1
|
Ahmed KA, Yeap HL, Coppin CW, Liu JW, Pandey G, Taylor PW, Lee SF, Oakeshott JG. Seminal fluid proteins in the Queensland fruit fly: Tissue origins, effects of mating and comparative genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104247. [PMID: 39667437 DOI: 10.1016/j.ibmb.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In many insect species, the ability of males to inhibit their mates from remating is an important component of fitness. This ability is also essential for the effective management of insect pests, including tephritid fruit flies, using the Sterile Insect Technique. Here we apply transcriptomics and proteomics to male reproductive tissues before and after mating to characterize components of semen that might mediate remating inhibition in Queensland fruit fly. We found 144 genes whose transcripts were enriched, or proteins expressed, in reproductive tissue and which also varied in amount after mating. Some were associated with testes, accessory glands and ejaculatory apodeme, but those from the ejaculatory apodeme were over-represented compared to those not enriched in reproductive tissue or mating responsive. These included 13 related genes clustered within one Mb on chromosome 5. Functional annotations implicated a broad range of biochemical processes in the genes/proteins enriched in reproductive tissue and mating responsive, with cuticle structure most commonly implicated among the subset of these that were apodeme-enriched and a kinase involved in vitellogenesis implicated for one of the 13 clustered genes. We did not find a homolog of the much studied Drosophila melanogaster Sex Peptide but comparative genomics indicated that some of the tissue-enriched, mating responsive genes/proteins were rapidly evolving in tephritids (including in the Queensland fruit fly lineage), suggesting recent adaptation to new functional niches. Our results provide a set of candidate mediators of remating inhibition for further functional testing.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Australian Animal Health Laboratory (AAHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC, 3220, Australia.
| | - Heng Lin Yeap
- CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Health and Biosecurity, Parkville, VIC, 3052, Australia
| | | | - Jian-Wei Liu
- CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | | | - Siu Fai Lee
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
2
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
3
|
Tschesche C, Bekaert M, Humble JL, Bron JE, Sturm A. Genomic analysis of the carboxylesterase family in the salmon louse (Lepeophtheirus salmonis). Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109095. [PMID: 34098083 PMCID: PMC8387733 DOI: 10.1016/j.cbpc.2021.109095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
The pyrethroid deltamethrin and the macrocyclic lactone emamectin benzoate (EMB) are used to treat infestations of farmed salmon by parasitic salmon lice, Lepeophtheirus salmonis. While the efficacy of both compounds against Atlantic populations of the parasite has decreased as a result of the evolution of resistance, the molecular mechanisms of drug resistance in L. salmonis are currently not fully understood. The functionally diverse carboxylesterases (CaE) family includes members involved in pesticide resistance phenotypes of terrestrial arthropods. The present study had the objective to characterize the CaE family in L. salmonis and assess its role in drug resistance. L. salmonis CaE homologues were identified by homology searches in the parasite's transcriptome and genome. The transcript expression of CaEs predicted to be catalytically competent was studied using quantitative reverse-transcription PCR in drug susceptible and multi-resistant L. salmonis. The above strategy led to the identification of 21 CaEs genes/pseudogenes. Phylogenetic analyses assigned 13 CaEs to clades involved in neurodevelopmental signaling and cell adhesion, while three sequences were predicted to encode secreted enzymes. Ten CaEs were identified as being potentially catalytically competent. Transcript expression of acetylcholinesterase (ace1b) was significantly increased in multi-resistant lice compared to drug-susceptible L. salmonis, with transcript abundance further increased in preadult-II females following EMB exposure. In summary, results from the present study demonstrate that L. salmonis possesses fewer CaE gene family members than most arthropods characterized so far. Drug resistance in L. salmonis was associated with overexpression of ace1b.
Collapse
Affiliation(s)
- Claudia Tschesche
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom.
