1
|
Girard C. The tri-flow adaptiveness of codes in major evolutionary transitions. Biosystems 2024; 237:105133. [PMID: 38336225 DOI: 10.1016/j.biosystems.2024.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.
Collapse
Affiliation(s)
- Chris Girard
- Department of Global and Sociocultural Studies, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
2
|
Characterization of mitochondrial genome of Indian Ocean blue-spotted maskray, Neotrygon indica and its phylogenetic relationship within Dasyatidae Family. Int J Biol Macromol 2022; 223:458-467. [PMID: 36347369 DOI: 10.1016/j.ijbiomac.2022.10.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
The present study characterized complete mitochondrial genome of Blue-spotted maskray, Neotrygon indica and studied the evolutionary relationship of the species within the Dasyatidae family. The total length of the mitogenome was 17,974 bp including 37 genes and a non-coding control region. The average frequency of nucleotides in protein-coding genes was A: 29.1 %, T: 30.2 %, G: 13.0 % and C: 27.7 % with AT content of 59.3 %. The values of AT and GC skewness were -0.018 and -0.338, respectively. Comparative analyses showed a large number of average synonymous substitutions per synonymous site (Ks) in gene NADH4 (5.07) followed by NADH5 (4.72). High values of average number of non-synonymous substitutions per non-synonymous site (Ka) were observed in genes ATPase8 (0.54) and NADH2 (0.44). Genes NADH4L and NADH2 showed high interspecific genetic distance values of 0.224 ± 0.001 and 0.213 ± 0.002, respectively. Heat map analysis showed variation in codon usage among different species of the Dasyatidae family. The phylogenetic tree showed a sister relationship between the Dasyatinae and the Neotrygoninae subfamilies. Neotrygon indica formed as a sister species to the clade consisting of N. varidens and N. orientalis. Based on the present results, Neotrygon indica could have diverged from the common ancestor of the two latter in the Plio-Pleistocene. The present study showed distinct characteristics of N. indica from its congeners through comparative mitogenomics.
Collapse
|
3
|
The whole mitochondrial genome signature of Teressa goat, an indigenous goat germplasm of Andaman and Nicobar Islands, India. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
5
|
Fonseca PLC, De-Paula RB, Araújo DS, Tomé LMR, Mendes-Pereira T, Rodrigues WFC, Del-Bem LE, Aguiar ERGR, Góes-Neto A. Global Characterization of Fungal Mitogenomes: New Insights on Genomic Diversity and Dynamism of Coding Genes and Accessory Elements. Front Microbiol 2021; 12:787283. [PMID: 34925295 PMCID: PMC8672057 DOI: 10.3389/fmicb.2021.787283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
Fungi comprise a great diversity of species with distinct ecological functions and lifestyles. Similar to other eukaryotes, fungi rely on interactions with prokaryotes and one of the most important symbiotic events was the acquisition of mitochondria. Mitochondria are organelles found in eukaryotic cells whose main function is to generate energy through aerobic respiration. Mitogenomes (mtDNAs) are double-stranded circular or linear DNA from mitochondria that may contain core genes and accessory elements that can be replicated, transcribed, and independently translated from the nuclear genome. Despite their importance, investigative studies on the diversity of fungal mitogenomes are scarce. Herein, we have evaluated 788 curated fungal mitogenomes available at NCBI database to assess discrepancies and similarities among them and to better understand the mechanisms involved in fungal mtDNAs variability. From a total of 12 fungal phyla, four do not have any representative with available mitogenomes, which highlights the underrepresentation of some groups in the current available data. We selected representative and non-redundant mitogenomes based on the threshold of 90% similarity, eliminating 81 mtDNAs. Comparative analyses revealed considerable size variability of mtDNAs with a difference of up to 260 kb in length. Furthermore, variation in mitogenome length and genomic composition are generally related to the number and length of accessory elements (introns, HEGs, and uORFs). We identified an overall average of 8.0 (0–39) introns, 8.0 (0–100) HEGs, and 8.2 (0–102) uORFs per genome, with high variation among phyla. Even though the length of the core protein-coding genes is considerably conserved, approximately 36.3% of the mitogenomes evaluated have at least one of the 14 core coding genes absent. Also, our results revealed that there is not even a single gene shared among all mitogenomes. Other unusual genes in mitogenomes were also detected in many mitogenomes, such as dpo and rpo, and displayed diverse evolutionary histories. Altogether, the results presented in this study suggest that fungal mitogenomes are diverse, contain accessory elements and are absent of a conserved gene that can be used for the taxonomic classification of the Kingdom Fungi.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thairine Mendes-Pereira
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Moosmann B. Redox Biochemistry of the Genetic Code. Trends Biochem Sci 2020; 46:83-86. [PMID: 33250285 DOI: 10.1016/j.tibs.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
