1
|
Lourenço SC, Aleluia AAMRA, Barboza LGA, Otero XL, Cunha SC, Fernandes JO, Guilhermino L. Microplastic contamination and biological alterations in Atlantic wild fish populations, and human health risks associated to fillet consumption. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107139. [PMID: 40253821 DOI: 10.1016/j.marenvres.2025.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
This study tested the hypothesis that long-term exposure to microplastics (MPs) is causing biological alterations in North Atlantic wild populations of Trisopterus luscus (pouting) and Merluccius merluccius (hake). It also estimated the human risk of MP intake (HRI) through fillet consumption, and combined the HRI and polymer health hazard in the Risk of Intake and Polymer Hazard Index (RIPHI). Fish (103) were analysed for MPs (gastrointestinal tract, gills, liver, brain, muscle), biomarkers (physical condition, neurotoxicity, energy production, oxidative stress and damage) and general stress (Integrated Biomarker Response - IBR). After particle analysis (Fourier Transform Infrared spectroscopy, Raman spectroscopy) and data correction for contamination, MPs accounted for 77 % of 311 particles. From 103 fish, 79 % contained MPs. The overall mean concentration ±SD was 0.09 ± 0.09 MP g-1 (2.32 ± 2.35 MPs ind-1) with no significant interspecific differences (p > 0.05). Among body sites, brain had the highest MP concentration (pouting: 0.6 MP g-1; hake: 0.5 MP g-1). Most abundant polymers were polyethylene (40 %), polypropylene (21 %) and polymethyl methacrylate (12 %). Fragments (<150 μm) predominated. MP profiles pointed to prey-predator transfer. Fish with MPs had higher stress levels (IBR, pouting: 0.317; hake: 0.200) than specimens without MPs (pouting: 0.0; hake: 0.062). Oxidative stress was the effect most clearly linked to MPs. Hake fillet poses lower HRI (e.g., 0.2 to 1.5 MPs day-1) than pouting fillet (e.g., 0.4 to 3.0 MPs day-1). RIPHI values showed the opposite trend (e.g., hake: 138 to 1038; pouting: 113 to 845), indicating medium to high risk to human consumers. Findings related long-term MPs exposure in the natural habitat with biological alterations in wild fish populations, highlight the importance of food diversification for a healthy alimentation, and stress the urgent need of reducing MPs pollution to promote ecosystem sustainability and global health.
Collapse
Affiliation(s)
- Sara C Lourenço
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Alexandre A M R A Aleluia
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - L Gabriel A Barboza
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
2
|
Bruce-Vanderpuije P, Asmah R, Ameworwor M, Hotor DW, Hildebrandt L, Pröfrock D, Ebinghaus R, Zaid H, Norvimagbe IC, Asante KA, Nunoo AA, Osei-Atweneboana MY. Quantitative assessment of microplastics in fish from the Gulf of Guinea, Ghana, using LDIR spectroscopy: Implications for marine food safety and health risk evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 379:126518. [PMID: 40425060 DOI: 10.1016/j.envpol.2025.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/02/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
In this study, microplastic (MP) contamination was investigated in 24 marine fish species from 3 environmental hotspots- Labadi, Teshie, and Jamestown, along Ghana's Gulf of Guinea coastline. Specific fish species studied included Pseudotolithus senegalensis, Sphyraena guachancho, Brachydeuterus auratus, Chloroscombrus chrysurus, and Ethmalosa frimbriata. Fifty-eight percent of the total MPs were detected in the gastrointestinal tracts, and 42% detected in gills of 177 individual fish tested in this study. Labadi showed the highest contamination levels [mean MP concentration: 22 ± 19 (items fish)-1]. Omnivorous fish species had the highest mean ingestion rate of MPs (19.4), surpassing both carnivorous (17.7) and herbivorous species (13.5), and indicating dietary habits as a significant factor in MP bioaccumulation. White-coloured MP films (60%) of sizes: 100-1000 µm were the dominant ingested shape. Other MP shapes included fragments (26.3%), fibres (10.5%), beads (1.05%), and foam (0.61%). Using advanced spectroscopic technique such as Laser Direct Infrared (LDIR) Imaging, 16 MP polymers were characterized with polyvinyl chloride (PVC) being the prevalent MP polymer type (80%). The study observed a strong positive correlation between carnivorous demersal and omnivorous pelagic-neritic fish for specific MP polymers, suggesting that factors other than polymer density influence MP consumption patterns for fish habitats within the water column. The annual MP exposure to Ghanaian adults via fish consumption [(194-29,239 MP items (person year)-1] significantly exceeded the European Safety guidelines [518-3078 (items year)-1], emphasizing dietary habits and environmental pollution as key factors. This study provides a critical baseline on MP pollution in Ghanaian marine ecosystems, highlighting the urgent need for interventions to mitigate plastic pollution, protect marine biodiversity, safeguard marine food, and public health in West Africa.
Collapse
Affiliation(s)
| | - Ruby Asmah
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana.
| | - Miriam Ameworwor
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | | | - Lars Hildebrandt
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany
| | - Daniel Pröfrock
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany
| | - Ralf Ebinghaus
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany
| | - Haruna Zaid
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Ishmael Cudjoe Norvimagbe
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana; CSIR College of Science and Technology, 1 Second Food Research Rd, Accra, Ghana
| | | | | | | |
Collapse
|
3
|
Nunes BZ, Ribeiro VV, Leal CG, Motti CA, Castro ÍB. Microplastic contamination in no-take Marine Protected Areas of Brazil: Bivalves as sentinels. ENVIRONMENTAL RESEARCH 2025; 273:121231. [PMID: 40015428 DOI: 10.1016/j.envres.2025.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Microplastics (MPs) are pervasive environmental contaminants even in remote and pristine locations. Despite extensive literature documenting their widespread presence in marine environments, there is limited understanding of MP contamination in Marine Protected Areas (MPAs), particularly in developing countries. This study assessed MP contamination using multiple filter-feeding bivalve species as sentinels. Samplings were performed during 2022, in ten selected no-take MPAs under different management categories according to the International Union for Conservation of Nature. MPs size, shape, color, and polymeric composition were analyzed using established protocols, including Fourier Transform Infrared (FTIR) spectroscopy. MPs concentrations (0.42 ± 0.34 [0.17-2.00] particles.g-1 ww) peaked at natural monuments, while strict nature reserves and parks were less affected. Based on scientific literature comparison, no-take MPAs were less contaminated by MPs than multiple-use MPAs and unprotected areas in Brazil. However, the observed levels remain concerning, given the potential ecological risks, including trophic transfer, physiological disruptions, and habitat degradation. Around 59% of MPs were organic polymers and alkyd (28%), while polyethylene terephthalate (14%) was the main anthropogenic polymer. MPs were predominantly black, white, or transparent fragments measuring <1000 μm, not differing among MPAs individually or grouped protection category, therefore displaying the consistent qualitative patterns along the Brazilian coast. This study underscores the ecological risks posed by MPs in MPAs, emphasizing the need for long-term monitoring programs and targeted mitigation strategies, contributing to global efforts assessing and managing MP contamination, aligning with the 11th Aichi Target to reduce pressures on biodiversity and promote marine ecosystems sustainable use.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de Pós-Graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; AIMS@JCU, Townsville, QLD, Australia
| | | | - Clara Galacho Leal
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil
| | - Cherie Ann Motti
- AIMS@JCU, Townsville, QLD, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD, Australia
| | - Ítalo Braga Castro
- Programa de Pós-Graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil.
