1
|
Farookhi H, Xia X. Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species. Microorganisms 2024; 12:768. [PMID: 38674712 PMCID: PMC11052298 DOI: 10.3390/microorganisms12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
Collapse
Affiliation(s)
- Heba Farookhi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Schierholz L, Brown CR, Helena-Bueno K, Uversky VN, Hirt RP, Barandun J, Melnikov SV. A Conserved Ribosomal Protein Has Entirely Dissimilar Structures in Different Organisms. Mol Biol Evol 2024; 41:msad254. [PMID: 37987564 PMCID: PMC10764239 DOI: 10.1093/molbev/msad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ribosomes from different species can markedly differ in their composition by including dozens of ribosomal proteins that are unique to specific lineages but absent in others. However, it remains unknown how ribosomes acquire new proteins throughout evolution. Here, to help answer this question, we describe the evolution of the ribosomal protein msL1/msL2 that was recently found in ribosomes from the parasitic microorganism clade, microsporidia. We show that this protein has a conserved location in the ribosome but entirely dissimilar structures in different organisms: in each of the analyzed species, msL1/msL2 exhibits an altered secondary structure, an inverted orientation of the N-termini and C-termini on the ribosomal binding surface, and a completely transformed 3D fold. We then show that this fold switching is likely caused by changes in the ribosomal msL1/msL2-binding site, specifically, by variations in rRNA. These observations allow us to infer an evolutionary scenario in which a small, positively charged, de novo-born unfolded protein was first captured by rRNA to become part of the ribosome and subsequently underwent complete fold switching to optimize its binding to its evolving ribosomal binding site. Overall, our work provides a striking example of how a protein can switch its fold in the context of a complex biological assembly, while retaining its specificity for its molecular partner. This finding will help us better understand the origin and evolution of new protein components of complex molecular assemblies-thereby enhancing our ability to engineer biological molecules, identify protein homologs, and peer into the history of life on Earth.
Collapse
Affiliation(s)
- Léon Schierholz
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Robert P Hirt
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Jonas Barandun
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Maurya S, Arya CK, Parmar N, Sathyanarayanan N, Joshi CG, Ramanathan G. Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF. Arch Microbiol 2023; 206:6. [PMID: 38015256 DOI: 10.1007/s00203-023-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.
Collapse
Affiliation(s)
- Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Parmar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
4
|
van den Elzen A, Helena-Bueno K, Brown CR, Chan LI, Melnikov S. Ribosomal proteins can hold a more accurate record of bacterial thermal adaptation compared to rRNA. Nucleic Acids Res 2023; 51:8048-8059. [PMID: 37395434 PMCID: PMC10450194 DOI: 10.1093/nar/gkad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Ribosomal genes are widely used as 'molecular clocks' to infer evolutionary relationships between species. However, their utility as 'molecular thermometers' for estimating optimal growth temperature of microorganisms remains uncertain. Previously, some estimations were made using the nucleotide composition of ribosomal RNA (rRNA), but the universal application of this approach was hindered by numerous outliers. In this study, we aimed to address this problem by identifying additional indicators of thermal adaptation within the sequences of ribosomal proteins. By comparing sequences from 2021 bacteria with known optimal growth temperature, we identified novel indicators among the metal-binding residues of ribosomal proteins. We found that these residues serve as conserved adaptive features for bacteria thriving above 40°C, but not at lower temperatures. Furthermore, the presence of these metal-binding residues exhibited a stronger correlation with the optimal growth temperature of bacteria compared to the commonly used correlation with the 16S rRNA GC content. And an even more accurate correlation was observed between the optimal growth temperature and the YVIWREL amino acid content within ribosomal proteins. Overall, our work suggests that ribosomal proteins contain a more accurate record of bacterial thermal adaptation compared to rRNA. This finding may simplify the analysis of unculturable and extinct species.