New findings on the chemistry of the amino acids, their role in protein folding, and their sequential primordial introduction have uncovered concealed causalities in genetic code evolution. The genetically encoded amino acids successively provided (i) membrane anchors, (ii) halophilic protein folds, (iii) mesophilic protein folds, (iv) metal ligation, and (v) antioxidation.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
An J, Zheng W, Liang J, Xi Q, Chen R, Jia J, Lu X, Jakovlić I. Disrupted architecture and fast evolution of the mitochondrial genome of Argeia pugettensis (Isopoda): implications for speciation and fitness. BMC Genomics 2020; 21:607. [PMID: 32883208 PMCID: PMC7469299 DOI: 10.1186/s12864-020-07021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Argeia pugettensis is an isopod species that parasitizes other crustaceans. Its huge native geographic range spans the Pacific from China to California, but molecular data are available only for a handful of specimens from North-American populations. We sequenced and characterised the complete mitogenome of a specimen collected in the Yellow Sea. RESULTS It exhibited a barcode (cox1) similarity level of only 87-89% with North-American populations, which is unusually low for conspecifics. Its mitogenome is among the largest in isopods (≈16.5 Kbp), mostly due to a large duplicated palindromic genomic segment (2 Kbp) comprising three genes. However, it lost a segment comprising three genes, nad4L-trnP-nad6, and many genes exhibited highly divergent sequences in comparison to isopod orthologues, including numerous mutations, deletions and insertions. Phylogenetic and selection analyses corroborated that this is one of the handful of most rapidly evolving available isopod mitogenomes, and that it evolves under highly relaxed selection constraints (as opposed to positive selection). However, its nuclear 18S gene is highly conserved, which suggests that rapid evolution is limited to its mitochondrial genome. The cox1 sequence analysis indicates that elevated mitogenomic evolutionary rates are not shared by North-American conspecifics, which suggests a breakdown of cox1 barcoding in this species. CONCLUSIONS A highly architecturally disrupted mitogenome and decoupling of mitochondrial and nuclear rates would normally be expected to have strong negative impacts on the fitness of the organism, so the existence of this lineage is a puzzling evolutionary question. Additional studies are needed to assess the phylogenetic breadth of this disrupted mitochondrial architecture and its impact on fitness.
Collapse
Affiliation(s)
- Jianmei An
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China.
| | - Wanrui Zheng
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Jielong Liang
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Qianqian Xi
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Ruru Chen
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Junli Jia
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Xia Lu
- School of Life Science, Shanxi Normal University, Linfen, 041000, PR China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, 430075, Hubei, PR China
| |
Collapse
|
8
|
Wang B. The Pattern of Occurrence of Cytosine in the Genetic Code Minimizes Deleterious Mutations and Favors Proper Function of the Translational Machinery. OPEN JOURNAL OF GENETICS 2020; 10:8-15. [DOI: 10.4236/ojgen.2020.101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
BłaŻej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. The influence of different types of translational inaccuracies on the genetic code structure. BMC Bioinformatics 2019; 20:114. [PMID: 30841864 PMCID: PMC6404327 DOI: 10.1186/s12859-019-2661-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The standard genetic code is a recipe for assigning unambiguously 21 labels, i.e. amino acids and stop translation signal, to 64 codons. However, at early stages of the translational machinery development, the codons did not have to be read unambiguously and the early genetic codes could have contained some ambiguous assignments of codons to amino acids. Therefore, the goal of this work was to obtain the genetic code structures which could have evolved assuming different types of inaccuracy of the translational machinery starting from unambiguous assignments of codons to amino acids. RESULTS We developed a theoretical model assuming that the level of uncertainty of codon assignments can gradually decrease during the simulations. Since it is postulated that the standard code has evolved to be robust against point mutations and mistranslations, we developed three simulation scenarios assuming that such errors can influence one, two or three codon positions. The simulated codes were selected using the evolutionary algorithm methodology to decrease coding ambiguity and increase their robustness against mistranslation. CONCLUSIONS The results indicate that the typical codon block structure of the genetic code could have evolved to decrease the ambiguity of amino acid to codon assignments and to increase the fidelity of reading the genetic information. However, the robustness to errors was not the decisive factor that influenced the genetic code evolution because it is possible to find theoretical codes that minimize the reading errors better than the standard genetic code.