| |
Collapse
|
4
|
Das RS, Mahatab Uddin SM, Gündoğdu S, Afrin JK, Jahan N, Abedin MRB, Chowdhury S, Nahian SA, Mustafa MG, Siddique MAM. Unveiling Microplastics in Commercial Brackish Water Fishes from the Lower Meghna River Estuary of Bangladesh. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:68. [PMID: 40281122 PMCID: PMC12031850 DOI: 10.1007/s00128-025-04048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Microplastics (MPs) pose a persistent global threat and have entered almost every component of the ecosystem and seafood items. This study aimed to identify and characterize MPs in three widely edible fishes in the lower Meghna River estuary of Bangladesh and assess the polymer hazard index. Gastrointestinal tracts (GIT) of fish were collected and digested with KOH to extract MPs, and the polymer was confirmed by FTIR analysis. The species with the highest mean MP abundance was M. gulio (22.89 ± 8.91 MPs/GIT), followed by P. paradiseus (10.78 ± 4.29) and O. pama (15.11 ± 3.55). Fibers were predominant MPs, comprising 73.20-91.75% of the total particles. Blue, red, and black were the dominant colors of MPs, while 81.07-93.81% particles were between 500 and 1000 μm. Five distinct polymers, polypropylene, polyethylene, polyethylene terephthalate, Polystyrene, and Nylon 6, were detected in the GIT of these fishes. The study unveiled a significant correlation (r2 = 0.223, p = 0.013) between MP incidence and the total length of fish. The polymer hazard index of the selected fishes showed the risk category IV (Danger), which is alarming. A risk category IV indicates that exposure to polymer, directly or indirectly through the food chain, may result in severe health consequences for humans as well as wildlife. With these detailed insights into MPs in most consumable fishes, the study highlights the comprehensive risks posed by MPs that could be useful for strategies to mitigate this environmental challenge.
Collapse
Affiliation(s)
- Razat Suvra Das
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - S M Mahatab Uddin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sedat Gündoğdu
- Department of Basic Sciences, Faculty of Fisheries, Cukurova University, Adana, 01330, Turkey
| | - Jannatul Kubra Afrin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nusrat Jahan
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Rubaet Bin Abedin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | - M Golam Mustafa
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, 389 25, Czech Republic.
| |
Collapse
|
5
|
Santonicola S, Volgare M, Olivieri F, Cocca M, Colavita G. Natural and Regenerated Cellulosic Microfibers Dominate Anthropogenic Particles Ingested by Commercial Fish Species from the Adriatic Sea. Foods 2025; 14:1237. [PMID: 40238492 PMCID: PMC11988341 DOI: 10.3390/foods14071237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated the occurrence of fibrous microplastics and natural and artificial cellulose microfibers in the gastrointestinal tracts of Mullus barbatus and Merluccius merluccius specimens from the Adriatic Sea (Central Mediterranean), an important hotspot for marine litter accumulation. Red mullet and European hake were chosen due to their roles as bioindicators of marine pollution in the Mediterranean, and their economic relevance as fishery resources. Microfibers were found in 72% of M. barbatus and 68% of M. merluccius, at levels ranging from 1 to 67 particles/individual. Most of the microfibers extracted were textile fibers that were blue (33.6%), clear (26.1%), and black (20.3%) in color, while the length distribution showed the prevalence of microfibers in the size range of 350-950 µm. This visual identification, corroborated by the micro-FTIR analysis of a sub-sample of microfibers, revealed that natural and artificial cellulose microfibers were more common (80%) than fibrous microplastics. The results confirmed that both of these fish species are susceptible to microfiber ingestion and indicated the high availability of natural and artificial cellulosic fibers in the Adriatic Basin. Despite the increased evidence of microfiber pollution in the marine ecosystem, only a limited number of studies examine natural/artificial microfiber contamination and ingestion by marine biota. Therefore, greater attention should be given to this new type of contaminant, considering its implications in terms of environmental health, food security, and food safety.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (S.S.); (G.C.)
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Federico Olivieri
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (S.S.); (G.C.)
| |
Collapse
|
6
|
Dawson AL, Santana MFM, Perez M, Meehan K, McCarthy H, Vickers K, Motti CA. Rapid egestion of microplastics in juvenile barramundi: No evidence of gut retention or tissue translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125884. [PMID: 39984021 DOI: 10.1016/j.envpol.2025.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Despite many reports of large microplastics being isolated from fish muscle, there are limited exposure studies documenting the transport of microplastics >10 μm from the gastrointestinal tract (GIT) to surrounding tissues. Moreover, egestion rates of microplastics are not commonly studied, especially for carnivorous fish. In this study, experimental data and a literature meta-analysis were combined to understand microplastic translocation to fish tissue and egestion rates. Juvenile barramundi (Lates calcifer) were exposed through their diet to polyamide (PA) fibres and polyethylene terephthalate (PET) fibres and fragments (8-547 μm in length) to determine if shape, size, and polymer type influence microplastic translocation and egestion rates. Despite the high concentration (∼5000 microplastics g-1) and variable range of PET sizes and shapes used, their translocation from the GIT into other tissues was not observed, thus demonstrating PET fragments and fibres are unlikely to accumulate within barramundi. Moreover, more than 90% of all ingested PET microplastics were egested in less than 24 h, with only one small fragment persisting to 96 h post exposure. Elimination half-lives ranged from 9.2 to 12.2 h, with small PET fragments egested at a faster rate than the larger PET fragments and fibres but with no significant differences. Due to methodological challenges, PA fibres were unable to be quantified amongst the digesta. The meta-analysis of published fish egestion rates revealed that, when considering multiple fish, gut morphology (i.e., presence of a true stomach) rather than microplastic size and shape influenced egestion rates across species. The results presented here demonstrate no concrete evidence for GIT accumulation or translocation into tissue with rapid and efficient egestion of ingested microplastics by fish. These results suggest microplastics are not likely to bioaccumulate in barramundi and/or directly impact their associated food web.
Collapse
Affiliation(s)
- Amanda L Dawson
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia.
| | - Marina F M Santana
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Michelle Perez
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Kelley Meehan
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; School of the Environment, University of Queensland, St Lucia, QLD 4067, Australia
| | - Hannah McCarthy
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Keegan Vickers
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
7
|
Noor SY, Riani E, Hariyadi S, Butet NA, Cordova MR. Microplastic accumulation in respiratory and digestive systems of selected fish from Banten Bay, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:454. [PMID: 40117009 DOI: 10.1007/s10661-025-13933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Microplastics pose a significant environmental threat as they can be consumed directly or indirectly by various marine organisms. This investigation explores the ecological hazards of microplastic pollution in marine life, with an emphasis on fish in Banten Bay, Indonesia. The sampling spots were in Banten Bay where traditional fishing gears known as "bubu" were used and nets. This study represents an inaugural examination of microplastic contamination in selected fish species including Gambusia affinis, Stolephorus indicus, Scatophagus argus, Epinephelus coioides, Rastrelliger sp., Parapenaeopsis sculptilis, and Leiognathus sp. As a result, microplastics were detected in each fish, with a notable increase in concentrations within the gills (7.85 ± 3.54 items/ind) as opposed to the digestive tract (4.95 ± 2.15 items/ind). Their presence indicated a significant difference (p < 0.01), primarily observed as fragments and filaments. Nine distinct polymer types were identified with FT-IR in fish samples collected from Banten Bay, including polyethylene terephthalate, polyvinyl chloride, polyester, polyurethane, ethylene propylene, polypropylene, polyethylene, polystyrene and polyphenylene sulfide. Microplastics were primarily detected within the size range of 20 to 4510 µm. Microplastic contamination in fish causes detrimental implications on aquatic ecosystems and human health, since the particles exist in the food chain, altering the biological activities of fish, and potentially posing hazards to consumers. Considering the closeness of Banten Bay to Indonesia's capital and economic hub, immediate preventive actions are essential to safeguard human health and the ecosystem. Additional investigation into plastic degradation and waste management is crucial for comprehending the origins of contamination. The results establish a foundation for continuous monitoring of microplastic risks in Banten Bay and other swiftly evolving coastal ecosystems in Northeast Asia.
