1
|
Khan A, Anicet G, Asdullah HU, Hassan MA, Song Y. RNA modification: A contemporary review of pseudouridine (Ψ) and its role in functional plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112522. [PMID: 40287098 DOI: 10.1016/j.plantsci.2025.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/14/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Pseudouridine (Ψ) is a modified nucleoside present in diverse RNA species, including mRNA (messenger RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA) and tRNA (transfer RNA). In plants, Ψ serves a critical function in RNA modification, supporting the stability, structural integrity, and functionality of RNA molecules. This review provides the various roles that Ψ fulfils in the modification of plant RNA biology, encompassing effects on biosynthesis pathways, regulatory mechanisms, stability, and translation efficiency. Additionally, we discuss recent advancements in the dynamic regulation of Ψ deposition in response to environmental stimuli and stressors. Elucidating Ψ's roles contributes to the comprehension of plant biology and may facilitate developments in biotechnology and crop improvement.
Collapse
Affiliation(s)
- Ahsan Khan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Gatera Anicet
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Hafiz Umair Asdullah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Muhammad Ahmad Hassan
- College of Resource and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| |
Collapse
|
2
|
Tomikawa C. Pseudouridine Modifications in Transfer RNA and tRNA Pseudouridine Synthases. J Mol Biol 2025:169183. [PMID: 40382211 DOI: 10.1016/j.jmb.2025.169183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Among the various modifications found in transfer RNAs, pseudouridine occurs the most frequently in all organisms and is also found in other RNA species including ribosomal, messenger, small nuclear, small nucleolar, and transfer-messenger RNA. Since the first gene encoding a tRNA pseudouridine synthase (truA) was discovered in 1978, many pseudouridine synthases have been identified, some of which are specific for one site in tRNA, while others act at multiple sites. Furthermore, some enzymes catalyze pseudouridine modification of not only tRNA but also ribosomal RNA and small nuclear RNA or messenger RNA. The functions of pseudouridine in tRNA are diverse, from contributing to the stabilization of tRNA structure to having an essential role in accurate protein synthesis (deficiency induces a frameshift in some cases). Some pseudouridine synthases also function as RNA chaperones. In this review, I summarize the reaction mechanism and functions of pseudouridine synthases with reference to the six pseudouridine synthase families, including similarities and variations in domain structures, motifs, and target uracil bases. I also characterize individual enzymes and highlight recently revealed links between pseudouridine/pseudouridine synthases and viral infections and human diseases.
Collapse
Affiliation(s)
- Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
3
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
4
|
Dhingra Y, Lahiri M, Bhandari N, Kaur I, Gupta S, Agarwal M, Katiyar-Agarwal S. Genome-wide identification, characterization, and expression analysis unveil the roles of pseudouridine synthase (PUS) family proteins in rice development and stress response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1981-2004. [PMID: 38222285 PMCID: PMC10784261 DOI: 10.1007/s12298-023-01396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
Pseudouridylation, the conversion of uridine (U) to pseudouridine (Ѱ), is one of the most prevalent and evolutionary conserved RNA modifications, which is catalyzed by pseudouridine synthase (PUS) enzymes. Ѱs play a crucial epitranscriptomic role by regulating attributes of cellular RNAs across diverse organisms. However, the precise biological functions of PUSs in plants remain largely elusive. In this study, we identified and characterized 21 members in the rice PUS family which were categorized into six distinct subfamilies, with RluA and TruA emerging as the most extensive. A comprehensive analysis of domain structures, motifs, and homology modeling revealed that OsPUSs possess all canonical features of true PUS proteins, essential for substrate recognition and catalysis. The exploration of OsPUS promoters revealed presence of cis-acting regulatory elements associated with hormone and abiotic stress responses. Expression analysis of OsPUS genes showed differential expression at developmental stages and under stress conditions. Notably, OsTruB3 displayed high expression in salt, heat, and drought stresses. Several OsRluA members showed induction in heat stress, while a significant decline in expression was observed for various OsTruA members in drought and salinity. Furthermore, miRNAs predicted to target OsPUSs were themselves responsive to variable stresses, adding an additional layer of regulatory complexity of OsPUSs. Study of protein-protein interaction networks provided substantial support for the potential regulatory role of OsPUSs in numerous cellular and stress response pathways. Conclusively, our study provides functional insights into the OsPUS family, contributing to a better understanding of their crucial roles in shaping the development and stress adaptation in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01396-4.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Milinda Lahiri