Collapse
Affiliation(s)
- Paweł BłaŻej
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Małgorzata Wnetrzak
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Dorota Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Paweł Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| |
Collapse
|
10
|
Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J Theor Biol 2019; 464:21-32. [DOI: 10.1016/j.jtbi.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
|
11
|
Noutahi E, Calderon V, Blanchette M, Lang FB, El-Mabrouk N. CoreTracker: accurate codon reassignment prediction, applied to mitochondrial genomes. Bioinformatics 2018; 33:3331-3339. [PMID: 28655158 DOI: 10.1093/bioinformatics/btx421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation Codon reassignments have been reported across all domains of life. With the increasing number of sequenced genomes, the development of systematic approaches for genetic code detection is essential for accurate downstream analyses. Three automated prediction tools exist so far: FACIL, GenDecoder and Bagheera; the last two respectively restricted to metazoan mitochondrial genomes and CUG reassignments in yeast nuclear genomes. These tools can only analyze a single genome at a time and are often not followed by a validation procedure, resulting in a high rate of false positives. Results We present CoreTracker, a new algorithm for the inference of sense-to-sense codon reassignments. CoreTracker identifies potential codon reassignments in a set of related genomes, then uses statistical evaluations and a random forest classifier to predict those that are the most likely to be correct. Predicted reassignments are then validated through a phylogeny-aware step that evaluates the impact of the new genetic code on the protein alignment. Handling simultaneously a set of genomes in a phylogenetic framework, allows tracing back the evolution of each reassignment, which provides information on its underlying mechanism. Applied to metazoan and yeast genomes, CoreTracker significantly outperforms existing methods on both precision and sensitivity. Availability and implementation CoreTracker is written in Python and available at https://github.com/UdeM-LBIT/CoreTracker. Contact mabrouk@iro.umontreal.ca. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Emmanuel Noutahi
- Département d'Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal, Montréal, QC CP 6128, Canada
| | - Virginie Calderon
- Département d'Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal, Montréal, QC CP 6128, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, McConnell Engineering Bldg., Montréal, QC H3A 0E9, Canada
| | - Franz B Lang
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Montréal, QC CP 6128, Canada
| | - Nadia El-Mabrouk
- Département d'Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal, Montréal, QC CP 6128, Canada
| |
Collapse
|
12
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
13
|
Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria. Biosystems 2017; 160:10-24. [PMID: 28807694 DOI: 10.1016/j.biosystems.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Polymerization sometimes transforms sequences by (a) systematic deletions of mono-, dinucleotides after trinucleotides, or (b) 23 systematic nucleotide exchanges (9 symmetric, X<>Y, e.g. G<>T, 14 asymmetric, X > Y > Z > X, e.g. A > G > T > A), producing del- and swinger RNAs. Some peptides correspond to del- and swinger RNA translations, also according to tetracodons, codons expanded by a silent nucleotide. Here new analyzes assume different proteolytic patterns, partially alleviating false negative peptide detection biases, expanding noncanonical mitoproteome profiles. Mito-genomic, -transcriptomic and -proteomic evidence for noncanonical transcriptions and translations are reviewed and clusters of del- and swinger peptides (also along tetracodons) are described. Noncanonical peptide clusters indicate regulated expression of cryptically encoded mitochondrial protein coding genes. These candidate noncanonical proteins don't resemble known proteins.
Collapse
|
14
|
Jacob AS, Andersen LO, Bitar PP, Richards VP, Shah S, Stanhope MJ, Stensvold CR, Clark CG. Blastocystis Mitochondrial Genomes Appear to Show Multiple Independent Gains and Losses of Start and Stop Codons. Genome Biol Evol 2016; 8:3340-3350. [PMID: 27811175 PMCID: PMC5203790 DOI: 10.1093/gbe/evw255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complete mitochondrion-related organelle (MRO) genomes of several subtypes (STs) of the unicellular stramenopile Blastocystis are presented. Complete conservation of gene content and synteny in gene order is observed across all MRO genomes, comprising 27 protein coding genes, 2 ribosomal RNA genes, and 16 transfer RNA (tRNA) genes. Despite the synteny, differences in the degree of overlap between genes were observed between subtypes and also between isolates within the same subtype. Other notable features include unusual base-pairing mismatches in the predicted secondary structures of some tRNAs. Intriguingly, the rps4 gene in some MRO genomes is missing a start codon and, based on phylogenetic relationships among STs, this loss has happened twice independently. One unidentified open reading frame (orf160) is present in all MRO genomes. However, with the exception of ST4 where the feature has been lost secondarily, orf160 contains variously one or two in-frame stop codons. The overall evidence suggests that both the orf160 and rps4 genes are functional in all STs, but how they are expressed remains unclear.