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Joseph L Humble
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Armin Sturm
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
4
|
Mao K, Ren Z, Li W, Cai T, Qin X, Wan H, Jin BR, He S, Li J. Carboxylesterase genes in nitenpyram-resistant brown planthoppers, Nilaparvata lugens. INSECT SCIENCE 2021; 28:1049-1060. [PMID: 32495409 DOI: 10.1111/1744-7917.12829] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
Carboxylesterases (CarEs) represent one of the major detoxification enzyme families involved in insecticide resistance. However, the function of specific CarE genes in insecticide resistance is still unclear in the insect Nilaparvata lugens (Stål), a notorious rice crop pest in Asia. In this study, a total of 29 putative CarE genes in N. lugens were identified, and they were divided into seven clades; further, the β-esterase clade was significantly expanded. Tissue-specific expression analysis found that 17 CarE genes were abundantly distributed in the midgut and fat body, while 12 CarE genes were highly expressed in the head. The expression of most CarE genes was significantly induced in response to the challenge of nitenpyram, triflumezopyrim, chlorpyrifos, isoprocarb and etofenprox. Among these, the expression levels of NlCarE2, NlCarE4, NlCarE9, NlCarE17 and NlCarE24 were increased by each insecticide. Real-time quantitative polymerase chain reaction and RNA interference assays revealed the NlCarE1 gene to be a candidate gene mainly involved in nitenpyram resistance, while simultaneously silencing NlCarE1 and NlCarE19 produced a stronger effect than silencing either one individually, suggesting a cooperative relationship in resistance formation. These findings lay the foundation for further clarification of insecticide resistance mediated by CarE in N. lugens.
Collapse
Affiliation(s)
- Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Scanlan JL, Gledhill-Smith RS, Battlay P, Robin C. Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the 'detoxification-by-phosphorylation' enzymes of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103429. [PMID: 32540344 DOI: 10.1016/j.ibmb.2020.103429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus. Many ancestral EcKL clades are evolutionarily unstable and have experienced repeated gene gain and loss events, while others are conserved as single-copy orthologs. Leveraging multiple published gene expression datasets from D. melanogaster, and using the cytochrome P450s-a classical detoxification family-as a test case, we demonstrate relationships between xenobiotic induction, detoxification tissue-enriched expression and evolutionary instability in the EcKLs and the P450s. We devised a systematic method for identifying candidate detoxification genes in large gene families that is concordant with experimentally determined functions of P450 genes in D. melanogaster. Applying this method to the EcKLs suggested a significant proportion of these genes play roles in detoxification, and that the EcKLs may constitute a detoxification gene family in insects. Additionally, we estimate that between 11 and 16 uncharacterised D. melanogaster P450s are strong detoxification candidates. Lastly, we also found previously unreported genomic and transcriptomic variation in a number of EcKLs and P450s associated with toxic stress phenotypes using a targeted phenome-wide association study (PheWAS) approach in D. melanogaster, presenting multiple future avenues of research for detoxification genetics in this species.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Rebecca S Gledhill-Smith
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Paul Battlay
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
6
|
Sparks ME, Bansal R, Benoit JB, Blackburn MB, Chao H, Chen M, Cheng S, Childers C, Dinh H, Doddapaneni HV, Dugan S, Elpidina EN, Farrow DW, Friedrich M, Gibbs RA, Hall B, Han Y, Hardy RW, Holmes CJ, Hughes DST, Ioannidis P, Cheatle Jarvela AM, Johnston JS, Jones JW, Kronmiller BA, Kung F, Lee SL, Martynov AG, Masterson P, Maumus F, Munoz-Torres M, Murali SC, Murphy TD, Muzny DM, Nelson DR, Oppert B, Panfilio KA, Paula DP, Pick L, Poelchau MF, Qu J, Reding K, Rhoades JH, Rhodes A, Richards S, Richter R, Robertson HM, Rosendale AJ, Tu ZJ, Velamuri AS, Waterhouse RM, Weirauch MT, Wells JT, Werren JH, Worley KC, Zdobnov EM, Gundersen-Rindal DE. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genomics 2020; 21:227. [PMID: 32171258 PMCID: PMC7071726 DOI: 10.1186/s12864-020-6510-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
Collapse
Affiliation(s)
- Michael E Sparks
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA.
