1
|
Sun Y, Sun H, Zhang Z, Tan F, Qu Y, Lei X, Xu Q, Wang J, Shu L, Xiao H, Yang Z, Liu H. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed Pharmacother 2024; 179:117333. [PMID: 39243436 DOI: 10.1016/j.biopha.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Kidney stones, a prevalent urological disorder, are closely associated with oxidative stress (OS) and the inflammatory response. Recent research in the field of kidney stone treatment has indicated the potential of natural active ingredients to modulate OS targets and the inflammatory response in kidney stones. Oxidative stress can occur through various pathways, increasing the risk of stone formation, while the inflammatory response generated during kidney stone formation further exacerbates OS, forming a detrimental cycle. Both antioxidant systems related to OS and inflammatory mediators associated with inflammation play roles in the pathogenesis of kidney stones. Natural active ingredients, abundant in resources and possessing antioxidative and anti-inflammatory properties, have the ability to decrease the risk of stone formation and improve prognosis by reducing OS and suppressing pro-inflammatory cytokine expression or pathways. Currently, numerous developed natural active ingredients have been clinically applied and demonstrated satisfactory therapeutic efficacy. This review aims to provide novel insights into OS and inflammation targets in kidney stones as well as summarize research progress on potential therapeutic strategies involving natural active ingredients. Future studies should delve deeper into exploring efficacy and mechanisms of action of diverse natural active ingredients, proposing innovative treatment strategies for kidney stones, and continuously uncovering their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhengze Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Futing Tan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jiangtao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Lindan Shu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| |
Collapse
|
2
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
3
|
Oswal M, Varghese R, Zagade T, Dhatrak C, Sharma R, Kumar D. Dietary supplements and medicinal plants in urolithiasis: diet, prevention, and cure. J Pharm Pharmacol 2023:7148056. [PMID: 37130140 DOI: 10.1093/jpp/rgac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Urolithiasis has been a major health concern for centuries, primarily owing to the limited treatment options in the physician's armamentarium. However, various studies have underscored a lesser incidence of urolithiasis in cohorts predominantly consuming fruits and vegetables. This article aims to review various dietary plants, medicinal herbs and phytochemicals in the prevention and management of urolithiasis. METHODS To provide context and evidence, relevant publications were identified on Google Scholar, PubMed and Science-Direct using keywords such as urolithiasis, nephrolithiasis, urolithiasis, renal stones, phytochemicals and dietary plants. RESULTS Growing bodies of evidence suggest the incorporation of plant-based foods, medicinal and herbal supplements, and crude drugs containing phytochemicals into the staple diet of people. The anti-urolithiatic activity of these plant bioactives can be attributed to their antioxidant, antispasmodic, diuretic, and inhibitory effect on the crystallization, nucleation and crystal aggregation effects. These mechanisms would help alleviate the events and symptoms that aid in the development and progression of renal calculi. In addition, it will also avoid the exacerbation of secondary disorders like inflammation and injury, which can initiate a vicious circle in turn worsening the disease progression. CONCLUSION In conclusion, the results presented in the review demonstrate the promising role of various dietary plants, medicinal and herbal supplements, and phytochemicals in preventing and managing the precipitation of uroliths. However, more conclusive and cogent evidence from preclinical and clinical studies is required to substantiate their safety, efficacy and toxicity profiles in humans.
Collapse
Affiliation(s)
- Mitul Oswal
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Tanmay Zagade
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Chetan Dhatrak
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| |
Collapse
|
4
|
Saenz-Medina J, Muñoz M, Rodriguez C, Sanchez A, Contreras C, Carballido-Rodríguez J, Prieto D. Endothelial Dysfunction: An Intermediate Clinical Feature between Urolithiasis and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020912. [PMID: 35055099 PMCID: PMC8778796 DOI: 10.3390/ijms23020912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED An epidemiological relationship between urolithiasis and cardiovascular diseases has extensively been reported. Endothelial dysfunction is an early pathogenic event in cardiovascular diseases and has been associated with oxidative stress and low chronic inflammation in hypertension, coronary heart disease, stroke or the vascular complications of diabetes and obesity. The aim of this study is to summarize the current knowledge about the pathogenic mechanisms of urolithiasis in relation to the development of endothelial dysfunction and cardiovascular morbidities. METHODS A non-systematic review has been performed mixing the terms "urolithiasis", "kidney stone" or "nephrolithiasis" with "cardiovascular disease", "myocardial infarction", "stroke", or "endothelial dysfunction". RESULTS Patients with nephrolithiasis develop a higher incidence of cardiovascular disease with a relative risk estimated between 1.20 and 1.24 and also develop a higher vascular disease risk scores. Analyses of subgroups have rendered inconclusive results regarding gender or age. Endothelial dysfunction has also been strongly associated with urolithiasis in clinical studies, although no systemic serum markers of endothelial dysfunction, inflammation or oxidative stress could be clearly related. Analysis of urine composition of lithiasic patients also detected a higher expression of proteins related to cardiovascular disease. Experimental models of hyperoxaluria have also found elevation of serum endothelial dysfunction markers. CONCLUSIONS Endothelial dysfunction has been strongly associated with urolithiasis and based on the experimental evidence, should be considered as an intermediate and changeable feature between urolithiasis and cardiovascular diseases. Oxidative stress, a key pathogenic factor in the development of endothelial dysfunction has been also pointed out as an important factor of lithogenesis. Special attention must be paid to cardiovascular morbidities associated with urolithiasis in order to take advantage of pleiotropic effects of statins, angiotensin receptor blockers and allopurinol.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain
- Department of Medical Specialities and Public Health, Faculty of Health Sciences, King Juan Carlos University, 28933 Móstoles, Spain
- Correspondence:
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Ana Sanchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Joaquín Carballido-Rodríguez
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, Autonoma University, 08193 Bellaterra, Spain;
| | - Dolores Prieto
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| |
Collapse
|
5
|
Azimi A, Eidi A, Mortazavi P, Rohani AH. Protective effect of apigenin on ethylene glycol-induced urolithiasis via attenuating oxidative stress and inflammatory parameters in adult male Wistar rats. Life Sci 2021; 279:119641. [PMID: 34043992 DOI: 10.1016/j.lfs.2021.119641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
AIMS Apigenin (4',5,7-trihydroxyflavone) is one of the subclasses of flavonoids and has various pharmacological effects. The present work was carried out to study the effect of apigenin on ethylene glycol-induced kidney damage in male Wistar rats. MAIN METHODS We evaluated the effects of apigenin orally administrated in normal and urolithiatic rats. Animals were assigned to nine groups in random: normal control; apigenin alone (0.005, 0.01, and 0.02 g/kg bw); urolithiatic control (0.75% ethylene glycol and 1.0% ammonium chloride in drinking water); apigenin (0.005, 0.01, and 0.02 g/kg bw) plus ethylene glycol and ammonium chloride; and cystone (0.75 g/kg bw) plus ethylene glycol and ammonium chloride. At the end of 28th day of treatment, animals were sacrificed for biochemical and histopathological assays. KEY FINDINGS Our results indicated that the apigenin treatment decreased the formation of urinary stones in urolithiatic rats. Also, apigenin reduced the generation of malondialdehyde and enhanced antioxidant enzymes activities in the kidney homogenate of rats. It also caused a significant decrease in the calcium oxalate crystals numbers in urinary sample of rats with ethylene glycol-induced hyperoxaluria. These findings were supported by histopathological examinations. SIGNIFICANCE Based on the results obtained, apigenin attenuate ethylene glycol-related kidney damage in male Wistar rats. Although the underlying mechanism of apigenin effect has not been determined, reduction of urinary levels of stone-producing constituents, antioxidant activities, and inhibition of TGF-β signaling may be involved.