Collapse
Affiliation(s)
- Alison S Jacob
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Present address: Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | - Lee O'Brien Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY.,Present address: Department of Biological Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC
| | - Sarah Shah
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - C Rune Stensvold
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - C Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Brandão MM, Spoladore L, Faria LCB, Rocha ASL, Silva-Filho MC, Palazzo R. Ancient DNA sequence revealed by error-correcting codes. Sci Rep 2015; 5:12051. [PMID: 26159228 PMCID: PMC4498232 DOI: 10.1038/srep12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 06/16/2015] [Indexed: 11/09/2022] Open
Abstract
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Collapse
Affiliation(s)
- Marcelo M Brandão
- 1] Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil [2] Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13400-918, Piracicaba, SP, Brazil
| | - Larissa Spoladore
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13400-918, Piracicaba, SP, Brazil
| | - Luzinete C B Faria
- Departamento de Telemática, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Andréa S L Rocha
- Departamento de Telemática, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13400-918, Piracicaba, SP, Brazil
| | - Reginaldo Palazzo
- Departamento de Telemática, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| |
Collapse
|
16
|
Pathways of Genetic Code Evolution in Ancient and Modern Organisms. J Mol Evol 2015; 80:229-43. [DOI: 10.1007/s00239-015-9686-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
17
|
Chen H, Sun S, Norenburg JL, Sundberg P. Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea). PLoS One 2014; 9:e85631. [PMID: 24454907 PMCID: PMC3893253 DOI: 10.1371/journal.pone.0085631] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes.
Collapse
Affiliation(s)
- Haixia Chen
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- * E-mail: (HXC); (PS)
| | - Shichun Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jon L. Norenburg
- Department of Invertebrate Zoology, Smithsonian's National Museum of Natural History, Washington D.C., United States of America
| | - Per Sundberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- * E-mail: (HXC); (PS)
| |
Collapse
|
18
|
Bandhu AV, Aggarwal N, Sengupta S. Revisiting the physico-chemical hypothesis of code origin: an analysis based on code-sequence coevolution in a finite population. ORIGINS LIFE EVOL B 2013; 43:465-89. [PMID: 24500541 DOI: 10.1007/s11084-014-9353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.
Collapse
Affiliation(s)
- Ashutosh Vishwa Bandhu
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
19
|
Morgens DW, Cavalcanti ARO. An alternative look at code evolution: using non-canonical codes to evaluate adaptive and historic models for the origin of the genetic code. J Mol Evol 2013; 76:71-80. [PMID: 23344715 DOI: 10.1007/s00239-013-9542-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The canonical code has been shown many times to be highly robust against point mutations; that is, mutations that change a single nucleotide tend to result in similar amino acids more often than expected by chance. There are two major types of models for the origin of the code, which explain how this sophisticated structure evolved. Adaptive models state that the primitive code was specifically selected for error minimization, while historic models hypothesize that the robustness of the code is an artifact or by-product of the mechanism of code evolution. In this paper, we evaluated the levels of robustness in existing non-canonical codes as well as codes that differ in only one codon assignment from the standard code. We found that the level of robustness of many of these codes is comparable or better than that of the standard code. Although these results do not preclude an adaptive origin of the genetic code, they suggest that the code was not selected for minimizing the effects of point mutations.
Collapse
Affiliation(s)
- David W Morgens
- Department of Biology, Pomona College, 175 W 6th Street, Claremont, CA, USA
| | | |
Collapse
|
20
|
The Amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: de-regulation of mitochondrial genes may be involved. J Hum Genet 2012; 57:269-76. [DOI: 10.1038/jhg.2012.17] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Johnson LJ, Cotton JA, Lichtenstein CP, Elgar GS, Nichols RA, Polly PD, Le Comber SC. Stops making sense: translational trade-offs and stop codon reassignment. BMC Evol Biol 2011; 11:227. [PMID: 21801361 PMCID: PMC3161013 DOI: 10.1186/1471-2148-11-227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 07/29/2011] [Indexed: 12/02/2022] Open
Abstract
Background Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature. Results In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences. Conclusions We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants.