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Nikunj Bhandari
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Inderjit Kaur
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
- Present Address: Institute of Plant Sciences, Universität Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manu Agarwal
- Department of Botany, University of Delhi, North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
5
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
6
|
Li L, Zhu C, Xu S, Xu Q, Xu D, Gan S, Cui X, Tang C. PUS1 is a novel biomarker for evaluating malignancy of human renal cell carcinoma. Aging (Albany NY) 2023; 15:204799. [PMID: 37315299 PMCID: PMC10292901 DOI: 10.18632/aging.204799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies. Despite the rapid development of the oncology research and surgical treatment, the prognosis of RCC has not significantly improved. Thus, exploration of the pathological molecular mechanism and development of new therapeutic targets of RCC are of great importance. Herein, by bioinformatic analysis and in vitro cell experiments, we report that, the expression of pseudouridine synthase 1 (PUS1), belonging to the family of PUS enzymes that participate in RNA modifications, is closely associated with RCC progression. In addition, the upregulated PUS1 expression results in the elevated RCC cancer cell viability, migration, invasion and colony formation ability, whereas the decreased PUS1 expression exerts the opposite effects on RCC cells. Thus, our findings show the potential role of PUS1 in RCC cells, providing with evidence that PUS1 is involved in RCC progression, which may help contribute to RCC diagnosis and intervention in clinic.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Chongying Zhu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Sishun Gan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
7
|
Álvarez-Lugo A, Becerra A. The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol 2023; 91:76-92. [PMID: 36580111 DOI: 10.1007/s00239-022-10085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
8
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
9
|
Niu Y, Zheng Y, Zhu H, Zhao H, Nie K, Wang X, Sun L, Song CP. The Arabidopsis Mitochondrial Pseudouridine Synthase Homolog FCS1 Plays Critical Roles in Plant Development. PLANT & CELL PHYSIOLOGY 2022; 63:955-966. [PMID: 35560171 DOI: 10.1093/pcp/pcac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
As the most abundant RNA modification, pseudouridylation has been shown to play critical roles in Escherichia coli, yeast and humans. However, its function in plants is still unclear. Here, we characterized leaf curly and small 1 (FCS1), which encodes a pseudouridine synthase in Arabidopsis. fcs1 mutants exhibited severe defects in plant growth, such as delayed development and reduced fertility, and were significantly smaller than the wild type at different developmental stages. FCS1 protein is localized in the mitochondrion. The absence of FCS1 significantly reduces pseudouridylation of mitochondrial 26S ribosomal RNA (rRNA) at the U1692 site, which sits in the peptidyl transferase center. This affection of mitochondrial 26S rRNA may lead to the disruption of mitochondrial translation in the fcs1-1 mutant, causing high accumulation of transcripts but low production of proteins. Dysfunctional mitochondria with abnormal structures were also observed in the fcs1-1 mutant. Overall, our results suggest that FCS1-mediated pseudouridylation of mitochondrial 26S rRNA is required for mitochondrial translation, which is critical for maintaining mitochondrial function and plant development.
Collapse
Affiliation(s)
- Yanli Niu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Huijie Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Kaili Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Xiaopei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Lirong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
10
|
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize. Int J Mol Sci 2022; 23:ijms23052680. [PMID: 35269820 PMCID: PMC8910892 DOI: 10.3390/ijms23052680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It's noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future.