Collapse
Affiliation(s)
- Atefeh Azimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Haeri Rohani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Liu X, Yuan P, Sun X, Chen Z. Hydroxycitric Acid Inhibits Renal Calcium Oxalate Deposition by Reducing Oxidative Stress and Inflammation. Curr Mol Med 2020; 20:527-535. [PMID: 31902360 DOI: 10.2174/1566524020666200103141116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Objective:
The study aimed to evaluate the preventive effects of hydroxycitric
acid(HCA) for stone formation in the glyoxylate-induced mouse model.
Materials and methods:
Male C57BL/6J mice were divided into a control group,
glyoxylate(GOX) 100 mg/kg group, a GOX+HCA 100 mg/kg group, and a GOX+HCA
200 mg/kg group. Blood samples and kidney samples were collected on the eighth day
of the experiment. We used Pizzolato staining and a polarized light microscope to
examine crystal formation and evaluated oxidative stress via the levels of
malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase
(GSH-Px). Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was
used to detect the expression of monocyte chemotactic protein-1(MCP-1), nuclear
factor-kappa B (NF κ B), interleukin-1 β (IL-1 β) and interleukin-6 (IL-6) messenger RNA
(mRNA). The expression of osteopontin (OPN) and a cluster of differentiation-44(CD44)
were detected by immunohistochemistry and qRT-PCR. In addition, periodic acid Schiff
(PAS) staining and TUNEL assay were used to evaluate renal tubular injury and
apoptosis.
Results:
HCA treatment could reduce markers of renal impairment (Blood Urea
Nitrogen and serum creatinine). There was significantly less calcium oxalate crystal
deposition in mice treated with HCA. Calcium oxalate crystals induced the production of
reactive oxygen species and reduced the activity of antioxidant defense enzymes. HCA
attenuated oxidative stress induced by calcium oxalate crystallization. HCA had
inhibitory effects on calcium oxalate-induced inflammatory cytokines, such as MCP-1, IL-
1 β, and IL-6. In addition, HCA alleviated tubular injury and apoptosis caused by calcium
oxalate crystals.
Conclusion:
HCA inhibits renal injury and calcium oxalate crystal deposition in the
glyoxylate-induced mouse model through antioxidation and anti-inflammation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
A novel loss-of-function mutation of PBK associated with human kidney stone disease. Sci Rep 2020; 10:10282. [PMID: 32581305 PMCID: PMC7314804 DOI: 10.1038/s41598-020-66936-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023] Open
Abstract
Kidney stone disease (KSD) is a prevalent disorder that causes human morbidity worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defect to complex interaction between genetic and environmental factors. Since mutations of genes responsible for KSD in a majority of families are still unknown, our group is identifying mutations of these genes by means of genomic and genetic analyses. In this study, we identified a novel loss-of-function mutation of PBK, encoding the PDZ binding kinase, that was found to be associated with KSD in an affected Thai family. Glycine (Gly) substituted by arginine (Arg) at position 43 (p.Gly43Arg) in PBK cosegregated with the disease in affected members of this family, but was absent in 180 normal control subjects from the same local population. Gly43 is highly evolutionarily conserved in vertebrates, and its substitution affects protein structure by alterations in H-bond forming patterns. This p.Gly43Arg substitution results in instability of the variant PBK protein as examined in HEK293T cells. The variant PBK protein (p.Gly43Arg) demonstrated decreased kinase activity to phosphorylate p38 MAPK as analyzed by immunoblotting and antibody microarray techniques. Taken together, these findings suggest a possible new mechanism of KSD associated with pathogenic PBK variation.
Collapse
|
8
|
Wang X, Bhutani G, Vaughan LE, Enders FT, Haskic Z, Milliner D, Lieske JC. Urinary monocyte chemoattractant protein 1 associated with calcium oxalate crystallization in patients with primary hyperoxaluria. BMC Nephrol 2020; 21:133. [PMID: 32293313 PMCID: PMC7161151 DOI: 10.1186/s12882-020-01783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
Background Patients with primary hyperoxaluria (PH) often develop kidney stones and chronic kidney disease. Noninvasive urine markers reflective of active kidney injury could be useful to gauge the effectiveness of ongoing treatments. Methods A panel of biomarkers that reflect different nephron sites and potential mechanisms of injury (clusterin, neutrophil gelatinase-associated lipocalin (NGAL), 8-isoprostane (8IP), monocyte-chemoattractant protein 1(MCP-1), liver-type fatty acid binding protein (L-FABP), heart-type fatty acid binding protein (H-FABP), and osteopontin (OPN)) were measured in 114 urine specimens from 30 PH patients over multiple visits. Generalized estimating equations were used to assess associations between biomarkers and 24 h urine excretions, calculated proximal tubular oxalate concentration (PTOx), and eGFR. Results Mean (±SD) age at first visit was 19.5 ± 16.6 years with an estimated glomerular filtration rate (eGFR) of 68.4 ± 21.0 ml/min/1.73m2. After adjustment for age, sex, and eGFR, a higher urine MCP-1 concentration and MCP-1/creatinine ratio was positively associated with CaOx supersaturation (SS). Higher urine NGAL and NGAL/creatinine as well as OPN and OPN/creatinine were associated with higher eGFR. 8IP was negatively associated with PTOx and urinary Ox, but positively associated with CaOx SS. Conclusion In PH patients greater urine MCP-1 and 8IP excretion might reflect ongoing collecting tubule crystallization, while greater NGAL and OPN excretion may reflect preservation of kidney mass and function. CaOx crystals, rather than oxalate ion may mediate oxidative stress in hyperoxaluric conditions. Further studies are warranted to determine whether urine MCP-1 excretion predicts long term outcome or is altered in response to treatment.