Collapse
Affiliation(s)
- Louise J Johnson
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The discovery of the genetic code provided one of the basic foundations of modern molecular biology. Most organisms use the same genetic language, but there are also well-documented variations representing codon reassignments within specific groups of organisms (such as ciliates and yeast) or organelles (such as plastids and mitochondria). In addition, duality in codon function is known in the use of AUG in translation initiation and methionine insertion into internal protein positions as well as in the case of selenocysteine and pyrrolysine insertion (encoded by UGA and UAG, respectively) in competition with translation termination. Ambiguous meaning of CUG in coding for serine and leucine is also known. However, a recent study revealed that codons in any position within the open reading frame can serve a dual function and that a change in codon meaning can be achieved by availability of a specific type of RNA stem-loop structure in the 3'-untranslated region. Thus, duality of codon function is a more widely used feature of the genetic code than previously known, and this observation raises the possibility that additional recoding events and additional novel features have evolved in the genetic code.
Collapse
Affiliation(s)
- Alexey V. Lobanov
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| | - Anton A. Turanov
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| |
Collapse
|
23
|
Abstract
Alterations to the genetic code--codon reassignments--have occurred many times in life's history, despite the fact that genomes are coadapted to their genetic codes and therefore alterations are likely to be maladaptive. A potential mechanism for adaptive codon reassignment, which could trigger either a temporary period of codon ambiguity or a permanent genetic code change, is the reactivation of a pseudogene by a nonsense suppressor mutant transfer RNA. I examine the population genetics of each stage of this process and find that pseudogene rescue is plausible and also readily explains some features of extant variability in genetic codes.
Collapse
Affiliation(s)
- L J Johnson
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
24
|
Liu X, Zhang J, Ni F, Dong X, Han B, Han D, Ji Z, Zhao Y. Genome wide exploration of the origin and evolution of amino acids. BMC Evol Biol 2010; 10:77. [PMID: 20230639 PMCID: PMC2853539 DOI: 10.1186/1471-2148-10-77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
Background Even after years of exploration, the terrestrial origin of bio-molecules remains unsolved and controversial. Today, observation of amino acid composition in proteins has become an alternative way for a global understanding of the mystery encoded in whole genomes and seeking clues for the origin of amino acids. Results In this study, we statistically monitored the frequencies of 20 alpha-amino acids in 549 taxa from three kingdoms of life: archaebacteria, eubacteria, and eukaryotes. We found that the amino acids evolved independently in these three kingdoms; but, conserved linkages were observed in two groups of amino acids, (A, G, H, L, P, Q, R, and W) and (F, I, K, N, S, and Y). Moreover, the amino acids encoded by GC-poor codons (F, Y, N, K, I, and M) were found to "lose" their usage in the development from single cell eukaryotic organisms like S. cerevisiae to H. sapiens, while the amino acids encoded by GC-rich codons (P, A, G, and W) were found to gain usage. These findings further support the co-evolution hypothesis of amino acids and genetic codes. Conclusion We proposed a new chronological order of the appearance of amino acids (L, A, V/E/G, S, I, K, T, R/D, P, N, F, Q, Y, M, H, W, C). Two conserved evolutionary paths of amino acids were also suggested: A→G→R→P and K→Y.
Collapse
Affiliation(s)
- Xiaoxia Liu
- The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, PR China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jang KH, Hwang UW. Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa. BMC Genomics 2009; 10:167. [PMID: 19379522 PMCID: PMC2678162 DOI: 10.1186/1471-2164-10-167] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 04/21/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The phylogenetic position of Bryozoa is one of the most controversial issues in metazoan phylogeny. In an attempt to address this issue, the first bryozoan mitochondrial genome from Flustrellidra hispida (Gymnolaemata, Ctenostomata) was recently sequenced and characterized. Unfortunately, it has extensive gene translocation and extremely reduced size. In addition, the phylogenies obtained from the result were conflicting, so they failed to assign a reliable phylogenetic position to Bryozoa or to clarify lophophorate phylogeny. Thus, it is necessary to characterize further mitochondrial genomes from slowly-evolving bryozoans to obtain a more credible lophophorate phylogeny. RESULTS The complete mitochondrial genome (15,433 bp) of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata), one of the most widely distributed cheliostome bryozoans, is sequenced. This second bryozoan mitochondrial genome contains the set of 37 components generally observed in other metazoans, differing from that of F. hispida (Bryozoa, Gymnolaemata, Ctenostomata), which has only 36 components with loss of tRNAser(ucn) genes. The B. neritina mitochondrial genome possesses 27 multiple noncoding regions. The gene order is more similar to those of the two remaining lophophorate phyla (Brachiopoda and Phoronida) and a chiton Katharina tunicate than to that of F. hispida. Phylogenetic analyses based on the nucleotide sequences or amino acid residues of 12 protein-coding genes showed consistently that, within the Lophotrochozoa, the monophyly of the bryozoan class Gymnolaemata (B. neritina and F. hispida) was strongly supported and the bryozoan clade was grouped with brachiopods. Echiura appeared as a subtaxon of Annelida, and Entoprocta as a sister taxon of Phoronida. The clade of Bryozoa + Brachiopoda was clustered with either the clade of Annelida-Echiura or that of Phoronida + Entoprocta. CONCLUSION This study presents the complete mitochondrial genome of a cheliostome bryozoan, B. neritina. The phylogenetic analyses suggest a close relationship between Bryozoa and Brachiopoda within the Lophotrochozoa. However, the sister group of Bryozoa + Brachiopoda is still ambiguous, although it has some attractions with Annelida-Echiura or Phoronida + Entoprocta. If the latter is a true phylogeny, lophophorate monophyly including Entoprocta is supported. Consequently, the present results imply that Brachiozoa (= Brachiopoda + Phoronida) and the recently-resurrected Bryozoa concept comprising Ectoprocta and Entoprocta may be refuted.