Collapse
Affiliation(s)
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Gao Y, Wu M. Microbial genomic trait evolution is dominated by frequent and rare pulsed evolution. SCIENCE ADVANCES 2022; 8:eabn1916. [PMID: 35857501 PMCID: PMC9286504 DOI: 10.1126/sciadv.abn1916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
On the macroevolutionary time scale, does trait evolution proceed gradually or by rapid bursts (pulses) separated by prolonged periods of stasis or slow evolution? Although studies have shown that pulsed evolution is prevalent in animals, our knowledge about the tempo and mode of evolution across the tree of life is very limited. This long-standing debate calls for a test in bacteria and archaea, the most ancient and diverse forms of life with unique population genetic properties. Using a likelihood-based framework, we show that pulsed evolution is not only present but also prevalent and predominant in microbial genomic trait evolution. We detected two distinct types of pulsed evolution (small frequent and large rare jumps) that are predicted by the punctuated equilibrium and quantum evolution theories. Our findings suggest that major bacterial lineages could have originated in quick bursts and that pulsed evolution is a common theme across the tree of life.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| |
Collapse
|
6
|
Sen P, Aziz R, Deka RC, Feil EJ, Ray SK, Satapathy SS. Stem Region of tRNA Genes Favors Transition Substitution Towards Keto Bases in Bacteria. J Mol Evol 2022; 90:114-123. [PMID: 35084523 DOI: 10.1007/s00239-021-10045-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
Transversion and transition mutations have variable effects on the stability of RNA secondary structure considering that the former destabilizes the double helix geometry to a greater extent by introducing purine:purine (R:R) or pyrimidine:pyrimidine (Y:Y) base pairs. Therefore, transversion frequency is likely to be lower than that of transition in the secondary structure regions of RNA genes. Here, we performed an analysis of transition and transversion frequencies in tRNA genes defined well with secondary structure and compared with the intergenic regions in five bacterial species namely Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Streptococcus pneumoniae using a large genome sequence data set. In general, the transversion frequency was observed to be lower than that of transition in both tRNA genes and intergenic regions. The transition to transversion ratio was observed to be greater in tRNA genes than that in the intergenic regions in all the five bacteria that we studied. Interestingly, the intraspecies base substitution analysis in tRNA genes revealed that non-compensatory substitutions were more frequent than compensatory substitutions in the stem region. Further, transition to transversion ratio in the loop region was observed to be significantly lesser than that among the non-compensatory substitutions in the stem region. This indicated that the transversion is more deleterious than transition in the stem regions. In addition, substitutions from amino bases (A/C) to keto bases (G/T) were also observed to be more than the reverse substitutions in the stem region. Substitution from amino bases to keto bases are likely to facilitate the stable G:U pairing unlike the reverse substitution that facilitates the unstable A:C pairing in the stem region of tRNA. This work provides additional support that the secondary structure of tRNA molecule is what drives the different substitutions in its gene sequence.
Collapse
Affiliation(s)
- Piyali Sen
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Ruksana Aziz
- Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Ramesh C Deka
- Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Edward J Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK.
| | - Suvendra Kumar Ray
- Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Siddhartha Sankar Satapathy
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
7
|
Thermal adaptation of mRNA secondary structure: stability versus lability. Proc Natl Acad Sci U S A 2021; 118:2113324118. [PMID: 34728561 DOI: 10.1073/pnas.2113324118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Macromolecular function commonly involves rapidly reversible alterations in three-dimensional structure (conformation). To allow these essential conformational changes, macromolecules must possess higher order structures that are appropriately balanced between rigidity and flexibility. Because of the low stabilization free energies (marginal stabilities) of macromolecule conformations, temperature changes have strong effects on conformation and, thereby, on function. As is well known for proteins, during evolution, temperature-adaptive changes in sequence foster retention of optimal marginal stability at a species' normal physiological temperatures. Here, we extend this type of analysis to messenger RNAs (mRNAs), a class of macromolecules for which the stability-lability balance has not been elucidated. We employ in silico methods to determine secondary structures and estimate changes in free energy of folding (ΔGfold) for 25 orthologous mRNAs that encode the enzyme cytosolic malate dehydrogenase in marine mollusks with adaptation temperatures spanning an almost 60 °C range. The change in free energy that occurs during formation of the ensemble of mRNA secondary structures is significantly correlated with adaptation temperature: ΔGfold values are all negative and their absolute values increase with adaptation temperature. A principal mechanism underlying these adaptations is a significant increase in synonymous guanine + cytosine substitutions with increasing temperature. These findings open up an avenue of exploration in molecular evolution and raise interesting questions about the interaction between temperature-adaptive changes in mRNA sequence and in the proteins they encode.