Collapse
Affiliation(s)
- Xiangling Wang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Gauri Bhutani
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lisa E Vaughan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Felicity T Enders
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zejfa Haskic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dawn Milliner
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
9
|
Li Y, Yan G, Zhang J, Chen W, Ding T, Yin Y, Li M, Zhu Y, Sun S, Yuan JH, Guo Z. LncRNA HOXA11-AS regulates calcium oxalate crystal-induced renal inflammation via miR-124-3p/MCP-1. J Cell Mol Med 2019; 24:238-249. [PMID: 31680444 PMCID: PMC6933336 DOI: 10.1111/jcmm.14706] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNA (lncRNA) has been suggested to play an important role in a variety of diseases over the past decade. In a previous study, we identified a novel lncRNA, termed HOXA11‐AS, which was significantly up‐regulated in calcium oxalate (CaOx) nephrolithiasis. However, the biological function of HOXA11‐AS in CaOx nephrolithiasis remains poorly defined. Here, we demonstrated that HOXA11‐AS was significantly up‐regulated in CaOx nephrolithiasis both in vivo and in vitro. Gain‐/loss‐of‐function studies revealed that HOXA11‐AS inhibited proliferation, promoted apoptosis and aggravated cellular damage in HK‐2 cells exposed to calcium oxalate monohydrate (COM). Further investigations showed that HOXA11‐AS regulated monocyte chemotactic protein 1 (MCP‐1) expression in HK‐2 cell model of CaOx nephrolithiasis. In addition, online bioinformatics analysis and dual‐luciferase reporter assay results showed that miR‐124‐3p directly bound to HOXA11‐AS and the 3'UTR of MCP‐1. Furthermore, rescue experiment results revealed that HOXA11‐AS functioned as a competing endogenous RNA to regulate MCP‐1 expression through sponging miR‐124‐3p and that overexpression of miR‐124‐3p restored the inhibitory effect of proliferation, promotion effects of apoptosis and cell damage induced by HOXA11‐AS overexpression. Taken together, HOXA11‐AS mediated CaOx crystal–induced renal inflammation via the miR‐124‐3p/MCP‐1 axis, and this outcome may provide a good potential therapeutic target for nephrolithiasis.
Collapse
Affiliation(s)
- Yinhui Li
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Guiling Yan
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China.,Department of General Surgery, The Naval Hospital, Eastern Theater PLA, Zhoushan, Zhejiang, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Tao Ding
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Yupeng Yin
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Minghan Li
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Yiqing Zhu
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Ji Hang Yuan
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Li Y, Zhang J, Liu H, Yuan J, Yin Y, Wang T, Cheng B, Sun S, Guo Z. Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152861. [PMID: 31029908 DOI: 10.1016/j.phymed.2019.152861] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. Several pathophysiological mechanisms are involved in stone formation, including oxidative stress, inflammation, apoptosis, fibrosis and autophagy. Curcumin, the predominant active component of turmeric, has been shown to have pleiotropic biological and pharmacological properties, such as antioxidant, anti-inflammatory and antifibrotic effects. PURPOSE The current study proposed to systematically investigate the protective effects and the underlying mechanisms of curcumin in a calcium oxalate (CaOx) nephrolithiasis mouse model. METHODS The animal model was established in male C57BL/6 mice by successive intraperitoneal injection of glyoxylate (100 mg/kg) for 1 week. Curcumin was orally given to mice 7 days before the injection of glyoxylate and for a total of 14 days at 50 mg/kg or 100 mg/kg. Bilateral renal tissue was harvested and processed for oxidative stress index detection, histopathological examinations and other analyses. RESULTS Coadministration of curcumin could significantly reduce glyoxylate-induced CaOx deposition and simultaneous tissue injury in mouse kidneys. Meanwhile, curcumin alleviated the oxidative stress response via reducing MDA content and increasing SOD, CAT, GPx, GR and GSH levels in this animal model. Moreover, treatment with curcumin significantly inhibited apoptosis and autophagy induced by hyperoxaluria. Curcumin also attenuated the high expression of IL-6, MCP-1, OPN, CD44, α-SMA, Collagen I and collagen fibril deposition, which were elevated by hyperoxaluria. Furthermore, the results revealed that both the total expression and nuclear accumulation of Nrf2, as well as its main downstream products such as HO-1, NQO1 and UGT, were decreased in the kidneys of mice in the crystal group, while treatment with curcumin could rescue this deterioration. CONCLUSION Curcumin could significantly alleviate CaOx crystal deposition in the mouse kidney and the concurrent renal tissue injury. The underlying mechanism involved the combination of antioxidant, anti-apoptotic, inhibiting autophagy, anti-inflammatory, and antifibrotic activity and the ability to decrease expression of OPN and CD44 through the Nrf2 signaling pathway. The pleiotropic antilithic properties, combined with the minimal side effects, make curcumin a good potential choice to prevent and treat new or recurrent nephrolithiasis.