Collapse
Affiliation(s)
- Sri Yuningsih Noor
- Department of Fisheries and Marine Science, Faculty of Agriculture, Gorontalo University, Gorontalo, 96211, Indonesia.
- Graduate School of IPB University, Bogor, 16680, Indonesia.
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Sigid Hariyadi
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Nurlisa Alias Butet
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| |
Collapse
|
8
|
Pasalari M, Esmaeili HR, Keshavarzi B, Busquets R, Abbasi S, Momeni M. Microplastic footprints in sharks and rays: First assessment of microplastic pollution in two cartilaginous fishes, hardnose shark and whitespotted whipray. MARINE POLLUTION BULLETIN 2025; 212:117350. [PMID: 39731785 DOI: 10.1016/j.marpolbul.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs). For the first time, MPs have been characterized in carnivore demersal elasmobranch specimens of hardnose shark Carcharhinus macloti, and the whitespotted whipray Maculabatis gerrardi. The specimens were from the Persian Gulf and Sea of Oman, and MPs were extracted from their intestines, gills, and skin. MPs were found in every sampled tissue examined: this is higher pollution than previously reported for elasmobranch. The total MPs for these organs were 12.6 MPs/g body mass of sharks, and 17.8 MPs/g in the whiprays on average. The most common MPs found were fibres (59%), and filaments (35%); pointing towards fishing gears and limited wastewater treatment. Fragments, films, and foams were <2.1 %; a less abundant problem. The most abundant MPs sampled were ∼0.5 mm ≤ L< 1 mm (when the limit of detection was 0.1 mm), and blue was the most common MP color hinting intake due to visual confusion. Polycarbonate and nylon were the most abundant polymers in the MPs recovered. The overall findings show that C. macloti and M. gerrardi are vulnerable to plastic and it reflects the critical state of their habitat.
Collapse
Affiliation(s)
- Marzieh Pasalari
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Rosa Busquets
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, United Kingdom
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Mohammad Momeni
- Persian Gulf and Oman Sea Ecological research center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| |
Collapse
|
9
|
Sun W, Liu J, Shi X, Bi Y, Liu H, Xu T. Emamectin Benzoate and Microplastics Led to Skeletal Muscle Atrophy in Common Carp via Induced Oxidative Stress, Mitochondrial Dysfunction, and Protein Synthesis and Degradation Imbalance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3106-3116. [PMID: 39840891 DOI: 10.1021/acs.jafc.4c10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario. Nevertheless, the toxicity and mechanism of EMB and MPs on common carp skeletal muscle have not been elucidated. Therefore, we established exposure models for EMB and MPs, and methods such as hematoxylin and eosin staining, immunofluorescence staining, JC-1 staining, and western blotting were employed to investigate the underlying mechanisms of skeletal muscle damage. The results of in vivo and in vitro experiments indicated that exposure to EMB or MPs led to oxidative stress, which in turn caused mitochondrial fusion/fission imbalance (with decreased Mfn1, Mfn2, and OPA1 and increased DRP1), reduced mitochondrial membrane potential, decreased ATP content, reduced protein synthesis, and increased degradation, ultimately resulting in skeletal muscle atrophy. Joint exposure caused more severe damage than single exposure, and the addition of NAC can effectively alleviate skeletal muscle atrophy. In summary, exposure to EMB and/or MPs induced excessive reactive oxygen species (ROS) production, giving rise to mitochondrial dysfunction and an imbalance in skeletal muscle protein synthesis and degradation, ultimately resulting in skeletal muscle atrophy in common carp.
Collapse
Affiliation(s)
- Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- XiangYa School of Public Health, Central South University, Changsha 410078, P.R. China
| | - Jing Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
10
|
Islam MM, Rayhan ABMS, Wang J, Shamim MAH, Ke H, Wang C, Zheng X, Chen D, Cai M. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178462. [PMID: 39826218 DOI: 10.1016/j.scitotenv.2025.178462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
This research on microplastics (MPs) in marine environments, particularly in Bay of Bengal fish, underscores the limited comprehension of their accumulation and potential health and environmental consequences. The study investigated the abundance of MPs in the organs of nine marine fish species from the north Bay of Bengal, assessing their polymeric risks and implications for human health. The average MPs ingested by each individual was 32.9 ± 3.0 items/ind.10 g-1 predominantly fibers (93.1 %), followed by fragments (6.1 %), with black being the most common color (76.3 %). The primary polymers identified were polyvinyl alcohol (PVA) (19.4 %), polyether sulfone (PES) (10.7 %), polyamide PA (8.7 %), acrylic, and polyethylene (PE), in the 500-5000 (80 %) μm size range. A moderate negative correlation with strong statistical significance was found with girth sizes and MPs concentration of average (Pearson's r = -0.5728, p < 0.0001). Body weight exhibited moderate negative correlations with MPs abundance in fish tissues (Pearson's r = -0.4701, p < 0.0001). Movement behavior analysis showed a negative correlation between MPs in fish tissues and depth range (Pearson's r = -0.4231, p < 0.0001). Demersal species contained more MPs than pelagic species, and carnivorous fishes had higher MPs levels than omnivorous and planktivorous fishes. The contamination factors (CF), pollution load index (PLI), and polymeric hazard index (PHI) were high and associated with untreated industrial and municipal wastewater sources. The estimated daily intake (EDI) of MPs for adults and children indicates significant health risks. The study improves our comprehension of MPs contamination, providing a significant reference for the appropriate governance, tracking, and reducing pollutants in marine animals in coastal waters.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China; Marine Fisheries Academy, Chittagong 4000, Bangladesh
| | - A B M Sadique Rayhan
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China
| | - Md Ali Hossain Shamim
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Chunhui Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuehong Zheng
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ding Chen
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Ceylan L, Arı H, Erdoğan Ş. The role of habitat preference and feeding strategy on exposure to microplastic pollution in freshwater fish species. CHEMOSPHERE 2025; 370:143921. [PMID: 39653191 DOI: 10.1016/j.chemosphere.2024.143921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Microplastic (MP) pollution has been observed in a variety of ecosystems, but there is a limited number of studies on reservoir ecosystems. The aim of this study was to determine the levels of MP contamination in sediment, water and commercially important fish species (Cyprinus carpio, Perca fluviatilis, Atherina boyeri and Sander lucioperca) collected from the Yamula Reservoir in Türkiye. Water samples were collectes at five stations. Four sediment samples were collected from the lake. As sediments from the lake represent a vital element of the lake ecosystem, they function as a historical archive that reflects alterations in land use and the characteristics of the lake over time. The average amounts of MPs observed in sediment and water samples were 0.12 MP/g and 0.58 MP/m3 respectively. The digestive systems of 30 individuals of each fish species were examined. The highest amount of MP was observed for C. carpio (6 ± 5.9 MP/individual), while the lowest amount of MP was observed for A. boyeri (1.8 ± 1.7 MP/individual). MP abundance in S. lucioperca and P. fluviatilis was 2 ± 2.8 and 4.6 ± 6.3 MP per individual. The most commonly observed polymer types were polypropylene (67%), polyvinyl alcohol (13%), polyethylene resin (13%) and high-density polyethylene (7%). The pollution load indexes determined for each fish species from the highest to the lowest were as follows: 1.83 (C. carpio) 1.6 (S. lucioperca) 1.05 (P. fluviatilis) and, 1 (A. boyeri). The findings of the study indicate that all sampling stations, including both sediment and water, are contaminated with MPs. Furthermore, the results demonstrate that all examined fish species ingest MPs. Additionally, the results indicate that fish inhabiting a wide range of habitats and consuming diverse diets are more susceptible to MP contamination.
