pulse, YO-PRO-1 and propidium enter the cell roughly equally from the positive and negative poles, but transport through the cathode-facing side dominates in less than 1 s. After nanosecond pulse permeabilization, YO-PRO-1 and propidium enter primarily on the anode-facing side of the cell.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA, 23508, USA
| | - C Florencia Pocetti
- Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA, 23508, USA.
| |
Collapse
|