Collapse
Affiliation(s)
- Yinhui Li
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Haiyun Liu
- Department of prevention and treatment of contagious diseases, HeZe City Center for disease control and prevention, HeZe, Shandong 274000, PR China
| | - Jihang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Yupeng Yin
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Tiantian Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Bingfeng Cheng
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
11
|
Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. Repair Effects of Astragalus Polysaccharides with Different Molecular Weights on Oxidatively Damaged HK-2 Cells. Sci Rep 2019; 9:9871. [PMID: 31285477 PMCID: PMC6614371 DOI: 10.1038/s41598-019-46264-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigated the repair effects of three Astragalus polysaccharides (APSs) with different molecular weights (Mws) on injured human renal proximal tubular epithelial (HK-2) cells to reveal the effect of Mw of polysaccharide on cell repair. A damage model was established by injuring HK-2 cells with 2.6 mM oxalate, and APS0, APS1, and APS2 with Mw of 11.03, 4.72, and 2.61 KDa were used to repair the damaged cells. After repair by APSs, the morphology of damaged HK-2 cells gradually returned to normal, the destruction of intercellular junctions recovered, intracellular reactive oxygen species production amount decreased, and their mitochondrial membrane potential increased. In addition, the cell cycle progression gradually normalized, lysosome integrity increased, and cell apoptotic rates obviously declined in the repaired cells. All three APSs could promote the expression of Keap1, Nrf2, SOD1, and CAT. In addition, the expression levels of inflammation markers containing MCP-1 and IL-6 decreased after APS repair. We deduced that APSs exert their repair function by activating the Nrf2-Keap1 signaling pathway and inhibiting inflammation. Among the APSs, APS1 with a moderate Mw provided the strongest repair effect. APSs may have a preventive effect on kidney stones.
Collapse
Affiliation(s)
- Jin Han
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| | - Bao-Song Gui
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
12
|
Yu L, Gan X, Liu X, An R. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway. Ren Fail 2017; 39:440-451. [PMID: 28335665 PMCID: PMC6014313 DOI: 10.1080/0886022x.2017.1305968] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin–Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.
Collapse
Affiliation(s)
- Lei Yu
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| | - Xiuguo Gan
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| | - Xukun Liu
- b Department of General Surgery , the People's Hospital of Jixi , Jixi , Heilongjiang Province , P.R. China
| | - Ruihua An
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| |
Collapse
|
13
|
Jaturakan O, Dissayabutra T, Chaiyabutr N, Kijtawornrat A, Tosukhowong P, Rungsipipat A, Nhujak T, Buranakarl C. Combination of vitamin E and vitamin C alleviates renal function in hyperoxaluric rats via antioxidant activity. J Vet Med Sci 2017; 79:896-903. [PMID: 28392511 PMCID: PMC5447979 DOI: 10.1292/jvms.17-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hyperoxaluria and oxidative stress are risk factors in calcium oxalate (CaOx) stone formation. Supplement with antioxidant could be effective in prevention of recurrent stone formation. The present study aims to evaluate the
protective effects of vitamin E and vitamin C in hyperoxaluric rat. The experiment was performed in rats for 21 days. Rats were divided into 5 groups as follows: control (group 1, n=8), hyperoxaluric rats (group 2, n=8),
hyperoxaluric rats with vitamin E supplement (group 3, n=7), hyperoxaluric rats with vitamin C supplement (group 4, n=7) and hyperoxaluric rats with vitamin E and C supplement (group 5, n=7). Hyperoxaluria was induced by feeding
hydroxyl L-proline (HLP) 2% w/v dissolved in drinking water. Intraperitoneal 200 mg/kg of vitamin E was given in groups 3 and 5 on days 1, 6, 11 and 16, while 500 mg of vitamin C was injected intravenously in groups 4 and 5 on
days 1 and 11. Renal functions and oxidative status were measured. The urinary oxalate excretion was increased in HLP supplement rats, while glomerular filtration rate, proximal water and sodium reabsorption were significantly
lower in group 2 compared with a control (P<0.05). Giving antioxidants significantly lower urinary calcium oxalate crystals (P<0.05). Hyperoxaluric rats had higher plasma malondialdehyde
(PMDA) and lower urinary total antioxidant status (UTAS), which were alleviated by vitamin E and/or vitamin C supplement. In conclusion, giving combination of vitamin E and vitamin C exerts a protective role against HLP-induced
oxalate nephropathy.
Collapse
Affiliation(s)
- Orapun Jaturakan
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thasinas Dissayabutra
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narongsak Chaiyabutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyaratana Tosukhowong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thumnoon Nhujak
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chollada Buranakarl
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines. Urolithiasis 2016; 45:159-175. [PMID: 27393275 DOI: 10.1007/s00240-016-0902-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
The study aims to observe the urinary excretion of monocyte chemoattractant-1 (MCP-1) and high-mobility group box 1 (HMGB1) in patients with calcium nephrolithiasis and to determine the influence of hypercalciuria on the production of the two cytokines. 81 cases of patients with calcium nephrolithiasis (group CN) and 30 healthy controls (group C) were involved in this study. To observe the influence of urinary calcium on the excretion of those cytokines, the patients were subdivided according to their 24-h urinary calcium level: ≥4 mg/kg/day (group H) and <4 mg/kg/day (group N). MCP-1 and HMGB1 in urina sanguinis were determined for all subjects. In addition, in vitro study was done to determine the production of the two cytokines and index of apoptosis and oxidative injuries in human kidney epithelial cells (HK-2) exposed to three high levels of calcium. Data showed that both urinary MCP-1 and HMGB1 in group CN were higher than that of group C. When the patients were subdivided, comparisons among the three groups showed that both MCP-1 and HMGB1 in group H and group N were higher than group C, but there was no significant statistical difference between the two stone groups. In vitro study, the apoptosis rate of cells, the lactate dehydrogenase activities, the hydrogen peroxide, and 8-isoprostane concentrations in the medium all increased in accordance with the increased concentration of calcium supplemented. Compared with the control, mRNA expressions of MCP-1 and HMGB1 in cells and the protein concentrations of the two cytokines in the medium of calcium-supplemented groups increased significantly. Results showed that urinary MCP-1 and HMGB1 increased in calcium nephrolithiasis patients and hypercalciuria might affect the identical pathways (through the reactive oxygen species) with other factors in stimulating the production of MCP-1 and HMGB1 in vivo.
Collapse
|
15
|
Sintiprungrat K, Singhto N, Thongboonkerd V. Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. MOLECULAR BIOSYSTEMS 2016; 12:879-89. [DOI: 10.1039/c5mb00728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This is the first study to characterize changes in the secretome of human monocytes induced by calcium oxalate crystals.