| | - Raman Bansal
- USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Michael B Blackburn
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Hsu Chao
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mengyao Chen
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Huyen Dinh
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shannon Dugan
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119911, Russia
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Richard A Gibbs
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brantley Hall
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yi Han
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Daniel S T Hughes
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Crete, Greece
| | | | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Brent A Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Faith Kung
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sandra L Lee
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander G Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shwetha C Murali
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Donna M Muzny
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
| | - Kristen A Panfilio
- Developmental Biology, Institute for Zoology: University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, United Kingdom
| | - Débora Pires Paula
- EMBRAPA Genetic Resources and Biotechnology, Brasília, DF, 70770-901, Brazil
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | | | - Jiaxin Qu
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Joshua H Rhoades
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Adelaide Rhodes
- Larner College of Medicine, The University of Vermont, Burlington, VT, 05452, USA
| | - Stephen Richards
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Present address: Earth BioGenome Project, University of California, Davis, Davis, CA, 95616, USA
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arun S Velamuri
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Division of Biomedical Informatics, and Division of Developmental Biology, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jackson T Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Kim C Worley
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | | |
Collapse
|
7
|
Rane RV, Clarke DF, Pearce SL, Zhang G, Hoffmann AA, Oakeshott JG. Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding Drosophila. J Hered 2020; 110:80-91. [PMID: 30445496 DOI: 10.1093/jhered/esy058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
We use annotated genomes of 14 Drosophila species covering diverse host use phenotypes to test whether 4 gene families that often have detoxification functions are associated with host shifts among species. Bark, slime flux, flower, and generalist necrotic fruit-feeding species all have similar numbers of carboxyl/cholinesterase, glutathione S-transferase, cytochrome P450, and UDP-glucuronosyltransferase genes. However, species feeding on toxic Morinda citrifolia fruit and the fresh fruit-feeding Drosophila suzukii have about 30 and 60 more, respectively. ABC transporters show a different pattern, with the flower-feeding D. elegans and the generalist necrotic fruit and cactus feeder D. hydei having about 20 and >100 more than the other species, respectively. Surprisingly, despite the complex secondary chemistry we find that 3 cactophilic specialists in the mojavensis species cluster have variably fewer genes than any of the other species across all 4 families. We also find 82 positive selection events across the 4 families, with the terminal D. suzukii and M. citrifolia-feeding D. sechellia branches again having the highest number of such events in proportion to their respective branch lengths. Many of the genes involved in these host-use-specific gene number differences or positive selection events lie in specific clades of the gene families that have been recurrently associated with detoxification. Several genes are also found to be involved in multiple duplication and/or positive selection events across the species studied regardless of their host use phenotypes; the most frequently involved are the ABC transporter CG1718, which is not in a specific clade associated with detoxification, and the α-esterase gene cluster, which is.
Collapse
Affiliation(s)
- Rahul V Rane
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - David F Clarke
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, København, Denmark
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
8
|
Xia J, Xu H, Yang Z, Pan H, Yang X, Guo Z, Yang F, Guo L, Sun X, Wang S, Wu Q, Xie W, Zhang Y. Genome-Wide Analysis of Carboxylesterases (COEs) in the Whitefly, Bemisia tabaci (Gennadius). Int J Mol Sci 2019; 20:ijms20204973. [PMID: 31600879 PMCID: PMC6829539 DOI: 10.3390/ijms20204973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haifeng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Litao Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaodong Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Wei L, Gao S, Xiong W, Liu J, Mao J, Lu Y, Song X, Li B. Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:534-543. [PMID: 30789108 DOI: 10.1017/s0007485318000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Collapse
Affiliation(s)
- L Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - W Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - Y Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| |
Collapse
|
10
|
Feng X, Li M, Liu N. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:30-39. [PMID: 29154832 DOI: 10.1016/j.ibmb.2017.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Carboxylesterases are one of the major enzyme families involved in the detoxification of pyrethroids. Up-regulation of carboxylesterase genes is thought to be a major component of insecticide resistant mechanisms in insects. Based on the house fly transcriptome and genome database, a total of 39 carboxylesterase genes of different functional clades have been identified in house flies. In this study, eleven of these genes were found to be significantly overexpressed in the resistant ALHF house fly strain compared with susceptible aabys and wild-type CS strains. Eight up-regulated carboxylesterase genes with their expression levels were further induced to a higher level in response to permethrin treatments, indicating that constitutive and inductive overexpression of carboxylesterases are co-responsible for the enhanced detoxification of insecticides. Spatial expression studies revealed these up-regulated genes to be abundantly distributed in fat bodies and genetically mapped on autosome 2 or 3 of house flies, and their expression could be regulated by factors on autosome 1, 2 and 5. Taken together, these results demonstrate that multiple carboxylesterase genes are co-upregulated in resistant house flies, providing further evidence for their involvement in the detoxification of insecticides and development of insecticide resistance.