Collapse
|
8
|
Stavru F, Riemer J, Jex A, Sassera D. When bacteria meet mitochondria: The strange case of the tick symbiont Midichloria mitochondrii †. Cell Microbiol 2021; 22:e13189. [PMID: 32185904 DOI: 10.1111/cmi.13189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Mitochondria are key eukaryotic organelles that perform several essential functions. Not surprisingly, many intracellular bacteria directly or indirectly target mitochondria, interfering with innate immunity, energy production or apoptosis, to make the host cell a more hospitable niche for bacterial replication. The alphaproteobacterium Midichloria mitochondrii has taken mitochondrial targeting to another level by physically colonising mitochondria, as shown by transmission electron micrographs of bacteria residing in the mitochondrial intermembrane space. This unique localization provokes a number of questions around the mechanisms allowing, and reasons driving intramitochondrial tropism. We suggest possible scenarios that could lead to this peculiar localization and hypothesize potential costs and benefits of mitochondrial colonisation for the bacterium and its host.
Collapse
Affiliation(s)
- Fabrizia Stavru
- Unité de Biologie Evolutive de la Cellule Microbienne, Institut Pasteur, Paris, France.,CNRS ERL6002, Paris, France
| | - Jan Riemer
- Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Xia X. Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life (Basel) 2020; 10:life10090171. [PMID: 32872619 PMCID: PMC7555918 DOI: 10.3390/life10090171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Recovering deep phylogeny is challenging with animal mitochondrial genes because of their rapid evolution. Codon degeneration decreases the phylogenetic noise and bias by aiming to achieve two objectives: (1) alleviate the bias associated with nucleotide composition, which may lead to homoplasy and long-branch attraction, and (2) reduce differences in the phylogenetic results between nucleotide-based and amino acid (AA)-based analyses. The discrepancy between nucleotide-based analysis and AA-based analysis is partially caused by some synonymous codons that differ more from each other at the nucleotide level than from some nonsynonymous codons, e.g., Leu codon TTR in the standard genetic code is more similar to Phe codon TTY than to synonymous CTN codons. Thus, nucleotide similarity conflicts with AA similarity. There are many such examples involving other codon families in various mitochondrial genetic codes. Proper codon degeneration will make synonymous codons more similar to each other at the nucleotide level than they are to nonsynonymous codons. Here, I illustrate a "principled" codon degeneration method that achieves these objectives. The method was applied to resolving the mammalian basal lineage and phylogenetic position of rheas among ratites. The codon degeneration method was implemented in the user-friendly and freely available DAMBE software for all known genetic codes (genetic codes 1 to 33).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
10
|
Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 2019; 3:1552-1561. [PMID: 31666740 PMCID: PMC6837875 DOI: 10.1038/s41559-019-1005-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022]
Abstract
Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S rRNA-gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area (Ethiopia). We identify two physicochemical barriers to life in the presence of surface liquid water defined by: i) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and ii) hyperacidity-salt combinations (pH~0/NaCl-dominated salt-saturation). When detected, life was dominated by highly diverse ultrasmall archaea widely distributed across phyla with and without previously known halophilic members. We hypothesize that high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during multiple transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ludwig Jardillier
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France.
| |
Collapse
|
11
|
Occurrence of randomly recombined functional 16S rRNA genes in Thermus thermophilus suggests genetic interoperability and promiscuity of bacterial 16S rRNAs. Sci Rep 2019; 9:11233. [PMID: 31375780 PMCID: PMC6677816 DOI: 10.1038/s41598-019-47807-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Based on the structural complexity of ribosomes, 16S rRNA genes are considered species-specific and hence used for bacterial phylogenetic analysis. However, a growing number of reports suggest the occurrence of horizontal gene transfer, raising genealogical questions. Here we show the genetic interoperability and promiscuity of 16S rRNA in the ribosomes of an extremely thermophilic bacterium, Thermus thermophilus. The gene in this thermophile was systematically replaced with a diverse array of heterologous genes, resulting in the discovery of various genes that supported growth, some of which were from different phyla. Moreover, numerous functional chimeras were spontaneously generated. Remarkably, cold-adapted mutants were obtained carrying chimeric or full-length heterologous genes, indicating that horizontal gene transfer promoted adaptive evolution. The ribosome may well be understood as a patchworked supramolecule comprising patchworked components. We here propose the “random patch model” for ribosomal evolution.