Collapse
Affiliation(s)
- Kitisak Sintiprungrat
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| | - Nilubon Singhto
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| | - Visith Thongboonkerd
- Medical Proteomics Unit
- Office for Research and Development
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok
| |
Collapse
|
16
|
Chaiyarit S, Singhto N, Thongboonkerd V. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chem Biol Interact 2015; 246:30-5. [PMID: 26748311 DOI: 10.1016/j.cbi.2015.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Accepted: 12/29/2015] [Indexed: 01/24/2023]
Abstract
Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Center for Research in Complex Systems Sciences, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Center for Research in Complex Systems Sciences, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Center for Research in Complex Systems Sciences, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Kovacevic L, Lu H, Goldfarb DS, Lakshmanan Y, Caruso JA. Urine proteomic analysis in cystinuric children with renal stones. J Pediatr Urol 2015; 11:217.e1-6. [PMID: 26076823 PMCID: PMC4540695 DOI: 10.1016/j.jpurol.2015.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The gene mutations responsible for cystinuria do not fully explain kidney stone activity, suggesting that specific proteins may serve as promoters of cystine precipitation, aggregation or epithelial adherence. In this study we assessed (1) the differences in the urinary proteins between children with cystinuria and kidney stones (CYS) and healthy controls (HC), with particular attention to the fibrosis-related proteins, and (2) the presence of diagnostic biomarkers for CYS. MATERIAL AND METHODS We conducted a pilot study comparing individual urinary proteomes of 2 newly diagnosed children with CYS and 2 age- and gender-matched HC, using liquid chromatography-mass spectrometry. Relative protein abundance was estimated using spectral counting. Proteins of interest in both CYS and HC were selected using the following criteria: i) ≥5 spectral counts; ii) ≥2-fold difference in spectral counts; and iii) ≤0.05 p-value for the Fisher's Exact Test. DISCUSSION This study demonstrates a different urinary polypeptide profile in two children with CYS compared to two HC. Of the 623 proteins identified by proteomic analysis, 180 exhibited at least a 2-fold increased relative abundance in CYS compared to HC. Of these, 39 were involved in response to stress, 26 in response to wounding, 21 in inflammatory response, 18 in immune response, and 4 in cellular response to oxidative stress. 133 proteins were found only in children with CYS, 33 of which met the selection criteria. Of these 33 unique proteins, six are known to be associated with fibrosis pathways (Table). The major limitation of this study is the small number of samples that were analyzed. Validation using highly specific methods such as ELISA is needed. CONCLUSION We provide proteomic evidence of oxidative injury, inflammation, wound healing and fibrosis in two children with CYS. We speculate that oxidative stress and inflammation may cause remodeling via actin and vimentin pathways, leading to fibrosis. Additionally, we identified ITIH and MMP-9 as potential diagnostic biomarkers and novel therapeutic targets in CYS. These proteins merit further investigation.
Collapse
Affiliation(s)
- Larisa Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA.
| | - Hong Lu
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - David S Goldfarb
- Nephrology Division, NYU Langone Medical Center, New York, NY, USA
| | - Yegappan Lakshmanan
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Joseph A Caruso
- Proteomic Facility, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Alhasawi A, Castonguay Z, Appanna ND, Auger C, Appanna VD. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens. Microbiol Res 2015; 171:26-31. [PMID: 25644949 DOI: 10.1016/j.micres.2014.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
The role of metabolism in anti-oxidative defence is only now beginning to emerge. Here, we show that the nutritionally-versatile microbe, Pseudomonas fluorescens, reconfigures its metabolism in an effort to generate NADPH, ATP and glyoxylate in order to fend off oxidative stress. Glyoxylate was produced predominantly via the enhanced activities of glycine dehydrogenase-NADP(+) (GDH), glycine transaminase (GTA) and isocitrate lyase (ICL) in a medium exposed to hydrogen peroxide (H₂O₂). This ketoacid was utilized to produce ATP by substrate-level phosphorylation and to neutralize reactive oxygen species with the concomitant formation of formate. The latter was also a source of NADPH, a process mediated by formate dehydrogenase-NADP(+) (FDH). The increased activities of phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) worked in tandem to synthesize ATP in the H₂O₂-challenged cells that had markedly diminished capacity for oxidative phosphorylation. These metabolic networks provide an effective means of combating ROS and reveal therapeutic targets against microbes resistant to oxidative stress.
Collapse
Affiliation(s)
- Azhar Alhasawi
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada
| | - Zachary Castonguay
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada
| | - Nishma D Appanna
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada
| | - Christopher Auger
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada
| | - Vasu D Appanna
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada.