Collapse
Affiliation(s)
- Xuechun Feng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Ming Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Esterase Profile in Drosophila mercatorum pararepleta (Diptera; Drosophilidae), a Non-cactophilic Species of the repleta Group: Development Patterns and Aspects of Genetic Variability. Zool Stud 2017; 56:e21. [PMID: 31966220 DOI: 10.6620/zs.2017.56-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
Abstract
Luciana Paes de Barros Machado, Natalia Silva Alves, Jaqueline de Oliveira Prestes, Gabriela Ronchi Salomón, Daiane Biegai, Thais Wouk, and Rogério Pincela Mateus (2017) Esterases are a diversified group of isozymes that performs several metabolic functions in Drosophila. In the D. repleta group, this class of enzymes was well described in cactophilic species, existing a lack of studies considering substrate speci city and life cycle expression in the non-cactophilic species. The larvae of cactophilic species of the D. repleta group develop in rotting cacti cladodes, but adults are generalists. Thus, different patterns expression can be found for esterases throughout development. In this work we analyzed esterase pro le and substrate speci city during development, and genetic variability aspects in D. mercatorum pararepleta, a non-cactophilic and generalist species of D. repleta group that was understudied hitherto. Samples of 3rd (F3) and 104th (F104) generations of three D. mercatorum pararepleta strains, obtained after collections in xerophytic enclaves of southeastern Brazil (ITI and SER in São Paulo state and RIP in Paraná state), and of D33 strain (obtained from Cristalina-GO, Midwest of Brazil, and established in the laboratory in 1987) were analyzed. Eight esterase loci, EST-1 to EST-8, were detected. EST-1 and EST-2 were adult exclusive. Only EST-3 and EST-8 were monomorphic; all the others presented between two (EST-6) and six (EST-7) alleles. EST-7 was the only dimeric locus and also the only one that showed to be a preferably β-esterase regarding affinity to α- and β-naphthyl acetates as substrates. The other seven loci were divided into three classes: α-esterase exclusive (EST-2); preferably α-esterase (EST-3, EST-4, EST-5 and EST-8); and α/β-esterase (EST-1 and EST-6). The EST-3, EST-5 and EST-6 loci were not detected in all samples, suggesting that they could have become pseudogenes due to the mutation accumulation after the gene duplication. The allele frequency of EST-7 locus, which showed the highest number of alleles, in adults of D33 and SER-F3 evidenced a higher variability and diversity in the oldest strain (six alleles, Ho = 0.46) than in the youngest ( five alleles, Ho = 0.26). Moreover, the analysis of SER-F104 revealed that this locus became monomorphic. The higher variability in the strain established in the laboratory at least two decades ago, together with the allele fixation in the SER-F104, indicate that the SER strain probably suffered a more severe action of founder effect/bottleneck when it was established in the laboratory and, therefore, even if the maintenance afterwards was performed using a high number of individuals, it did not assured the conservation of the existing genetic variability.
Collapse
|
12
|
Chatonnet A, Lenfant N, Marchot P, Selkirk ME. Natural genomic amplification of cholinesterase genes in animals. J Neurochem 2017; 142 Suppl 2:73-81. [PMID: 28382676 DOI: 10.1111/jnc.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Arnaud Chatonnet
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France
| | - Nicolas Lenfant
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France.,Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
13
|
Lü FG, Fu KY, Li Q, Guo WC, Ahmat T, Li GQ. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:86-95. [PMID: 26071812 DOI: 10.1016/j.pestbp.2014.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, β- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.
Collapse
Affiliation(s)
- Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Tursun Ahmat
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Good RT, Gramzow L, Battlay P, Sztal T, Batterham P, Robin C. The molecular evolution of cytochrome P450 genes within and between drosophila species. Genome Biol Evol 2014; 6:1118-34. [PMID: 24751979 PMCID: PMC4040991 DOI: 10.1093/gbe/evu083] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change.