Collapse
Affiliation(s)
- Levent Ceylan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye.
| |
Collapse
|
12
|
Özgen Alpaydin A, Uçan ES, Köktürk M, Atamanalp M, Kalyoncu Ç, Yiğit S, Uçar A, Şimşek GÖ, Tertemiz KC, Karaçam V, Ulukuş EÇ, Gürel D, Alak G. Microplastics, as a risk factor in the development of interstitial lung disease- a preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125054. [PMID: 39368622 DOI: 10.1016/j.envpol.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Microplastic (MPs) pollution is a global concern that affects all living organisms, yet research on MP-related disorders in humans, including incidence and symptoms, remains limited. In this study, the presence, composition, and characterization of MPs in bronchoalveolar lavage (BAL), which reflects lung tissue, and blood were examined. Fiberoptic bronchoscopy was performed to collect BAL samples from patients suspected of having interstitial lung disease (ILD) as well as from a control group. MPs were identified and measured using μ-Raman techniques. In BAL samples, the most common MPs color observed was grey/white, with sizes ranging from 4.19 to 792.00 μm. The particle shapes and polymer types identified included polyamide (PA), polyester (PET), polyvinyl chloride (PVC), and polyurethanes (PU). For blood samples, MPs were predominantly grey/white and blue, with sizes ranging from 13.14 to 20. 29 μm. The identified polymers in blood samples included polyamide (PA) and polyethylene (PE). MPs were detected in 10 out of 18 patients (55%) suspected of having ILD, with most of these patients presenting with the fibrotic type of the disease. In the control group, two patients whose BAL samples were positive for MPs were found to have chronic lung disease. This study is the first to explore the relationship between interstitial lung disease (ILD) and microplastics (MPs), revealing a tendency for the presence of MPs in the bronchoalveolar lavage (BAL) of ILD patients, particularly those with a fibrotic phenotype. Further research is needed to determine the cumulative effects of MPs on human health, especially concerning the respiratory system, which is highly exposed to environmental pollutants.
Collapse
Affiliation(s)
- Aylin Özgen Alpaydin
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey.
| | - Eyüp Sabri Uçan
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Mine Köktürk
- Igdir University, Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, Igdir, Turkey
| | - Muhammed Atamanalp
- Ataturk University Department of Aquaculture, Faculty of Fisheries, Erzurum, Turkey
| | - Çisem Kalyoncu
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Salih Yiğit
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Arzu Uçar
- Ataturk University Department of Aquaculture, Faculty of Fisheries, Erzurum, Turkey
| | - Gökçen Ömeroğlu Şimşek
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Kemal Can Tertemiz
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Volkan Karaçam
- Dokuz Eylül University Faculty of Medicine, Department of Thoracic Surgery, Izmir, Turkey
| | | | - Duygu Gürel
- Memorial Healthcare Group, Department of Pathology, Izmir, Turkey
| | - Gonca Alak
- Ataturk University Department of Seafood Processing, Faculty of Fisheries, Erzurum, Turkey.
| |
Collapse
|
13
|
Kılıç E. Abundance and ecological risk of microplastics in commercial fish species from northeastern Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125252. [PMID: 39510301 DOI: 10.1016/j.envpol.2024.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Microplastic pollution in marine environment has attracted the attention of scientists and policy makers. A substantial number of studies have examined the microplastic content in the gastrointestinal tract (GIT) of fish to monitor microplastic (MP) pollution levels in the ambient environment. The aim of the study was to access the microplastic abundance in the commonly consumed fish species and associated ecological risk assessment for consumers. To that end, microplastic presence in the gills and GIT of Boops boops, Mullus barbatus Mullus surmuletus, Saurida undosquamis, Sardina pilchardus, Trachurus mediterraneus, Pagellus erythrinus, Oblada melanurus, Diplous annularis was investigated. The polymer analysis of extracted MPs were done using Fourier transform infrared (FTIR) spectroscopy. Including all examined specimens, mean MP abundance in the GIT and gills were found as 0.8 ± 1.2 MPs/ind and 0.3 ± 0,7 MPs/ind, respectively. Consistent with the global picture, mainly detected MPs were fiber in shape (79%), black (39%) and blue (37%) in color, and less than 500 μm in size (63%). Polyethylene (21%), polyethylene derivatives (33%) and polypropylene (26%) were the most frequently detected polymers. Ecological risk assessment was calculated by employing polymer risk index, and varied between 4,6 and 27 indicating low to medium hazard risk for examined species. Hazard risk score showed that demersal and bentopelagic fish species were more prone to MP toxicity depending on the toxicity levels of identified polymers. Results indicated that polymer distribution in the marine environment is as significant as the habitat preferences of fish in determining the ecological risk posed by microplastic toxicity.
Collapse
Affiliation(s)
- Ece Kılıç
- İskenderun Technical University, Faculty of Marine Science and Technology, Turkey.
| |
Collapse
|
14
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Farhan M, Yaqin K, Djawad MI. Microplastic's Contamination in the Hemolymph and Organs (Gills and Hepatopancreas) of Perna viridis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:321-334. [PMID: 39384581 DOI: 10.1007/s00244-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
The issue of microplastics (MPs) has emerged as a significant concern globally, with discussions surrounding the potential environmental impact of these tiny plastic particles becoming increasingly prevalent. This study aimed to identify the concentration and characteristics of MPs in hemolymph and organs (gills and hepatopancreas) of green mussels (Perna viridis) that are frequently consumed by people in Pangkajene Kepulauan, South Sulawesi Province, Indonesia. Green mussels were collected from two different sampling sites for comparison. Screening was carried out on dispensed hemolymph and dissected organs to identify the characteristics of MPs. Surface seawater sampling was added as information on MP's characteristics from the mussel habitat. Visual observation of MP's characteristics using a stereomicroscope in laminar flow is to prevent contamination. The identification of MP's polymer type is using FTIR-ATR. The results showed that hemolymph, hepatopancreas, gills, and surface water were concentrated with MPs. Small (2-3.9 cm) green mussels accumulated more MPs than medium (4-5.9 cm) and large (> 6 cm). MPs characteristics of fiber shape, transparent color, and size 0.1-0.5 mm were dominant in all samples. A total of seven polymers of MPs were identified with polyethylene and polystyrene types most frequently found from all samples. Based on this study, green mussels are good for biomonitoring of MPs.
Collapse
Affiliation(s)
- Muh Farhan
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| | - Khusnul Yaqin
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia.
| | - Muhammad Iqbal Djawad
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| |
Collapse
|
16
|
Yun X, Liang L, Tian J, Li N, Chen Z, Zheng Y, Duan S, Zhang L. Raman-guided exploration of placental microplastic exposure: Unraveling the polymeric tapestry and assessing developmental implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135271. [PMID: 39038382 DOI: 10.1016/j.jhazmat.2024.135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
The prevalence of microplastics in human tissues and their potential reproductive toxicity have been increasingly documented, yet their appearance in the placenta and the impact of microplastic exposure on human fertility and pregnancy remains uncertain. Utilizing an inVia™ confocal Raman microspectroscopy by Renishaw equipped with a detection threshold as low as 0.25 µm, our study examined the microplastics in the placentas of 50 women post-delivery and investigated their correlations with gestational age, and neonatal length and weight. We found that 40 microplastic particles were identified across 31 of 50 placentas, averaging 2.35 ± 1.25 µm in size and ranging from 1.03 to 6.84 µm. Seven distinct polymer types were detected, with PTFE, PS, and ABS being the most prevalent. Notably, no significant difference across the normal, PTFE, and PS groups for all demographic variables examined was identified, nor as pathological alterations of placental tissues. In conclusion, our findings demonstrate the presence of seven microplastic polymers in human placentas, with PTFE, PS, and ABS being the most prevalent. However, maternal and neonatal parameters were not affected, and further studies are necessary to elucidate the effects of microplastics on developmental outcomes and fetal health.