Collapse
|
12
|
Symonová R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes (Basel) 2019; 10:genes10050345. [PMID: 31067804 PMCID: PMC6562748 DOI: 10.3390/genes10050345] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Nuclear ribosomal RNA (rRNA) genes represent the oldest repetitive fraction universal to all eukaryotic genomes. Their deeply anchored universality and omnipresence during eukaryotic evolution reflects in multiple roles and functions reaching far beyond ribosomal synthesis. Merely the copy number of non-transcribed rRNA genes is involved in mechanisms governing e.g., maintenance of genome integrity and control of cellular aging. Their copy number can vary in response to environmental cues, in cellular stress sensing, in development of cancer and other diseases. While reaching hundreds of copies in humans, there are records of up to 20,000 copies in fish and frogs and even 400,000 copies in ciliates forming thus a literal subgenome or an rDNAome within the genome. From the compositional and evolutionary dynamics viewpoint, the precursor 45S rDNA represents universally GC-enriched, highly recombining and homogenized regions. Hence, it is not accidental that both rDNA sequence and the corresponding rRNA secondary structure belong to established phylogenetic markers broadly used to infer phylogeny on multiple taxonomical levels including species delimitation. However, these multiple roles of rDNAs have been treated and discussed as being separate and independent from each other. Here, I aim to address nuclear rDNAs in an integrative approach to better assess the complexity of rDNA importance in the evolutionary context.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
13
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
14
|
Jegousse C, Yang Y, Zhan J, Wang J, Zhou Y. Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA. PLoS One 2017; 12:e0184722. [PMID: 28910383 PMCID: PMC5598986 DOI: 10.1371/journal.pone.0184722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.
Collapse
MESH Headings
- Bacteria/genetics
- Databases, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- RNA Folding/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/drug effects
- RNA, Transfer/chemistry
- RNA, Transfer/drug effects
- Solvents/pharmacology
- Temperature
Collapse
Affiliation(s)
- Clara Jegousse
- UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, Nantes, France
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Yuedong Yang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- * E-mail:
| |
Collapse
|
15
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
16
|
Postec A, Quéméneur M, Bes M, Mei N, Benaïssa F, Payri C, Pelletier B, Monnin C, Guentas-Dombrowsky L, Ollivier B, Gérard E, Pisapia C, Gérard M, Ménez B, Erauso G. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. Front Microbiol 2015; 6:857. [PMID: 26379636 PMCID: PMC4551099 DOI: 10.3389/fmicb.2015.00857] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 01/10/2023] Open
Abstract
Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.