| |
Collapse
|
19
|
Khan SR, Canales BK. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis 2014; 43 Suppl 1:109-23. [PMID: 25119506 DOI: 10.1007/s00240-014-0705-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/23/2014] [Indexed: 01/19/2023]
Abstract
Kidney stones develop attached to sub-epithelial plaques of calcium phosphate (CaP) crystals (termed Randall's plaque) and/or form as a result of occlusion of the openings of the Ducts of Bellini by stone-forming crystals (Randall's plugs). These plaques and plugs eventually extrude into the urinary space, acting as a nidus for crystal overgrowth and stone formation. To better understand these regulatory mechanisms and the pathophysiology of idiopathic calcium stone disease, this review provides in-depth descriptions of the morphology and potential origins of these plaques and plugs, summarizes existing animal models of renal papillary interstitial deposits, and describes factors that are believed to regulate plaque formation and calcium overgrowth. Based on evidence provided within this review and from the vascular calcification literature, we propose a "unified" theory of plaque formation-one similar to pathological biomineralization observed elsewhere in the body. Abnormal urinary conditions (hypercalciuria, hyperoxaluria, and hypocitraturia), renal stress or trauma, and perhaps even the normal aging process lead to transformation of renal epithelial cells into an osteoblastic phenotype. With this de-differentiation comes an increased production of bone-specific proteins (i.e., osteopontin), a reduction in crystallization inhibitors (such as fetuin and matrix Gla protein), and creation of matrix vesicles, which support nucleation of CaP crystals. These small deposits promote aggregation and calcification of surrounding collagen. Mineralization continues by calcification of membranous cellular degradation products and other fibers until the plaque reaches the papillary epithelium. Through the activity of matrix metalloproteinases or perhaps by brute physical force produced by the large sub-epithelial crystalline mass, the surface is breached and further stone growth occurs by organic matrix-associated nucleation of CaOx or by the transformation of the outer layer of CaP crystals into CaOx crystals. Should this theory hold true, developing an understanding of the cellular mechanisms involved in progression of a small, basic interstitial plaque to that of an expanding, penetrating plaque could assist in the development of new therapies for stone prevention.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA,
| | | |
Collapse
|
20
|
Increased oxidative DNA damage seen in renal biopsies adjacent stones in patients with nephrolithiasis. Urolithiasis 2014; 42:387-94. [DOI: 10.1007/s00240-014-0676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
|
21
|
Lohcharoenkal W, Wang L, Stueckle TA, Dinu CZ, Castranova V, Liu Y, Rojanasakul Y. Chronic exposure to carbon nanotubes induces invasion of human mesothelial cells through matrix metalloproteinase-2. ACS NANO 2013; 7:7711-23. [PMID: 23924264 PMCID: PMC3875633 DOI: 10.1021/nn402241b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Malignant mesothelioma is one of the most aggressive forms of cancer known. Recent studies have shown that carbon nanotubes (CNTs) are biopersistent and induce mesothelioma in animals, but the underlying mechanisms are not known. Here, we investigate the effect of long-term exposure to high aspect ratio CNTs on the aggressive behaviors of human pleural mesothelial cells, the primary cellular target of human lung mesothelioma. We show that chronic exposure (4 months) to single- and multiwalled CNTs induced proliferation, migration, and invasion of the cells similar to that observed in asbestos-exposed cells. An up-regulation of several key genes known to be important in cell invasion, notably matrix metalloproteinase-2 (MMP-2), was observed in the exposed mesothelial cells as determined by real-time PCR. Western blot and enzyme activity assays confirmed the increased expression and activity of MMP-2. Whole genome microarray analysis further indicated the importance of MMP-2 in the invasion gene signaling network of the exposed cells. Knockdown of MMP-2 in CNT and asbestos-exposed cells by shRNA-mediated gene silencing effectively inhibited the aggressive phenotypes. This study demonstrates CNT-induced cell invasion and indicates the role of MMP-2 in the process.
Collapse
Affiliation(s)
- Warangkana Lohcharoenkal
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
| | - Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Todd A. Stueckle
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, WV
| | - Vincent Castranova
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Yuxin Liu
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
- Corresponding Author Correspondence should be addressed to Prof. Yon Rojanasakul, West Virginia University, Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center. Phone: 304-293-1476
| |
Collapse
|
22
|
Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 2012; 189:803-11. [PMID: 23022011 DOI: 10.1016/j.juro.2012.05.078] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE Idiopathic calcium oxalate kidney stones form while attached to Randall plaques, the subepithelial deposits on renal papillary surfaces. Plaque formation and growth mechanisms are poorly understood. Plaque formation elsewhere in the body is triggered by reactive oxygen species and oxidative stress. This review explores possible reactive oxygen species involvement in plaque formation and calcium oxalate nephrolithiasis. MATERIALS AND METHODS A search of various databases for the last 8 years identified literature on reactive oxygen species involvement in calcium oxalate nephrolithiasis. The literature was reviewed and results are discussed. RESULTS Under normal conditions reactive oxygen species production is controlled, increasing as needed and regulating crystallization modulator production. Reactive oxygen species overproduction or decreased antioxidants lead to oxidative stress, inflammation and injury, and are involved in stone comorbidity. All major chronic inflammation markers are detectable in stone patient urine. Patients also have increased urinary excretion of the IαI and the thrombin protein families. Results of a recent study of 17,695 participants in NHANES III (National Health and Nutrition Examination Survey) showed significantly lower antioxidants, carotene and β-cryptoxanthin in those with a kidney stone history. Animal model and tissue culture studies revealed that high oxalate, calcium oxalate and calcium phosphate crystals provoked renal cell reactive oxygen species mediated inflammatory responses. Calcium oxalate crystals induce renin up-regulation and angiotensin II generation. Nonphagocytic NADPH oxidase leads to reactive oxygen species production mediated by protein kinase C. The P-38 MAPK/JNK transduction pathway is turned on. Transcriptional and growth factors, and generated secondary mediators become involved. Chemoattractant and osteopontin production is increased and macrophages infiltrate the renal interstitium around the crystal. Phagocytic NADPH oxidase is probably activated, producing additional reactive oxygen species. Localized inflammation, extracellular matrix and fibrosis develop. Crystallization modulators have a significant role in inflammation and tissue repair. CONCLUSIONS Based on available data, Randall plaque formation is similar to extracellular matrix mineralization at many body sites. Renal interstitial collagen becomes mineralized, assisting plaque growth through the interstitium until the mineralizing front reaches papillary surface epithelium. Plaque exposure to pelvic urine may also be a result of reactive oxygen species triggered epithelial sloughing.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
23
|
Anti-inflammatory Proteins in Kidney Stone Matrix. Urolithiasis 2012. [DOI: 10.1007/978-1-4471-4387-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Fong-ngern K, Peerapen P, Sinchaikul S, Chen ST, Thongboonkerd V. Large-scale Identification of Calcium Oxalate Monohydrate Crystal-binding Proteins on Apical Membrane of Distal Renal Tubular Epithelial Cells. J Proteome Res 2011; 10:4463-77. [DOI: 10.1021/pr2006878] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kedsarin Fong-ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supachok Sinchaikul