Collapse
Affiliation(s)
- Kuem Hee Jang
- Department of Biology, Graduate School & Department of Biology, Teachers College, Kyungpook National University, Daegu 702-701, Korea
- Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, Korea
| | - Ui Wook Hwang
- Department of Biology, Graduate School & Department of Biology, Teachers College, Kyungpook National University, Daegu 702-701, Korea
- Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
26
|
Jang KH, Ryu SH, Hwang UW. Mitochondrial genome of the eurasian otterLutra lutra (Mammalia, Carnivora, Mustelidae). Genes Genomics 2009. [DOI: 10.1007/bf03191134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci U S A 2008; 105:16496-501. [PMID: 18946048 DOI: 10.1073/pnas.0802779105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.
Collapse
|
28
|
Abstract
Most mitochondria contain a core set of genes required for mitochondrial function, but beyond this base there are variable genomic features. The mitochondrial genome of the model species Dictyostelium discoideum demonstrated that the social amoebae mitochondrial genomes have a size between those of metazoans and plants, but no comparative study of social amoebae mitochondria has been performed. Here, we present a comparative analysis of social amoebae mitochondrial genomes using D. discoideum, Dictyostelium citrinum, Dictyostelium fasciculatum, and Polysphondylium pallidum. The social amoebae mitochondria have similar sizes, AT content, gene content and have a high level of synteny except for one segmental rearrangement and extensive displacement of tRNAs. From the species that contain the rearrangement, it can be concluded that the event occurred late in the evolution of social amoebae. A phylogeny using 36 mitochondrial genes produced a well-supported tree suggesting that the pairs of D. discoideum/D. citrinum and D. fasciculatum/P. pallidum are sister species although the position of the root is not certain. Group I introns and endonucleases are variable in number and location in the social amoebae. Phylogenies of the introns and endonucleases suggest that there have been multiple recent duplications or extinctions and confirm that endonucleases have the ability to insert into new areas. An analysis of dN/dS ratios in mitochondrial genes revealed that among groups of genes, adenosine triphosphate synthase complex genes have the highest ratio, whereas cytochrome oxidase and nicotinamide adenine dinucleotide (NADH) dehydrogenase genes had the lowest ratio. The genetic codes of D. citrinum, P. pallidum, and D. fasciculatum are the universal code although D. fasciculatum does not use the TGA stop codon. In D. fasciculatum, we demonstrate for the first time that a mitochondrial genome without the TGA stop codon still uses the release factor RF2 that recognizes TGA. Theories of how the genetic code can change and why RF2 may be a constraint against switching codes are discussed.
Collapse
Affiliation(s)
- Andrew J Heidel
- Genome Analysis Group, Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany.