Collapse
|
11
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
12
|
Mukhopadhyay S, Deogharia M, Gupta R. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. RNA (NEW YORK, N.Y.) 2021; 27:66-79. [PMID: 33023933 PMCID: PMC7749629 DOI: 10.1261/rna.076810.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 05/10/2023]
Abstract
Most mammalian cytoplasmic tRNAs contain ribothymidine (T) and pseudouridine (Ψ) at positions 54 and 55, respectively. However, some tRNAs contain Ψ at both positions. Several Ψ54-containing tRNAs function as primers in retroviral DNA synthesis. The Ψ54 of these tRNAs is produced by PUS10, which can also synthesize Ψ55. Two other enzymes, TRUB1 and TRUB2, can also produce Ψ55. By nearest-neighbor analyses of tRNAs treated with recombinant proteins and subcellular extracts of wild-type and specific Ψ55 synthase knockdown cells, we determined that while TRUB1, PUS10, and TRUB2 all have tRNA Ψ55 synthase activities, they have different tRNA structural requirements. Moreover, these activities are primarily present in the nucleus, cytoplasm, and mitochondria, respectively, suggesting a compartmentalization of Ψ55 synthase activity. TRUB1 produces the Ψ55 of most elongator tRNAs, but cytoplasmic PUS10 produces both Ψs of the tRNAs with Ψ54Ψ55. The nuclear isoform of PUS10 is catalytically inactive and specifically binds the unmodified U54U55 versions of Ψ54Ψ55-containing tRNAs, as well as the A54U55-containing tRNAiMet This binding inhibits TRUB1-mediated U55 to Ψ55 conversion in the nucleus. Consequently, the U54U55 of Ψ54Ψ55-containing tRNAs are modified by the cytoplasmic PUS10. Nuclear PUS10 does not bind the U55 versions of T54Ψ55- and A54Ψ55-containing elongator tRNAs. Therefore, TRUB1 is able to produce Ψ55 in these tRNAs. In summary, the tRNA Ψ55 synthase activities of TRUB1 and PUS10 are not redundant but rather are compartmentalized and act on different sets of tRNAs. The significance of this compartmentalization needs further study.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Compartmentation
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Gene Expression
- HEK293 Cells
- Humans
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- PC-3 Cells
- Protein Binding
- Pseudouridine/metabolism
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sf9 Cells
- Spodoptera
Collapse
Affiliation(s)
- Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Manisha Deogharia
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
13
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
14
|
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M, Yi C. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 2019; 16:160-169. [PMID: 31819270 DOI: 10.1038/s41589-019-0420-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/27/2019] [Indexed: 11/09/2022]
Abstract
Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chenxu Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
16
|
Deogharia M, Mukhopadhyay S, Joardar A, Gupta R. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue. RNA (NEW YORK, N.Y.) 2019; 25:336-351. [PMID: 30530625 PMCID: PMC6380271 DOI: 10.1261/rna.068114.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 05/25/2023]
Abstract
The nearly conserved U54 of tRNA is mostly converted to a version of ribothymidine (T) in Bacteria and eukaryotes and to a version of pseudouridine (Ψ) in Archaea. Conserved U55 is nearly always modified to Ψ55 in all organisms. Orthologs of TrmA and TruB that produce T54 and Ψ55, respectively, in Bacteria and eukaryotes are absent in Archaea. Pus10 produces both Ψ54 and Ψ55 in Archaea. Pus10 orthologs are found in nearly all sequenced archaeal and most eukaryal genomes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in most archaeal tRNAs and some animal tRNAs, but its absence from yeast and bacteria. Moreover, Ψ54 is found in several tRNAs that function as primers for retroviral DNA synthesis. Previously, no eukaryotic tRNA Ψ54 synthase had been identified. We show here that human Pus10 can produce Ψ54 in select tRNAs, including tRNALys3, the primer for HIV reverse transcriptase. This synthase activity of Pus10 is restricted to the cytoplasm and is distinct from nuclear Pus10, which is known to be involved in apoptosis. The sequence GUUCAm1AAUC (m1A is 1-methyladenosine) at position 53-61 of tRNA along with a stable acceptor stem results in maximum Ψ54 synthase activity. This recognition sequence is unique for a Ψ synthase in that it contains another modification. In addition to Ψ54, SF9 cells-derived recombinant human Pus10 can also generate Ψ55, even in tRNAs that do not contain the Ψ54 synthase recognition sequence. This activity may be redundant with that of TruB.
Collapse
Affiliation(s)
- Manisha Deogharia
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
17
|
Dixit S, Henderson JC, Alfonzo JD. Multi-Substrate Specificity and the Evolutionary Basis for Interdependence in tRNA Editing and Methylation Enzymes. Front Genet 2019; 10:104. [PMID: 30838029 PMCID: PMC6382703 DOI: 10.3389/fgene.2019.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.
Collapse
Affiliation(s)
| | | | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Angelova MT, Dimitrova DG, Dinges N, Lence T, Worpenberg L, Carré C, Roignant JY. The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Front Bioeng Biotechnol 2018; 6:46. [PMID: 29707539 PMCID: PMC5908907 DOI: 10.3389/fbioe.2018.00046] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/19/2023] Open
Abstract
Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and “reading” RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.
Collapse
Affiliation(s)
- Margarita T Angelova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Tina Lence
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Lina Worpenberg
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Clément Carré
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|