Collapse
Affiliation(s)
- Robert T Good
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Lydia Gramzow
- Present address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Paul Battlay
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Tamar Sztal
- Present address: School of Biological Sciences, Monash University, Australia
| | - Philip Batterham
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Charles Robin
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| |
Collapse
|
15
|
Lopes VF, Cabral H, Machado LPB, Mateus RP. Purification and characterization of a specific late-larval esterase from two species of the Drosophila repleta group: contributions to understand its evolution. Zool Stud 2014. [DOI: 10.1186/1810-522x-53-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
After duplication, one copy of an original gene can become redundant and decay toward a pseudogene status or functionally diverge. Here, we performed the purification and biochemical characterization of EST-4 (a late larval β-esterase) from two Drosophila repleta group species, Drosophila mulleri and Drosophila arizonae, in order to establish comparative parameters between these enzymes in these species and to contribute to better understand their evolution.
Results
In D. mulleri, EST-4 had an optimal activity in temperatures ranging from 40° to 45°C and at pH 7.5, maintaining stability in alkaline pH (8.0 to 10.0). It was classified as serine esterase as its activity was inhibited by PMSF. No ion negatively modulated EST-4 activity, and iron had the most positive modulating effect. In D. arizonae, it showed similar optimum temperature (40°C), pH (8.0), and was also classified as a serine esterase, but the enzymatic stability was maintained in an acidic pH (5.5 to 6.5). Fe+2 had the opposite effect found in D. mulleri, that is, negative modulation. Al+3 almost totally inhibited the EST-4 activity, and Na+ and Cu+2 had a positive modulation effect. Kinetic studies, using ρ-nitrophenyl acetate as substrate, showed that EST-4 from D. mulleri had higher affinity, while in D. arizonae, it showed higher V
max and catalytic efficiency in optimal reaction conditions.
Conclusions
EST-4 from D. mulleri and D. arizonae are very closely related and still maintain several similar features; however, they show some degree of differentiation. Considering that EST-4 from D. mulleri has more conspicuous gel mobility difference among all EST-4 studied so far and a lower catalytic efficiency was observed here, we proposed that after duplication, this new copy of the original gene became redundant and started to decay toward a pseudogene status in this species, which probably is not occurring in D. arizonae.
Collapse
|
16
|
Wu S, Yang Y, Yuan G, Campbell PM, Teese MG, Russell RJ, Oakeshott JG, Wu Y. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:14-21. [PMID: 20875855 DOI: 10.1016/j.ibmb.2010.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/31/2010] [Accepted: 09/16/2010] [Indexed: 05/29/2023]
Abstract
Enhanced detoxification is the major mechanism responsible for pyrethroid resistance in Chinese populations of Helicoverpa armigera. Previous work has shown that enhanced oxidation contributes to resistance in the fenvalerate-selected Chinese strain, YGF. The current study provides evidence that enhanced hydrolysis by esterase isozymes also contributes to the resistance in this strain. The average esterase activity of third instar YGF larvae was 1.9-fold compared with that of a susceptible SCD strain. Much of this difference was attributed to isozymes at two zones which hydrolysed the model carboxylester substrate 1-naphthyl acetate and also a 1-naphthyl analogue of fenvalerate. A preparation enriched for enzymes migrating to one of these zones from YGF was shown to hydrolyse fenvalerate with a specific activity of about 2.9 nmol/min/mg. This material was also matched by mass spectrometry with four putative carboxylesterase genes, all of which clustered within a phylogenetic clade of secreted midgut esterases. Quantitative PCR on these four genes showed several-fold greater expression in tissues of YGF compared to SCD but no differences was found in the number of copies of the genes between the strains.