| | | |
Collapse
|
29
|
Sekimoto S, Beakes GW, Gachon CMM, Müller DG, Küpper FC, Honda D. The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist 2008; 159:299-318. [PMID: 18243049 DOI: 10.1016/j.protis.2007.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/17/2007] [Indexed: 11/25/2022]
Abstract
The morphological development, ultrastructural cytology, and molecular phylogeny of Eurychasma dicksonii, a holocarpic oomycete endoparasite of phaeophyte algae, were investigated in laboratory cultures. Infection of the host algae by E. dicksonii is initiated by an adhesorium-like infection apparatus. First non-walled, the parasite cell developed a cell wall and numerous large vacuoles once it had almost completely filled the infected host cell (foamy stage). Large-scale cytoplasmic changes led to the differentiation of a sporangium with peripheral primary cysts. Secondary zoospores appeared to be liberated from the primary cysts in the internal space left after the peripheral spores differentiated. These zoospores contained two phases of peripheral vesicles, most likely homologous to the dorsal encystment vesicles and K-bodies observed in other oomycetes. Following zoospore liberation the walls of the empty cyst were left behind, forming the so-called net sporangium, a distinctive morphological feature of this genus. The morphological and ultrastructural features of Eurychasma were discussed in relation to similarities with other oomycetes. Both SSU rRNA and COII trees pointed to a basal position of Eurychasma among the Oomycetes. The cox2 sequences also revealed that the UGA codon encoded tryptophan, constituting the first report of stop codon reassignment in an oomycete mitochondrion.
Collapse
Affiliation(s)
- Satoshi Sekimoto
- Graduate School of Natural Science, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Salim HMW, Ring KL, Cavalcanti ARO. Patterns of codon usage in two ciliates that reassign the genetic code: Tetrahymena thermophila and Paramecium tetraurelia. Protist 2008; 159:283-98. [PMID: 18207458 DOI: 10.1016/j.protis.2007.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
Abstract
We used the recently sequenced genomes of the ciliates Tetrahymena thermophila and Paramecium tetraurelia to analyze the codon usage patterns in both organisms; we have analyzed codon usage bias, Gln codon usage, GC content and the nucleotide contexts of initiation and termination codons in Tetrahymena and Paramecium. We also studied how these trends change along the length of the genes and in a subset of highly expressed genes. Our results corroborate some of the trends previously described in Tetrahymena, but also negate some specific observations. In both genomes we found a strong bias toward codons with low GC content; however, in highly expressed genes this bias is smaller and codons ending in GC tend to be more frequent. We also found that codon bias increases along gene segments and in highly expressed genes and that the context surrounding initiation and termination codons are always AT rich. Our results also suggest differences in the efficiency of translation of the reassigned stop codons between the two species and between the reassigned codons. Finally, we discuss some of the possible causes for such translational efficiency differences.
Collapse
Affiliation(s)
- Hannah M W Salim
- Biology Department, Pomona College, 175 w 6th street, Claremont, CA 91711, USA
| | | | | |
Collapse
|
31
|
Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 2007; 5:41. [PMID: 17897476 PMCID: PMC2151934 DOI: 10.1186/1741-7007-5-41] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/27/2007] [Indexed: 11/10/2022] Open
Abstract
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing.
Collapse
Affiliation(s)
| | - John E Norman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Murray N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ross F Waller
- School of Botany, the University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
32
|
Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76:679-99. [PMID: 17408359 DOI: 10.1146/annurev.biochem.76.060305.152028] [Citation(s) in RCA: 493] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mitochondrion was originally a free-living prokaryotic organism, which explains the presence of a compact mammalian mitochondrial DNA (mtDNA) in contemporary mammalian cells. The genome encodes for key subunits of the electron transport chain and RNA components needed for mitochondrial translation. Nuclear genes encode the enzyme systems responsible for mtDNA replication and transcription. Several of the key components of these systems are related to proteins replicating and transcribing DNA in bacteriophages. This observation has led to the proposition that some genes required for DNA replication and transcription were acquired together from a phage early in the evolution of the eukaryotic cell, already at the time of the mitochondrial endosymbiosis. Recent years have seen a rapid development in our molecular understanding of these machineries, but many aspects still remain unknown.
Collapse
Affiliation(s)
- Maria Falkenberg
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Stockholm.
| | | | | |
Collapse
|
33
|
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007; 64:662-88. [PMID: 17541678 PMCID: PMC1894752 DOI: 10.1007/s00239-006-0284-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.
Collapse
Affiliation(s)
- Supratim Sengupta
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada
| | - Xiaoguang Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
34
|
Swire J. Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 2007; 64:558-71. [PMID: 17476453 DOI: 10.1007/s00239-006-0206-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 01/02/2007] [Indexed: 11/27/2022]
Abstract
Most investigations of the forces shaping protein evolution have focused on protein function. However, cells are typically 50%-75% protein by dry weight, with protein expression levels distributed over five orders of magnitude. Cells may, therefore, be under considerable selection pressure to incorporate amino acids that are cheap to synthesize into proteins that are highly expressed. Such selection pressure has been demonstrated to alter amino acid usage in a few organisms, but whether "cost selection" is a general phenomenon remains unknown. One reason for this is that reliable protein expression level data is not available for most organisms. Accordingly, I have developed a new method for detecting cost selection. This method depends solely on interprotein gradients in amino acid usage. Applying it to an analysis of 43 whole genomes from all three domains of life, I show that selection on the synthesis cost of amino acids is a pervasive force in shaping the composition of proteins. Moreover, some amino acids have different price tags for different organisms--the cost of amino acids is changed for organisms living in hydrothermal vents compared with those living at the sea surface or for organisms that have difficulty acquiring elements such as nitrogen compared with those that do not--so I also investigated whether differences between organisms in amino acid usage might reflect differences in synthesis or acquisition costs. The results suggest that organisms evolve to alter amino acid usage in response to environmental conditions.