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Wang T, Thurgood LA, Grover PK, Ryall RL. A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. BJU Int 2011; 106:1768-74. [PMID: 20230382 DOI: 10.1111/j.1464-410x.2010.09258.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To compare the binding kinetics of urinary calcium oxalate monohydrate (COM) and dihydrate (COD) crystals to human kidney (HK-2) cells in ultra-filtered (UF), and centrifuged and filtered (CF) human urine; and to quantify the binding of COM and COD crystals to cultured HK-2 cells in UF and CF urine samples collected from different individuals. MATERIALS AND METHODS Urine was collected from healthy subjects, pooled, centrifuged and filtered. (14) C-oxalate-labelled COM and COD crystals were precipitated from the urine by adding oxalate after adjustment of two aliquots of the urine to 2 and 8 mm Ca(2+), respectively. For the kinetic study, the crystals were incubated with HK-2 cells for up to 120 min in pooled CF urine adjusted to 2 and 8 mm Ca(2+). Identical experiments were also carried out in UF urine samples collected from the same individuals. For the quantitative study, the same radioactively labelled COM and COD crystals were incubated with HK-2 cells for 50 min in separate CF and UF urines collected from eight healthy individuals at the native Ca(2+) concentrations of the urines. Field emission electron microscopy and Fourier transform-infrared spectroscopy were used to confirm crystal morphology. RESULTS COM and COD crystals generally bound more strongly at 8 mm than at 2 mm Ca(2+). The kinetic binding curves of COM were smooth, while those of COD were consistently biphasic, suggesting that the two crystal types induce different cellular metabolic responses: HK-2 cells crystals appear to possess a transitory mechanism for detaching COD, but not COM crystals. In UF urine, COM binding was significantly greater than that of COD at 2 mm Ca(2+), but at 8 mm Ca(2+) the binding of COD was greater at early and late time points. COD also bound significantly more strongly at early time points in CF urine at both 2 and 8 mm Ca(2+). In both CF and UF urine, there was no difference between the binding affinity of urinary COM and COD crystals. CONCLUSION Binding of both COM and COD crystals to cultured human renal epithelial cells is influenced by urinary macromolecules and ambient Ca(2+) concentration. HK-2 cells appear to possess a mechanism for the rapid detachment of bound COD crystals, making it difficult to show any unambiguous overall difference between the binding affinity of COM and COD crystals.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Surgery, Flinders Medical Centre, Flinders University, South Australia, Australia
| | | | | | | |
Collapse
|
26
|
Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. J Transl Med 2011; 91:97-105. [PMID: 20856225 DOI: 10.1038/labinvest.2010.167] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tight junction has a crucial role in regulating paracellular transports (as a barrier) and in separating apical from basolateral compartments to maintain cell polarity (as a fence). Tight junction can be disrupted by various stimuli, including oxidative stress, pathogens and proinflammatory cytokines. However, association of defective tight junction with kidney stone pathogenesis remains unknown. We therefore examined whether calcium oxalate monohydrate (COM) crystals, which are the major crystalline composition in kidney stones, have any effects on expression and function of tight junction of polarized renal tubular epithelial cells. Western blot analysis revealed marked decrease in levels of occludin and zonula occludens-1 (ZO-1) in COM-treated polarized Madin-Darby canine kidney (MDCK) cells. Immunofluorescence staining revealed not only the decline of these tight junction proteins but also their redistribution and dissociation in COM-treated cells. Additionally, transepithelial resistance was significantly decreased, indicating impaired tight junction barrier and increased paracellular permeability in COM-treated cells. Subcellular fractionation followed by western blot analysis of Na(+)/K(+)-ATPase-α1 revealed that this basolateral membrane marker was also detectable in apical membrane fraction of COM-treated cells, but not in apical membrane fraction of control cells. Immunofluorescence study confirmed the translocation of Na(+)/K(+)-ATPase-α1 (from basolateral to apical membranes) in COM-treated cells, indicating impaired fence function of the tight junction. Moreover, dihydrorhodamine assay using flow cytometry revealed the significantly higher level of hydrogen peroxide in the COM-treated cells. These data provide the first evidence to demonstrate decreased expression and defective barrier and fence functions of the tight junction of renal tubular epithelial cells exposed to COM crystals that may be fundamental for subsequent renal tubulointerstitial injury, which in turn enhances the stone pathogenesis.
Collapse
|
27
|
Khan SR, Khan A, Byer KJ. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 2010; 26:1778-85. [PMID: 21079197 DOI: 10.1093/ndt/gfq692] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits. METHODS Human renal epithelial-derived cell line, HK-2, was exposed to 100 μmol Ox or 66.7 μg/cm(2) CaOx monohydrate crystals for 6, 12, 24 or 48 h. After exposure, the cells and media were processed to determine activation of NADPH oxidase, production of superoxide and 8-isoprostane (8IP), and release of lactate dehydrogenase (LDH). RT-PCR was performed to determine mRNA expression of NADPH subunits p22(phox), p40(phox), p47(phox), p67(phox) and gp91(phox) as well as Rac-GTPase. RESULTS Exposure to Ox and CaOx crystals resulted in increase in LDH release, production of 8-IP, NADPH oxidase activity and production of superoxide. Exposure to CaOx crystals resulted in significantly higher NADPH oxidase activity, production of superoxide and LDH release than Ox exposure. Exposure to Ox and CaOx crystals altered the expression of various subunits of NADPH oxidase. More consistent were increases in the expression of membrane-bound p22(phox) and cytosolic p47(phox). Significant and strong correlations were seen between NADPH oxidase activity, the expression of p22(phox) and p47(phox), production of superoxide and release of LDH when cells were exposed to CaOx crystals. The expressions of neither p22(phox) nor p47(phox) were significantly correlated with increased NADPH oxidase activity after the Ox exposure. CONCLUSIONS As hypothesized, exposure to Ox or CaOx crystals leads to significant increases in the expression of p22(phox) and p47(phox), leading to activation of NADPH oxidase. Increased NADPH oxidase activity is associated with increased superoxide production and lipid peroxidation. Different pathways appear to be involved in the stimulation of renal epithelial cells by exposure to Ox and CaOx crystals.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | |
Collapse
|
28
|
Hemolysis of human erythrocytes induced by melamine-cyanurate complex. Biochem Biophys Res Commun 2010; 402:773-7. [PMID: 21036151 DOI: 10.1016/j.bbrc.2010.10.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/24/2010] [Indexed: 11/20/2022]
Abstract
Melamine is a widely-used chemical in industries. In recent years, melamine has been found to be involved in outbreaks of renal injury in infants and animals. Pathological studies indicated that the melamine-induced acute renal failure was related to the concurrence of melamine and other triazine analogs such as cyanuric acid. In the present study, human erythrocytes were used as an in vitro model to explore the cytotoxicity of melamine and its complex with cyanuric acid. The results demonstrated that mixing melamine and cyanuric acid resulted in the formation of insoluble particles and that the insoluble melamine-cyanurate complex induced membrane damages of human erythrocytes. The membrane damages included hemolysis, K(+) leakage, alterations in cell shape and membrane fragility, and inhibition of enzymatic activity. By contrast, either melamine or cyanuric acid alone had no effect on erythrocyte membranes. The results of this study may provide a fresh insight into the melamine toxicology.