Collapse
Affiliation(s)
- Xiang Yun
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China; School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Liyang Liang
- Department of Surgery-oncology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Zhen Chen
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Yongfei Zheng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China.
| |
Collapse
|
17
|
Santonicola S, Volgare M, Rossi F, Castaldo R, Cocca M, Colavita G. Detection of fibrous microplastics and natural microfibers in fish species (Engraulis encrasicolus, Mullus barbatus and Merluccius merluccius) for human consumption from the Tyrrhenian sea. CHEMOSPHERE 2024; 363:142778. [PMID: 38971436 DOI: 10.1016/j.chemosphere.2024.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The occurrence of natural/artificial and synthetic microfibers was assessed in three commercial fish species (Engraulis encrasicolus, Mullus barbatus, Merluccius merluccius) from the Tyrrhenian Sea sold for human consumption. The gastrointestinal tracts of n. 150 samples were analyzed, the isolated microfibers were classified applying a morphological approach, based on the analysis of their morphological features, coupled with the identification of the chemical composition of a subsample of microfibers. All the species contained microfibers at levels ranging from 0 to 49 items/individual and the number of ingested microfibers significantly differed between pelagic and demersal fishes. The evaluation of fiber morphologies highlighted that natural/artificial microfibers were the most numerous among the isolated microfibers, while the dominant colors were blue, black, and clear in all the species. Chemical characterization confirmed the morphological identification and indicated cellulose and polyester as the most common polymer types. Considering the analytical issues that may affect the evaluation of microfiber pollution, the results pointed out the importance of an accurate morphological approach that allows the distinction between different fiber types, before the spectroscopic analyses. Moreover, the implementation of fast and accessible methods to identify microfibers in fish species intended for human consumption will be beneficial also to make an adequate risk assessment to consumer health.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125, Naples, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100, Campobasso, Italy
| | - Rachele Castaldo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy
| |
Collapse
|
18
|
Tepe Y, Aydın H, Ustaoğlu F, Kodat M. Occurrence of microplastics in the gastrointestinal tracts of four most consumed fish species in Giresun, the Southeastern Black Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55336-55345. [PMID: 39227534 DOI: 10.1007/s11356-024-34814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Yalçın Tepe
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye.
| | - Handan Aydın
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Fikret Ustaoğlu
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Murat Kodat
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| |
Collapse
|
19
|
Conger E, Dziobak M, McCabe EJB, Curtin T, Gaur A, Wells RS, Weinstein JE, Hart LB. An analysis of suspected microplastics in the muscle and gastrointestinal tissues of fish from Sarasota Bay, FL: exposure and implications for apex predators and seafood consumers. ENVIRONMENTS 2024; 11:185. [PMID: 39391169 PMCID: PMC11466323 DOI: 10.3390/environments11090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins (Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics (particles <5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n=89), and 97% of GI samples (n=86). Particle abundance and shapes varied by species (p<0.05) and foraging habit (omnivore vs. carnivore, p<0.05). Pinfish (Lagodon rhomboides) had the highest particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has implications for dolphins as they are a common prey item. Findings from this study support research demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion exposure for wildlife and potentially seafood consumers.
Collapse
Affiliation(s)
- Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Elizabeth J Berens McCabe
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| | - Ayushi Gaur
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Randall S Wells
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Leslie B Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| |
Collapse
|
20
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
21
|
Sreeparvathi CK, Amal R, Remia KM, Devipriya SP. Ecological assessment of microplastic contamination in surface water and commercially important edible fishes off Kadalundi estuary, Southwest coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:735. [PMID: 39009737 DOI: 10.1007/s10661-024-12900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
This study focuses on the Kadalundi estuary, Kerala's first community reserve, investigating the prevalence and impacts of microplastics on both the estuarine environment and selected fish species. This study presents the initial evidence indicating the consumption of microplastic particles by 12 commercially important edible fish species inhabiting the Kadalundi estuary. Analysis revealed significant accumulations of microplastic fibers within the surface water. In examining 12 fish species from demersal and pelagic habitats, microplastics were found in both the gastrointestinal tracts and gills. In the digestive tracts, microplastic fragments constituted the highest proportion (46%), while in the gills, microplastic fibers were dominant (52.4%). This study observed a prevalence of blue microplastics over other colors in both water and fish samples. Notably, demersal species showed a higher incidence of ingested microplastics. Polymer analysis identified Polypropylene (PP), Nylon, Low-Density Polyethylene (LDPE), Polyethylene (PE), Polypropylene isotactic (iPP), PE 1 Octene copolymer, and Rayon in water samples, while fish samples predominantly contained LDPE, PP, PE, and Nylon. Risk assessment utilizing the Polymer Hazard Index (PHI) categorized certain polymers as posing minor to moderate risks. Pollution Load Index (PLI) computations indicated moderate to high levels of microplastic contamination across various sampling sites in the estuary. Principal Component Analysis (PCA) revealed a lack of correlation between fish size and microplastic ingestion, underscoring environmental factors' influence on microplastic intake. The study emphasizes the implications of microplastic pollution on the fragile ecosystem of the Kadalundi estuary, posing potential risks to biodiversity and human health.
Collapse
Affiliation(s)
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Kulamullathil Maroli Remia
- Department of Zoology, MES Mampad College (Autonomous), Affiliated to University of Calicut, Malappuram, Kerala, India
| | | |
Collapse
|
22
|
Matias RS, Gomes S, Barboza LGA, Almeida CMR, Marques A, Guilhermino L, Valente LMP. Occurrence of microplastics and metals in European seabass produced in different aquaculture systems: Implications for human exposure, risk, and food safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172535. [PMID: 38641109 DOI: 10.1016/j.scitotenv.2024.172535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (μFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luis Gabriel A Barboza
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura, Valorização e Bioprospeção, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Gayathri V, Pavithra R, Thangal SH, Ganapathy S, Gurusaravanan P, Santhanam P, Radhakrishnan S, Muralisankar T. Incidence of microplastics in Indian anchovy Stolephorus indicus from Tuticorin, Southeast coast of India. MARINE POLLUTION BULLETIN 2024; 202:116406. [PMID: 38677108 DOI: 10.1016/j.marpolbul.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In the present study, the occurrence of microplastics (MPs) in the gut, gill, and muscle of edible fish Stolephorus indicus sampled from Tuticorin coastal regions of Tamilnadu, India was investigated. We recorded a total of 689 MPs which includes 510 and 179 MPs from males and females respectively. The total abundance of MPs was significantly (P < 0.05) higher in the gut followed by gills and muscle. The sex-wise distribution of average MPs showed high in the females' gut and compared to that in males. Further, the length wise distribution of MPs was higher in the muscle in both male and female fish, followed by other organs. The predominance of MPs in tissues were transparent and blue colour with fibers and fragments in both males and females. Besides, polyethylene terephthalate and nylon were evidenced by the Fourier-transform infrared spectroscopy spectrum in all organs of fishes.
Collapse
Affiliation(s)
- Velusamy Gayathri
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raj Pavithra
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Said Hamid Thangal
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Selvam Ganapathy
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | | | - Perumal Santhanam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, -620024, Tamilnadu, India
| | - Subramanian Radhakrishnan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | | |
Collapse
|
24
|
Alves NM, Rodriguez J, Di Mauro R, Rodríguez JS, Maldonado D, Braverman MS, Temperoni B, Diaz MV. Like noodles in a soup: Anthropogenic microfibers are being ingested by juvenile fish in nursery grounds of the Southwestern Atlantic Ocean. MARINE POLLUTION BULLETIN 2024; 202:116368. [PMID: 38678732 DOI: 10.1016/j.marpolbul.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The balance between marine health and ecosystem sustainability confronts a pressing threat from anthropogenic pollution. Estuaries are particularly susceptible to contamination, notably by anthropogenic microfibers originated from daily human activities in land and in fishing practices. This study examines the impact of anthropogenic microfibers on the whitemouth croaker in an estuarine environment of the Southwestern Atlantic Ocean during cold and warm seasons. The presence of anthropogenic microfibers was revealed in 64 % of juvenile gastrointestinal tracts, and 94 % of water samples, and concentrations were influenced by factors such as temperature, bay zone, and fish body length. Blue and black anthropogenic microfibers, with a rather new physical aspect, were dominant. This study highlights the impact of microfibers in a heavily anthropized body of water, subject to federal and local regulations due to the presence of commercially significant fish species inhabiting this area.