Collapse
Affiliation(s)
- Jonathan Swire
- Centre for Bioinformatics, Division of Molecular Biosciences, Faculty of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
35
|
Kamatani T, Yamamoto T. Comparison of codon usage and tRNAs in mitochondrial genomes of Candida species. Biosystems 2006; 90:362-70. [PMID: 17123703 DOI: 10.1016/j.biosystems.2006.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/30/2006] [Accepted: 09/30/2006] [Indexed: 10/24/2022]
Abstract
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.
Collapse
|
36
|
Waeschenbach A, Telford MJ, Porter JS, Littlewood DTJ. The complete mitochondrial genome of Flustrellidra hispida and the phylogenetic position of Bryozoa among the Metazoa. Mol Phylogenet Evol 2006; 40:195-207. [PMID: 16621614 DOI: 10.1016/j.ympev.2006.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The complete mitochondrial genome of Flustrellidra hispida (Bryozoa, Ctenostomata, Flustrellidridae) was sequenced using a transposon-mediated approach. All but one of the 36 genes were identified (trnS2). The genome is 13,026 bp long, being one of the smallest metazoan mitochondrial genomes sequenced to date with a unique gene order when compared to other Metazoa. The genome has an overall AT richness of 59.4%. We found seven regions of overlaps between tRNAs and protein-coding genes ranging from 2 to 11 nt, and seven regions of overlap between tRNAs, ranging from 1 to 8 nt, resulting in a total number of 46 overlapping nucleotides. Genes nad4, cox2, atp8, and nad3 are terminated by the abbreviated stop codon T and cytb is suggested to terminate on (ACT)AA; we postulate that mRNA editing is required to remove AC for TAA to be functional in terminating translation. Phylogenetic analysis of nucleotide and amino acid data place Flustrellidra in the Lophotrochozoa. DNA for this study originated from two populations resulting in a contig consisting of multiple haplotypes. Twenty-seven SNP sites were detected, the majority occurring in cox1 and nad5. With cox1 already established as a marker in bryozoan studies, we advocate the further testing of nad5.
Collapse
Affiliation(s)
- Andrea Waeschenbach
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | |
Collapse
|
37
|
Abstract
The nuclear genomes of multicellular animals and plants contain large amounts of noncoding DNA, the disadvantages of which can be too weak to be effectively countered by selection in lineages with reduced effective population sizes. In contrast, the organelle genomes of these two lineages evolved to opposite ends of the spectrum of genomic complexity, despite similar effective population sizes. This pattern and other puzzling aspects of organelle evolution appear to be consequences of differences in organelle mutation rates. These observations provide support for the hypothesis that the fundamental features of genome evolution are largely defined by the relative power of two nonadaptive forces: random genetic drift and mutation pressure.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
38
|
Wu G, Yan S. Determination of mutation trend in proteins by means of translation probability between RNA codes and mutated amino acids. Biochem Biophys Res Commun 2005; 337:692-700. [PMID: 16202392 PMCID: PMC7117410 DOI: 10.1016/j.bbrc.2005.09.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 09/19/2005] [Accepted: 09/19/2005] [Indexed: 11/30/2022]
Abstract
In this study, we estimate the translation probability to amino acid from RNA codon. With the determined 183 translation probabilities and amino-acid composition of eight highly mutated proteins, we construct the theoretical distributions of mutated amino acids in these proteins and then compare them with their actual distributions affected by mutations. Thereafter we trace the pattern of translation probabilities from RNA codons to mutated amino acids of 1053 point missense mutations. Finally, we statistically conclude that the natural mutation trend goes along the theoretical translation probability.
Collapse
Affiliation(s)
- Guang Wu
- Computational Mutation Project, DreamSciTech Consulting, 301, Building 12, Nanyou A-zone, Shenzhen, Guangdong Province CN, China.
| | | |
Collapse
|