Collapse
Affiliation(s)
- Anne Postec
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Marianne Quéméneur
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Méline Bes
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Nan Mei
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Fatma Benaïssa
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Claude Payri
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Bernard Pelletier
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Christophe Monnin
- Géosciences Environnement Toulouse, Université de Toulouse/Centre National de la Recherche Scientifique/IRDToulouse, France
| | - Linda Guentas-Dombrowsky
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Bernard Ollivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Emmanuelle Gérard
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Martine Gérard
- Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie CurieParis, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Gaël Erauso
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| |
Collapse
|
17
|
Petrov AS, Williams LD. The ancient heart of the ribosomal large subunit: a response to Caetano-Anolles. J Mol Evol 2015; 80:166-70. [PMID: 25877522 DOI: 10.1007/s00239-015-9678-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 01/21/2023]
Abstract
Our recent Accretion Model of ribosomal evolution uses insertion fingerprints and a "trunk-branch" formalism to recapitulate the building up of common core rRNA of the Large Ribosomal Subunit. The Accretion Model is a conservative and natural extension of a method developed by Bokov and Steinberg (Nature 457:977-80, 2009), which confirms the correctness of lower resolution models by Fox and others. In each of these models, the LSU originates with the peptidyl transferase center (PTC), consistent with expectations that the ribosome is the source of defined-sequence functional proteins. In an adjacent note, Caetano-Anolles (J Mol Evol 80:162-165, 2015) disparages the Accretion Model, because it controverts the 'Growth Inferred by Genothermal Ordering' (GIGO) model. GIGO analyzes secondary structures, assigns the origin of the ribosome to a region outside of the PTC, and assumes or deduces that (i) large protein enzymes of defined amino acid sequence predate ribosomal synthesis of proteins, (ii) proteins directly replicate by non-ribosomal mechanisms, (iii) rRNA unfailingly increases in thermodynamic stability over time, and (iv) the Woese and Fox canonical tree of life is mis-rooted. Much of the specific GIGO critique of the Accretion Model is based on confusion about the three-dimensional nature of RNA and trunk-branch polymorphism; the Accretion Model incorporates several types of trunk-branch relationships.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | |
Collapse
|
18
|
Ram H, Kumar A, Thomas L, Singh VP. In silico Approach to Study Adaptive Divergence in Nucleotide Composition of the 16S rRNA Gene Among Bacteria Thriving Under Different Temperature Regimes. J Comput Biol 2014; 21:753-9. [DOI: 10.1089/cmb.2014.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hari Ram
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Alok Kumar
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Lebin Thomas
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Ved Pal Singh
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Bakermans C, Skidmore ML, Douglas S, McKay CP. Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 2014; 89:331-46. [DOI: 10.1111/1574-6941.12310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/01/2022] Open
|
20
|
Mallatt J, Chittenden KD. The GC content of LSU rRNA evolves across topological and functional regions of the ribosome in all three domains of life. Mol Phylogenet Evol 2014; 72:17-30. [PMID: 24394731 DOI: 10.1016/j.ympev.2013.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022]
Abstract
Large-subunit rRNA is the ribozyme that catalyzes protein synthesis by translation, and many of its features vary along a deep-to-superficial gradient. By measuring the G+C proportions in this rRNA in all three domains of life (60 bacteria, 379 eukaryote, and 23 archaean sequences), we tested whether the proportion of GC nucleotides varies along this in-out gradient. The rRNA regions used were several zones identified by Bokov and Steinberg (2009) as being arranged from deep to superficial within the LSU. To the Bokov-Steinberg zones, we added the most superficial zone of all, the divergent domains (expansion segments), which are greatly enlarged in eukaryotes. Regression lines constructed from the hundreds of species of organisms revealed the expected in-out gradient, showing that species with high %GC (or high %AT) in their rRNA distribute more of these abundant nucleotides into the peripheral zones. This could be explained by the evolutionary rates of replacement of all nucleotides (A, C, G, T), because these latter rates are fastest at the periphery and slowest near the conserved core. As an overall explanation, we propose that when extrinsic factors (whole-genome nucleotide composition, or environmental temperature) demand the percentage of GC in the rRNA of a species be high or low, then the deep-lying zones are buffered against GC variation because they are the slowest to evolve. The deep, conserved zones are also the most involved in translation, hinting that stabilizing selection there prevents a high GC variability that would diminish LSU rRNA's core functions. We found only a few domain-specific trends in rRNA-GC distribution, which relate to many Archaea living at high temperatures or to the highly complex genes and adaptations of Eukaryota. Use of rRNA sequences in molecular phylogenetic studies, for reconstructing the relationships of organisms across the tree of life, requires accurate models of how rRNA evolves. The demonstration that GC distributes in regular patterns across rRNA regions can improve these tree-reconstruction models in the future and should yield phylogenies of greater accuracy.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | - Kevin D Chittenden
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
21
|
Lott BB, Wang Y, Nakazato T. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly. BMC BIOPHYSICS 2013; 6:13. [PMID: 24152303 PMCID: PMC4016315 DOI: 10.1186/2046-1682-6-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/17/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960's, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear.We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. RESULTS We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. CONCLUSIONS Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of r-proteins in assembly does not appear to depend on these electrostatics interactions. Additionally, because thermophiles and mesophiles exhibit significantly different amino acid compositions in their sequences but not in the identities of contact sites, we conclude that this electrostatic component of interaction is insensitive to temperature and is not the determining factor differentiating the temperature sensitivity of ribosome assembly.