Collapse
|
29
|
Affiliation(s)
- Stewart Fleming
- Division of Medical Science, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
30
|
Gáspár S, Niculiţe C, Cucu D, Marcu I. Effect of calcium oxalate on renal cells as revealed by real-time measurement of extracellular oxidative burst. Biosens Bioelectron 2009; 25:1729-34. [PMID: 20047824 DOI: 10.1016/j.bios.2009.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/28/2022]
Abstract
Calcium oxalate is one of the main constituents of kidney stones and has a proved deleterious effect on renal cells that is mediated by oxidative stress. However, the subcellular source of this oxidative stress, and whether it is extending to the extracellular space or not, is still disputed. Therefore, an electrochemical superoxide biosensor was constructed, positioned above A6 renal cells, and used to measure in real-time the extracellular oxidative burst following addition of calcium oxalate crystals. It was observed that A6 cells do secrete superoxide into their extracellular space in few minutes after encountering calcium oxalate crystals. The amount of released superoxide peaks at about 20 min. Superoxide is cleared away from the extracellular space after approximately 3h. Superoxide secretion depends on the presence of superoxide-scavenging enzyme superoxide dismutase, the age of the cells, the amount of calcium oxalate crystals, and the temperature. Moreover, the effect of calcium oxalate crystals was mimicked by phorbol 12-myristate 13-acetate. The developed sensing system can be a useful tool for biologists investigating nephrolithiasis at cellular level.
Collapse
Affiliation(s)
- Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor Street, 060101 Bucharest, Romania.
| | | | | | | |
Collapse
|
31
|
Chen S, Gao X, Sun Y, Xu C, Wang L, Zhou T. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals: proteomic insights into the molecular mechanisms of renal injury and stone formation. ACTA ACUST UNITED AC 2009; 38:7-15. [DOI: 10.1007/s00240-009-0226-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 10/06/2009] [Indexed: 11/30/2022]
|
32
|
Escobar C, Byer KJ, Khaskheli H, Khan SR. Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 2008; 180:379-87. [PMID: 18499159 DOI: 10.1016/j.juro.2008.02.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE Kidney stone formation is associated with the deposition of hydroxyapatite as subepithelial plaques or tubular deposits in the renal papillae. We investigated the effect of renal epithelial exposure to hydroxyapatite crystals in vitro to develop an insight into the pathogenesis of kidney stones. MATERIALS AND METHODS NRK52E cells (No. CRL-1571, ATCC) were exposed to 67 or 133 microg/cm(2) hydroxyapatite (No. 21223, Sigma-Aldrich) or calcium oxalate monohydrate crystals (No. 27609, BDH Industries, Poole, United Kingdom). In some studies cells were also exposed to crystals from the basal side. After 3 or 6 hours of exposure medium was analyzed for lactate dehydrogenase, 8-isoprostane and H(2)O(2). Medium collected after cell exposure on the apical side was also analyzed for the production of monocyte chemoattractant protein-1 and prostaglandin E2. Cells were stained with DAPI to determine apoptotic activity and examined by scanning electron microscopy to observe crystal-cell interaction. RESULTS Cell exposure to hydroxyapatite resulted in H(2)O(2) and 8-isoprostane production as well as in lactate dehydrogenase release. Apical exposure appeared more provocative and injurious than basal exposure. Exposure to hydroxyapatite for 6 hours resulted in increased apoptotic activity. Apical exposure also resulted in increased monocyte chemoattractant protein-1 and prostaglandin E2 production. CONCLUSIONS Cell exposure to hydroxyapatite crystals induced oxidative stress and lipid peroxidation. It caused up-regulation of the inflammation mediators that may be responsible for the kidney inflammation in patients with stones that is associated with tubular hydroxyapatite deposition. It may also have a role in the eruption of subepithelial Randall's plaques to the papillary surface.
Collapse
Affiliation(s)
- Carla Escobar
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
33
|
Boonla C, Hunapathed C, Bovornpadungkitti S, Poonpirome K, Tungsanga K, Sampatanukul P, Tosukhowong P. Messenger RNA expression of monocyte chemoattractant protein-1 and interleukin-6 in stone-containing kidneys. BJU Int 2008; 101:1170-7. [PMID: 18241247 DOI: 10.1111/j.1464-410x.2008.07461.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate the intrarenal mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in patients with nephrolithiasis, and to evaluate whether their expression is associated with renal function, as oxidative stress and inflammation are involved in the pathogenesis of nephrolithiasis. PATIENTS, SUBJECTS AND METHODS Renal biopsies from near the stone, and blood and 24-h urine specimens were collected from 29 patients with nephrolithiasis. Control renal tissues were taken from non-cancerous and cancerous portions of nephrectomy from six patients with renal cancers, and control 24-h urine samples were obtained from 30 healthy subjects. Corrected creatinine clearance, urinary N-acetyl-beta-glucosaminidase activity and 8-hydroxy-deoxyguanosine (8-OHdG) were determined. The mRNA expressions of MCP-1 and IL-6 in the tissues were measured by real time reverse transcription-polymerase chain reaction. RESULTS Patients with nephrolithiasis had significantly greater renal tubular damage and oxidative stress than the healthy controls. Intrarenal mRNA expressions of MCP-1 and IL-6 in stone-adjacent renal tissues were significantly lower than in cancerous renal tissues, but not statistically different from that in non-cancerous renal tissues. In stone-adjacent renal tissues, the mRNA level of MCP-1 was significantly higher than that of IL-6, but their expressions were significantly correlated with each other. Histological examination showed that the number of infiltrated leukocytes corresponded well with the intrarenal mRNA levels of MCP-1 and IL-6. Patients with nephrolithiasis and compromised renal function had significantly higher intrarenal mRNA levels of MCP-1 and IL-6 than those with preserved renal function. Also, the mRNA levels in patients with severe renal tubular damage were significantly greater than in those with less renal tubular damage. There was no association between intrarenal mRNA expression and urinary 8-OHdG. CONCLUSION Nephrolithiasis was associated with low-grade intrarenal inflammation. A greater intrarenal mRNA expression of MCP-1 and IL-6 was associated with enhanced renal impairment. Thus, expression of MCP-1 and IL-6, at least in part, contributed to the progression of nephrolithiasis.
Collapse
Affiliation(s)
- Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|