Collapse
Affiliation(s)
- Nadia M Alves
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Julieta Rodriguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Rosana Di Mauro
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina.
| | - Julieta S Rodríguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - David Maldonado
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Mara S Braverman
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Brenda Temperoni
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Marina V Diaz
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| |
Collapse
|
25
|
Aramendia J, García-Velasco N, Amigo JM, Izagirre U, Seifert A, Soto M, Castro K. Evidence of internalized microplastics in mussel tissues detected by volumetric Raman imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169960. [PMID: 38211850 DOI: 10.1016/j.scitotenv.2024.169960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Microplastics are a global ecological concern due to their potential risk to wildlife and human health. Animals ingest microplastics, which can enter the trophic chain and ultimately impact human well-being. The ingestion of microplastics can cause physical and chemical damage to the animals' digestive systems, affecting their health. To estimate the risk to ecosystems and human health, it is crucial to understand the accumulation and localization of ingested microplastics within the cells and tissues of living organisms. However, analyzing this issue is challenging due to the risk of sample contamination, given the ubiquity of microplastics. Here, an analytical approach is employed to confirm the internalization of microplastics in cryogenic cross-sections of mussel tissue. Using 3D Raman confocal microscopy in combination with chemometrics, microplastics measuring 1 μm in size were detected. The results were further validated using optical and fluorescence microscopy. The findings revealed evidence of microplastics being internalized in the digestive epithelial tissues of exposed mussels (Mytilus galloprovincialis), specifically within the digestive cells forming digestive alveoli. This study highlights the need to investigate the internalization of microplastics in organisms like mussels, as it helps us understand the potential risks they pose to aquatic biota and ultimately to human health. By employing advanced imaging techniques, challenges associated with sample contamination can be overcome and valuable insights into the impact of microplastics on marine ecosystems and human consumers are provided.
Collapse
Affiliation(s)
- Julene Aramendia
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| | - Nerea García-Velasco
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Jose Manuel Amigo
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Andreas Seifert
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Kepa Castro
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| |
Collapse
|
26
|
Nejat N, Sattari M, Mohsenpour R, Shi X, Rasta M. Microplastics abundance, distribution and composition in surface waters, sediments and fish species from Amir-Kalayeh Wetland, Northern Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22024-22037. [PMID: 38400964 DOI: 10.1007/s11356-024-32627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) pollution is considered as a globally pervasive threat to aquatic ecosystems and many studies reported this pollution in different aquatic ecosystems. However, studies on MPs pollution in wetlands are still scarce. Therefore, the aim of present study was to investigate the presence of MPs in the surface water, sediment and different fish species of Amir-Kalayeh wetland, Northern Ian. Surface water and sediment samples were collected from six stations during June to July 2022. Moreover, the gills and gastrointestinal tract (GIT) of 54 fish specimens belonging to four species including Cyprinus carpio, Tinca tinca, Esox lucius and Silurus glanis were analysed. MPs were detected in all samples with an average of 2.15 ± 1.98 items/m3 for surface water, 51.66 ± 32.20 items/kg dry weight for sediments, 0.17 ± 0.17 items/individual for fish GIT and 0.12 ± 0.12 items/individual for fish gills. There was no significant relationship between MPs abundance in surface waters and sediments as well as between MPs abundance in environmental matrices and fish (P > 0.0.5). In terms of feeding habit, no significant differences were observed between the number of MPs found in omnivorous and carnivorous fish species (P > 0.05). Moreover, no significant relationship was detected between the MPs abundance in fish tissues and body size (P > 0.05). MPs were mainly fibers, mostly transparent, and in a range size of 70-5000 µm. The dominant MPs type was nylon in all samples. This study will help increase our knowledge about MPs pollution in inland freshwater systems and suggests that management policies take essential steps to reduce this insidious problem in freshwater ecosystems.
Collapse
Affiliation(s)
- Narges Nejat
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
- Department of Marine Biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
| | - Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China
| | - Majid Rasta
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China.
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
27
|
Lazăr NN, Simionov IA, Petrea ȘM, Iticescu C, Georgescu PL, Dima F, Antache A. The influence of climate changes on heavy metals accumulation in Alosa immaculata from the Danube River Basin. MARINE POLLUTION BULLETIN 2024; 200:116145. [PMID: 38354592 DOI: 10.1016/j.marpolbul.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This research report provides a comprehensive overview of the historical trends in heavy metal concentrations in the Pontic shad (Alosa immaculata) populations from both the Danube River and the Black Sea, while also exploring the potential influence of global warming on metal accumulation. Through bibliometric modeling analysis, it reveals significant limitations in existing international research, particularly the lack of comprehensive data on the impact of hydroclimatic changes on heavy metal accumulation in Alosa immaculata. Recognizing the critical importance of studies on heavy metal bioaccumulation in Danube shad, this research underscores their significance in defining tolerance thresholds, quantifying the impact of toxic elements along the aquatic food chain, and enhancing the economic sustainability of ichthyofauna monitoring efforts. Furthermore, these studies contribute invaluable insights into the complex dynamics of aquatic ecosystems, offering essential decision-making support for optimizing commercial fishing management practices on the Danube and ensuring robust support systems for industrial fishing endeavors.
Collapse
Affiliation(s)
- Nina-Nicoleta Lazăr
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania
| | - Ira-Adeline Simionov
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania.
| | - Ștefan-Mihai Petrea
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| | - Cătălina Iticescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Puiu-Lucian Georgescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Floricel Dima
- Institute for Research and Development in Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211, Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Enginnering and Agronomy in Braila, 111 Domnească Street, 800008 Galaţi, Romania
| | - Alina Antache
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| |
Collapse
|
28
|
Di Fiore C, Ishikawa Y, Wright SL. A review on methods for extracting and quantifying microplastic in biological tissues. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132991. [PMID: 37979423 DOI: 10.1016/j.jhazmat.2023.132991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Literature about the occurrence of microplastic in biological tissues has increased over the last few years. This review aims to synthesis the evidence on the preparation of biological tissues, chemical identification of microplastic and accumulation in tissues. Several microplastic's extraction approaches from biological tissues emerged (i.e., alkaline, acids, oxidizing and enzymatic). However, criteria used for the selection of the extraction method have yet to be clarified. Similarly, analytical methodologies for chemical identification often does not align with the size of particles. Furthermore, sizes of microplastics found in biological tissues are likely to be biologically implausible, due to the size of the biological barriers. From this review, it emerged that further assessment are required to determine whether microplastic particles were truly internalized, were in the vasculature serving these organs, or were an artefact of the methodological process. The importance of a standardisation of quality control/quality assurance emerged. Findings arose from this review could have a broad implication, and could be used as a basis for further investigations, to reduce artifact results and clearly assess the fate of microplastics in biological tissues.