Collapse
Affiliation(s)
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, 38152 Memphis TN, USA
- Department of Bioinformatics, The University of Memphis, 38152 Memphis TN, USA
| | - Takuya Nakazato
- Department of Bioinformatics, The University of Memphis, 38152 Memphis TN, USA
- Department of Biological Sciences, The University of Memphis, 38152 Memphis TN, USA
| |
Collapse
|
22
|
Kimura H, Mori K, Yamanaka T, Ishibashi JI. Growth temperatures of archaeal communities can be estimated from the guanine-plus-cytosine contents of 16S rRNA gene fragments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:468-474. [PMID: 23754727 DOI: 10.1111/1758-2229.12035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/14/2012] [Accepted: 01/14/2013] [Indexed: 06/02/2023]
Abstract
Prokaryote growth temperatures in environmental samples are difficult to measure because it is hard to culture viable prokaryotes in natural environments. We comprehensively surveyed growth temperatures and 16S rRNA sequences of prokaryotes to estimate their growth temperatures based on guanine-plus-cytosine contents (P(GC)) of their 16S rRNA sequences. We focused on archaea because of the wide range of growth temperatures within this group. Their minimum (Tmin), optimum (Topt) and maximum (Tmax) growth temperatures correlated strongly with PGC of their 16S rRNA genes. Linear regression equations were established to approximate Tmin, Topt and Tmax from P(GC). We also established a linear regression equation for calculating P(GC) of 16S rRNA genes based on the melting temperatures (Tm) of PCR fragments, without using a clone library or sequencing. Environmental samples were obtained from a wide variety of microbial natural habitats. Tm of archaeal 16S rRNA genes amplified by real-time PCR were determined by melting curve analysis. Based on those values, P(GC) of 16S rRNA genes and mean Tmin, Topt and Tmax were calculated using the linear regression equations. These temperatures correlated strongly with the in situ temperatures. Tmax agreed particularly well with these temperatures, suggesting many archaea live at their maximum growth temperatures.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Geosciences, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, Japan.
| | | | | | | |
Collapse
|
23
|
Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013; 30:1720-8. [PMID: 23564938 PMCID: PMC3684854 DOI: 10.1093/molbev/mst064] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Windisch HS, Lucassen M, Frickenhaus S. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics 2012; 13:549. [PMID: 23051706 PMCID: PMC3557217 DOI: 10.1186/1471-2164-13-549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/08/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. RESULTS By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus) we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. CONCLUSION Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins) with implications for the transcription and translation level. As the observed pattern of amino acid substitutions only partly support the flexibility hypothesis further evolutionary forces may be effective at the global transcriptome level.
Collapse
Affiliation(s)
- Heidrun Sigrid Windisch
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| | - Stephan Frickenhaus
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| |
Collapse
|
25
|
Compositional and Structural Features Related to Thermal Stability in the Archaea SRP19 and SRP54 Signal Recognition Particle Proteins. J Mol Evol 2011; 72:450-65. [DOI: 10.1007/s00239-011-9443-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
|
26
|
Escobar JS, Glémin S, Galtier N. GC-Biased Gene Conversion Impacts Ribosomal DNA Evolution in Vertebrates, Angiosperms, and Other Eukaryotes. Mol Biol Evol 2011; 28:2561-75. [DOI: 10.1093/molbev/msr079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
27
|
Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evol Biol 2010; 10:263. [PMID: 20807394 PMCID: PMC2939578 DOI: 10.1186/1471-2148-10-263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 08/31/2010] [Indexed: 11/18/2022] Open
Abstract
Background Among bacteria and archaea, amino acid usage is correlated with habitat temperatures. In particular, protein surfaces in species thriving at higher temperatures appear to be enriched in amino acids that stabilize protein structure and depleted in amino acids that decrease thermostability. Does this observation reflect a causal relationship, or could the apparent trend be caused by phylogenetic relatedness among sampled organisms living at different temperatures? And do proteins from endothermic and exothermic vertebrates show similar differences? Results We find that the observed correlations between the frequencies of individual amino acids and prokaryotic habitat temperature are strongly influenced by evolutionary relatedness between the species analysed; however, a proteome-wide bias towards increased thermostability remains after controlling for phylogeny. Do eukaryotes show similar effects of thermal adaptation? A small shift of amino acid usage in the expected direction is observed in endothermic ('warm-blooded') mammals and chicken compared to ectothermic ('cold-blooded') vertebrates with lower body temperatures; this shift is not simply explained by nucleotide usage biases. Conclusion Protein homologs operating at different temperatures have different amino acid composition, both in prokaryotes and in vertebrates. Thus, during the transition from ectothermic to endothermic life styles, the ancestors of mammals and of birds may have experienced weak genome-wide positive selection to increase the thermostability of their proteins.