Collapse
Affiliation(s)
- Shuwen Wu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects (Ministry of Agriculture), Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori. BMC Genomics 2010; 11:377. [PMID: 20546589 PMCID: PMC3017765 DOI: 10.1186/1471-2164-11-377] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 06/14/2010] [Indexed: 11/21/2022] Open
Abstract
Background Carboxyl/cholinesterases (CCEs) have pivotal roles in dietary detoxification, pheromone or hormone degradation and neurodevelopment. The recent completion of genome projects in various insect species has led to the identification of multiple CCEs with unknown functions. Here, we analyzed the phylogeny, expression and genomic distribution of 69 putative CCEs in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Results A phylogenetic tree of CCEs in B. mori and other lepidopteran species was constructed. The expression pattern of each B. mori CCE was also investigated by a search of an expressed sequence tag (EST) database, and the relationship between phylogeny and expression was analyzed. A large number of B. mori CCEs were identified from a midgut EST library. CCEs expressed in the midgut formed a cluster in the phylogenetic tree that included not only B. mori genes but also those of other lepidopteran species. The silkworm, and possibly also other lepidopteran species, has a large number of CCEs, and this might be a consequence of the large cluster of midgut CCEs. Investigation of intron-exon organization in B. mori CCEs revealed that their positions and splicing site phases were strongly conserved. Several B. mori CCEs, including juvenile hormone esterase, not only showed clustering in the phylogenetic tree but were also closely located on silkworm chromosomes. We investigated the phylogeny and microsynteny of neuroligins in detail, among many CCEs. Interestingly, we found the evolution of this gene appeared not to be conserved between B. mori and other insect orders. Conclusions We analyzed 69 putative CCEs from B. mori. Comparison of these CCEs with other lepidopteran CCEs indicated that they had conserved expression and function in this insect order. The analyses showed that CCEs were unevenly distributed across the genome of B. mori and suggested that neuroligins may have a distinct evolutionary history from other insect order. It is possible that such an uneven genomic distribution and a unique neuroligin evolution are shared with other lepidopteran insects. Our genomic analysis has provided novel information on the CCEs of the silkworm, which will be of value to understanding the biology, physiology and evolution of insect CCEs.
Collapse
|
18
|
Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino AS, Claudianos C. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:147-163. [PMID: 20167025 DOI: 10.1111/j.1365-2583.2009.00961.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The numbers of glutathione S-transferase, cytochrome P450 and esterase genes in the genome of the hymenopteran parasitoid Nasonia vitripennis are about twice those found in the genome of another hymenopteran, the honeybee Apis mellifera. Some of the difference is associated with clades of these families implicated in xenobiotic resistance in other insects and some is in clades implicated in hormone and pheromone metabolism. The data support the hypothesis that the eusocial behaviour of the honeybee and the concomitant homeostasis of the nest environment may obviate the need for as many gene/enzyme systems associated with xenobiotic metabolism as are found in other species, including N. vitripennis, that are thought to encounter a wider range of potentially toxic xenobiotics in their diet and habitat.
Collapse
Affiliation(s)
- J G Oakeshott
- Commonwealth Scientific and Industrial Research Organisation Entomology, Acton, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Teese MG, Campbell PM, Scott C, Gordon KHJ, Southon A, Hovan D, Robin C, Russell RJ, Oakeshott JG. Gene identification and proteomic analysis of the esterases of the cotton bollworm, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:1-16. [PMID: 20005949 DOI: 10.1016/j.ibmb.2009.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
Some of the resistance of Helicoverpa armigera to conventional insecticides such as organophosphates and synthetic pyrethroids appears to be due to metabolic detoxification by carboxylesterases. To investigate the H. armigera carboxyl/cholinesterases, we created a data set of 39 putative paralogous H. armigera carboxyl/cholinesterase sequences from cDNA libraries and other sources. Phylogenetic analysis revealed a close relationship between these sequences and 70 carboxyl/cholinesterases from the recently sequenced genome of the silkworm, Bombyx mori, including several conserved clades of non-catalytic proteins. A juvenile hormone esterase candidate from H. armigera was identified, and B. mori orthologues were proposed for 31% of the sequences examined, however low similarity was found between lepidopteran sequences and esterases previously associated with insecticide resistance from other insect orders. A proteomic analysis of larval esterases then enabled us to match seven of the H. armigera carboxyl/cholinesterase sequences to specific esterase isozymes. All identified sequences were predicted to encode catalytically active carboxylesterases, including six proteins with N-terminal signal peptides and N-glycans, with two also containing C-terminal signals for glycosylphosphatidylinositol anchor attachment. Five of these sequences were matched to zones of activity on native PAGE at relative mobility values previously associated with insecticide resistance in this species.
Collapse
Affiliation(s)
- Mark G Teese
- CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|