Collapse
Affiliation(s)
- Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, I-86100 Campobasso, Italy.
| | - Yukari Ishikawa
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| | - Stephanie L Wright
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
30
|
Lu HC, Smith JL, Ziajahromi S, Leusch FDL. Microplastics and other anthropogenic fibres in large apex shark species: Abundance, characteristics, and recommendations for future research. CHEMOSPHERE 2024; 349:140957. [PMID: 38128742 DOI: 10.1016/j.chemosphere.2023.140957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Microplastics and microfibres are found ubiquitously in global oceans as well as marine organisms from different trophic levels. However, little is known about the presence of microplastics and microfibres in marine megafauna, such as sharks. This study provided the first investigation of the presence of microplastics and other anthropogenic fibres (i.e., cellulose based fibres) in intestine and muscle samples of four large apex shark species in Australian coastal waters. Microplastics and other anthropogenic fibres were found in 82% of the analysed intestine samples. The mean abundance in intestine samples was 3.1 ± 2.6 particles/individual, which corresponded to 0.03 ± 0.02 particles/g of intestine, across all shark species. The size of particles ranged from 190 to 4860 μm in length with 92% being fibrous in shape and the rest fragments. FTIR spectroscopy identified that 70% of fibres were cellulose-based followed by polyethylene terephthalate (PET), while the fragments were polyethylene and polypropylene. In shark muscles, 60% of samples contained microplastics and other anthropogenic fibres, again with the majority being cellulose-based fibres followed by PET fibres. Methodological differences hinder a more comprehensive assessment of microplastic contamination across studies. Additionally, we identified some challenges which should be factored in for future studies looking at the presence of microplastics as well as other anthropogenic fibres in these large marine organisms. Overall, the findings provide first evidence of microplastics and other anthropogenic fibres not only in the intestines, but also in muscle tissues of large apex shark species.
Collapse
Affiliation(s)
- Hsuan-Cheng Lu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast Campus, Southport QLD 4222, Australia.
| | - Julia L Smith
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast Campus, Southport QLD 4222, Australia
| | - Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast Campus, Southport QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast Campus, Southport QLD 4222, Australia
| |
Collapse
|
31
|
da Costa ID, Costa LL, Zalmon IR. Are fishes selecting the trash they eat? Influence of feeding mode and habitat on microplastic uptake in an artificial reef complex (ARC). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166788. [PMID: 37666344 DOI: 10.1016/j.scitotenv.2023.166788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Every year, coastal countries generate ∼275 million tons of plastic, and the oceans receive from 4.8 to 12.7 million tons3. Pollution by synthetic polymers is even more problematic for the environment when this material is fragmented into small portions, forming microplastics (MPs). In the present study, we analyze the selection of MPs by the ichthyofauna based on the availability of the morphotypes and polymeric composition of microplastic in the environment and compare the amount of MP in surface water, water column, sediments and fish in different organs, trophic categories, habitats and areas with and without artificial reefs. In order to achieve this goal, the shape, color, abundance and chemical composition of MPs in the digestive tract and gills of 18 fish species in artificial reefs area and control area, were evaluated. A total of 216 fish were analyzed, and 149 (60 %) had MPs in at least one organ and showed a mean concentration of 1.55 ± 3.31 MPs/g. Of the 18 fish species collected in the reef complex area, 17 (94 %) included individuals with at least one MP in digestive tract or gills. Four species showed the higher selectivity of MP types, colors, and polymers. More MPs were found in the fish, surface water, water column and sediment in the artificial reef area compared to the control areas. This is the first evidence of MP selection by commercially important fish species in artificial marine structures worldwide. These results provide useful information on MP pollution in RAs and highlight yet another issue that must be considered in the management of fisheries resources in the region and in other reef complexes around the world.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua 28470-000, Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Lopes C, Ambrosino AC, Figueiredo C, Caetano M, Santos MM, Garrido S, Raimundo J. Microplastic distribution in different tissues of small pelagic fish of the Northeast Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166050. [PMID: 37543340 DOI: 10.1016/j.scitotenv.2023.166050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The accumulation of microplastics (MP) by marine species of ecological and commercial interest represents a major concern, particularly for those present in human diet. This study analysed the accumulation of MP in three species of coastal pelagic fish with high commercial value, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus) and horse mackerel (Trachurus trachurus), collected along the Western coast of the Iberian Peninsula. The gastrointestinal tract (GT), gills and muscle were analysed and a total of 504 particles were observed. MP were found in all target tissues of the studied species. Horse mackerel exhibited significantly higher concentrations of microplastics in GT compared to other tissues. On the other hand, anchovies and sardines had significantly lower microplastic concentrations in their muscle tissue. The accumulation of microplastics in the gills showed a significant difference between species, with anchovy having significantly higher concentrations compared to horse mackerel. Horse mackerel had the highest percentage of individuals with microplastics in their GT (92 %), followed by sardine (75 %) and anchovy (50 %). Horse mackerel was also the species that registered the highest percentage of individuals with particles in the muscle (63 %), followed by anchovy (40 %) and finally sardine (39 %). MP in the gills of European sardines and anchovies were similar to those found in water samples. The majority of MP found measured <0.5 mm and were blue fibers. Furthermore, the presence of MP in the GT showed a weak and moderated significant negative correlation with the Fulton Condition Index in horse mackerel and European sardine. Our study confirms the ubiquitous extent of MP contamination in the ocean and provides baseline evidence of MP tissue distribution in three small pelagic fish species with distinct feeding behaviour, while correlating this with the presence of MP in water. Importantly, the results of this study contribute to improve the understanding of biological partitioning of MP in open sea fish species with high commercial relevance, and the potential deleterious effects of our increasingly MP contaminated world.
Collapse
Affiliation(s)
- Clara Lopes
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| | - Ana C Ambrosino
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Cátia Figueiredo
- CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Susana Garrido
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisbon, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
33
|
Rasta M, Khodadoust A, Rahimibashar MR, Taleshi MS, Sattari M. Microplastic Pollution in the Gastrointestinal Tract and Gills of Some Teleost and Sturgeon Fish from the Caspian Sea, Northern Iran. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2453-2465. [PMID: 37530412 DOI: 10.1002/etc.5725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
The increasing microplastic pollution in the marine environment has raised global concern. The main risk of microplastics in aquatic ecosystem is their bioaccumulation in aquatic organisms. A few studies have reported microplastic pollution in the digestive system of Caspian Sea fish species, but there is no research on sturgeon species, nor on fish gills. We investigated the occurrence of microplastics in the gastrointestinal tract (GIT) and gills of 62 specimens belonging to four species including three teleosts (Cyprinus carpio, Rutilus kutum, and Chelon aurata) and one sturgeon (Acipenser persicus, a valuable endangered species) from the Caspian Sea between January and March 2022. Fish tissues were removed, exposed for 24 h to 10% KOH, and then dried on filter paper. Particles were observed under a stereomicroscope and analyzed by Raman microspectrometry, scanning electron microscopy, and energy-dispersive spectroscopy. A total of 91 microplastics were detected in the GIT (average of 1.46 ± 1.17 items/individual) and 63 microplastics in the gills (average of 1.01 ± 0.62 items/individual). A significant correlation was not found between the number of microplastics found in both tissues and fish body length, body weight, GIT weight, and gill weight (p > 0.05), except between microplastics isolated from gills and gill weight in C. carpio (rs = 0.707, p = 0.022). The abundance of microplastics in fish followed the order of A. persicus > C. aurata > R. kutum > C. carpio. The microplastics were in the size range of 45 to 5000 µm, with particles of 300 to 1000 µm being the most prevalent; 74.68% of the particles were shaped like fibers, 30.53% were red, and 70.6% were composed of nylon polymer. Environ Toxicol Chem 2023;42:2453-2465. © 2023 SETAC.