Collapse
|
28
|
Miralles F. Compositional properties and thermal adaptation of SRP-RNA in bacteria and archaea. J Mol Evol 2010; 70:181-9. [PMID: 20069286 DOI: 10.1007/s00239-009-9319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have reported a positive correlation between the GC content of the double-stranded regions of structural RNAs and the optimal growth temperature (OGT) in prokaryotes. These observations led to the hypothesis that natural selection favors an increase in GC content to ensure the correct folding and the structural stability of the molecule at high temperature. To date these studies have focused mainly on ribosomal and transfer RNAs. Therefore, we addressed the question of the relationship between GC content and OGT in a different and universally conserved structural RNA, the RNA component of the signal recognition particle (SRP). To this end we generated the secondary structures of SRP-RNAs for mesophilic, thermophilic, and hyperthermophilic bacterial and archaeal species. The analysis of the GC content in the stems and loops of the SRP-RNA of these organisms failed to detect a relationship between the GC contents in the stems of this structural RNA and the growth temperature of bacteria. By contrast, we found that in archaea the GC content in the stem regions of SRP-RNA is highest in hyperthermophiles, intermediate in thermophiles, and lower in mesophiles. In these organisms, we demonstrated a clear positive correlation between the GC content of the stem regions of their SRP-RNAs and their OGT. This correlation was confirmed by a phylogenetic nonindependence analysis. Thus we conclude that in archaea the increase in GC content in the stem regions of SRP-RNA is an adaptation response to environmental temperature.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot-Paris 7, Bat. Buffon, 75205 Paris Cedex 13, France.
| |
Collapse
|
29
|
Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV. Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Rudi K. Environmental shaping of ribosomal RNA nucleotide composition. MICROBIAL ECOLOGY 2009; 57:469-477. [PMID: 18825450 DOI: 10.1007/s00248-008-9446-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Ribosomal RNA (rRNA) is one of the most important macromolecules in the cell. It is well established that high-temperature environmental conditions destabilize rRNA, leading to a selection for G+C-rich stabilizing structures. Our knowledge about the nucleotide composition effect of other environmental conditions, however, is limited. In the present work, I addressed this by correlating the rRNA nucleotide composition to known environmental habitats for bacteria. The bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria were chosen for in-depth analyses due to the abundance of information available in the databases. Major differences in nucleotide composition were identified between these phyla. In addition to the G+C-->A+T gradients, a main gradient of G+A-->C+T was identified for Firmicutes, while a G+T-->A+C gradient was identified for Actinobacteria. With respect to correlation to environmental conditions, the Firmicutes showed a main structure of high G+C being correlated to thermophilic conditions, high A+T to anaerobic conditions, and high C+T to halophilic conditions. The main patterns detected for Firmicutes can be explained by structural stability for high G+C, chemical instability of G under aerobic conditions, and structural stability by purine/pyrimidine skew for halophilic conditions. On the contrary, the correlations for Actinobacteria cannot easily be explained by chemical and/or structural stability. This may indicate interference with factors not included in my work. Finally, I found a main correlation between high A+T and endosymbiosis for Proteobacteria. High A+T probably reflects adaptation to cell internal growth. Further support for environmentally driven nucleotide composition shaping was found and that polyphyletic bacteria were associated with the same environment/nucleotide correlations. My conclusion is that environmental conditions and habitats have a major effect on rRNA nucleotide composition but that the effects may differ between the bacterial phyla.
Collapse
Affiliation(s)
- Knut Rudi
- Hedmark University College, Hamar, Norway.
| |
Collapse
|
31
|
Varriale A, Torelli G, Bernardi G. Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA (NEW YORK, N.Y.) 2008; 14:1492-500. [PMID: 18567811 PMCID: PMC2491464 DOI: 10.1261/rna.957108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In order to investigate the influence of temperature on the GC level of the paired sequences of ribosomal 18S RNAs in vertebrates, we have studied their base composition in cold- and warm-blooded vertebrates using a stem-by-stem comparison. We observed that a number of stems of 18S ribosomal RNAs (rRNAs) are variable among species and that the majority of such stems are GC richer in warm-blooded than in cold-blooded vertebrates. We also constructed the secondary structures of the 18S rRNAs of a polar fish, a marsupial, and a monotreme to compare them with those of temperate/tropical fishes and of eutherians, respectively. In these cases, differences similar to those already mentioned were found. We conclude that there is a correlation between stem stability and body temperature even within the relatively limited temperature range of vertebrates.
Collapse
Affiliation(s)
- Annalisa Varriale
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | | | | |
Collapse
|
32
|
Unsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes − stability, activity and implementation strategies for high temperature applications. FEBS J 2007; 274:4044-56. [PMID: 17683334 DOI: 10.1111/j.1742-4658.2007.05954.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current theories agree that there appears to be no unique feature responsible for the remarkable heat stability properties of hyperthermostable proteins. A concerted action of structural, dynamic and other physicochemical attributes are utilized to ensure the delicate balance between stability and functionality of proteins at high temperatures. We have thoroughly screened the literature for hyperthermostable enzymes with optimal temperatures exceeding 100 degrees C that can potentially be employed in multiple biotechnological and industrial applications and to substitute traditionally used, high-cost engineered mesophilic/thermophilic enzymes that operate at lower temperatures. Furthermore, we discuss general methods of enzyme immobilization and suggest specific strategies to improve thermal stability, activity and durability of hyperthermophilic enzymes.
Collapse
Affiliation(s)
- Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Abstract
The vertebrate genome is a mosaic of GC-poor and GC-rich isochores, megabase-sized DNA regions of fairly homogeneous base composition that differ in relative amount, gene density, gene expression, replication timing, and recombination frequency. At the emergence of warm-blooded vertebrates, the gene-rich, moderately GC-rich isochores of the cold-blooded ancestors underwent a GC increase. This increase was similar in mammals and birds and was maintained during the evolution of mammalian and avian orders. Neither the GC increase nor its conservation can be accounted for by the random fixation of neutral or nearly neutral single-nucleotide changes (i.e., the vast majority of nucleotide substitutions) or by a biased gene conversion process occurring at random genome locations. Both phenomena can be explained, however, by the neoselectionist theory of genome evolution that is presented here. This theory fully accepts Ohta's nearly neutral view of point mutations but proposes in addition (i) that the AT-biased mutational input present in vertebrates pushes some DNA regions below a certain GC threshold; (ii) that these lower GC levels cause regional changes in chromatin structure that lead to deleterious effects on replication and transcription; and (iii) that the carriers of these changes undergo negative (purifying) selection, the final result being a compositional conservation of the original isochore pattern in the surviving population. Negative selection may also largely explain the GC increase accompanying the emergence of warm-blooded vertebrates. In conclusion, the neoselectionist theory not only provides a solution to the neutralist/selectionist debate but also introduces an epigenomic component in genome evolution.
Collapse
Affiliation(s)
- Giorgio Bernardi
- Molecular Evolution Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
34
|
Abstract
A discussion of how homoplasy (the frequency of independently evolved characters) and the spacing of cladogenetic events limit our ability to reconstruct the tree of life using existing phylogenetic methods.
Collapse
|