Collapse
Affiliation(s)
- Majid Rasta
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Ali Khodadoust
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | | | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
- Department of Marine Biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
34
|
Vidal A, Phuong NN, Métais I, Gasperi J, Châtel A. Assessment of microplastic contamination in the Loire River (France) throughout analysis of different biotic and abiotic freshwater matrices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122167. [PMID: 37437763 DOI: 10.1016/j.envpol.2023.122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The contamination of microplastics (MP) in freshwater environments represent a major way for the MP transport in the environment. The assessment of MP pollution in freshwater compartments is then important to visualize the pressure and the impacts on medium, and to set up necessary measures. In this context, this study focused on the influence of anthropogenic activities of a medium French city (Angers) on MP levels in samples collected from the Loire River, the longest river in France. Abiotic and biotic matrices were collected upstream and downstream Angers. A first analysis was performed based on microscopy to determine the size, colour and shape of suspected MP and a complementary analysis by μ-FTIR (micro-Fourier Transform InfraRed) was conducted to determine the composition of plastic particles. Three organisms belonging to different trophic levels were studied: when the MP level was expressed per individual, the lowest abundance of MP was found in Tubifex sp. Followed by Corbicula fluminea, while the highest was measured in Anguilla anguilla. To establish the relationship with their habitat, the presence of MP in sediment and water was also analysed. Therefore, this works constitutes a complete overview of the MP levels in freshwater abiotic and biotic matrices. Overall, the presence of MP in analysed samples did not follow a particular pattern, neither in the sites nor matrices: the characteristics depending on a multifactorial outcome (feeding mode, organism size …). However, correlation of MP pattern between clams and sediment was quite evident, while the one between worms and their habitat was not. This demonstrates the relevance of investigating plastic contamination both in biotic and abiotic matrices. Finally, a standardisation of sampling and analytical analysis protocols would be helpful to make comparisons between studies more robust.
Collapse
Affiliation(s)
- Alice Vidal
- Laboratoire BIOSSE, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France.
| | - Ngoc-Nam Phuong
- Laboratoire Eau et Environnement, Université Gustave Eiffel, Allée des Ponts et Chaussées, 44340, Bouguenais, France
| | - Isabelle Métais
- Laboratoire BIOSSE, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Johnny Gasperi
- Laboratoire Eau et Environnement, Université Gustave Eiffel, Allée des Ponts et Chaussées, 44340, Bouguenais, France
| | - Amélie Châtel
- Laboratoire BIOSSE, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| |
Collapse
|
35
|
da Costa ID, Costa LL, Zalmon IR. Microplastics in water from the confluence of tropical rivers: Overall review and a case study in Paraiba do Sul River basin. CHEMOSPHERE 2023; 338:139493. [PMID: 37451634 DOI: 10.1016/j.chemosphere.2023.139493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Rivers are known for carrying out a fundamental role in the transportation of human debris from continental areas to the marine environment and have been identified as hotspots for plastic pollution. We characterized microplastics (MPs) along confluence areas in the Paraíba do Sul River basin, the biggest river in southeastern Brazil. This water body crosses highly industrialized areas, with the highest population density, and the major water demand in South America. Considering the important ecological function of this extensive watershed and the implications of MP pollution, we evaluate the spatial variation of MP concentration in the confluence areas and upstream from the confluence. Samples were taken from the superficial layer of the water column in February and June 2022, using manta net with 300 μm mesh size. A total of 19 categories and 2870 plastic particles were determined. The confluences areas of rivers showed the highest concentration of MPs, highlighting the confluences of the Paraiba do Sul and Muriaé rivers (0.71 ± 0.25 MP/m3), followed by Paraíba do Sul and Dois Rios rivers (0.42 ± 0.23 MP/m3) and Paraíba do Sul and Pomba rivers (0.38 ± 0.14 MP/m3). Black fibers were the main category, followed by blue fibers and blue fragments. The MPs in the surface waters of Paraíba do Sul River is significantly influenced by the sampling points spatiality. This result corroborates other studies around the world and reinforces the argument that affluents are important sources for the introduction of MPs in larger rivers. Nevertheless, our results provide a better understanding of the different contributing factors and occurrence of MPs in river basins.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, 28470-000, Rio de Janeiro, Brazil; Programa de Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726, Rondônia, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Instituto Solar Brasil de Desenvolvimento Saúde e Pesquisa, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Kumari N, Yadav DK, Yasha, Khan PK, Kumar R. Occurrence of plastics and their characterization in wild caught fish species (Labeo rohita, Wallago attu and Mystus tengara) of River Ganga (India) compared to a commercially cultured species (L. rohita). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122141. [PMID: 37419205 DOI: 10.1016/j.envpol.2023.122141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Ganga River in India is one of the top 10 polluted rivers in the world, yet there is no information on the occurrence of plastics in its wild caught fishes compared to commercially farmed fish species. In the present study, wild fish specimens belonging to nine species were caught along the River Ganga from two locations in Patna (Bihar). Organs (gastrointestinal tract, liver, gills and muscles) of fishes were analyzed for the presence of plastics. Plastics were identified using a stereomicroscope, and polymer types were characterized through FTIR analysis. Out of the nine wild fish species, only three (Labeo rohita, Wallago attu and Mystus tengara) showed presence of plastics in them. In contrast, organs of only one commercial fish species (L. rohita) were analyzed as this was the only fish species commercially farmed and available in local fish market of Gaya (Bihar, India). Specimens of this farmed fish species were procured from selected outlets having their supply from Fish Farm of the Department of Fisheries, Government of Bihar. The average number of plastic particles per fish in wild caught and commercial fishes was found to be 2.5 ± 1.6 and 5.2 ± 2.5, respectively. Further, wild-caught fishes indicated highest presence of microplastics (78.5%), followed by mesoplastics (16.5%) and macroplastics (5.1%). In commercial fishes, presence of microplastics was much higher (99.6%). Fragments (83.5%) represented the prominent microplastic type found in wild-caught fishes while fibers (95.1%) were the major type in commercial fishes. Colored plastic particles (white and blue) were abundant. The column feeder fishes were more plastic contaminated than the bottom feeder fishes. The predominant microplastic polymer type in the Gangetic and farmed fish(es) was polyethylene and poly(ethylene-co-propylene), respectively. This study, for the first time ever, reports plastic pollution in wild fishes of River Ganga (India) compared to farmed species.
Collapse
Affiliation(s)
- Nisha Kumari
- Ecosystem Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824326, India
| | - Devesh Kumar Yadav
- Ecosystem Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824326, India
| | - Yasha
- Ecotoxicology and Cytogenetics Laboratory, Department of Zoology, Patna University, Patna, Bihar, 800005, India
| | - Parimal Kumar Khan
- Ecotoxicology and Cytogenetics Laboratory, Department of Zoology, Patna University, Patna, Bihar, 800005, India
| | - Ram Kumar
- Ecosystem Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824326, India.
| |
Collapse
|
37
|
Duyar HA, Bayrakli B, Altuntas M. Effects of floods resulting from climate change on metal concentrations in whiting (Merlangius merlangus euxinus) and red mullet (Mullus barbatus) and health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:979. [PMID: 37479863 DOI: 10.1007/s10661-023-11534-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023]
Abstract
In this research, the effect of flooding caused by heavy precipitation, postulated to be one of the consequences of climate change, on toxic metal concentrations in two demersal fish species, whiting (Merlangius merlangus euxinus) and red mullet (Mullus barbatus), was investigated. For both demersal fish species, concentrations of Hg, Fe, Cd, Pb, Se, Al, Zn, Cu, Sr, B, Cr, Mn, Ni, Ba, and Li were compared between samples taken from Türkeli, Sinop, Black Sea, before and after the flood event in August 2021. Hg, Mn, Se, Li, B, and Sr metal concentrations increased in whiting and in red mullet in the post-flood samples. Estimated daily intake, target hazard quotient, cancer risk, the maximum allowable daily consumption rate and minimum daily requirements, and health risk analyses indicated that daily consumption of whiting and red mullet was risky due to the heavy metal Hg level after the flood. In addition, it was found that the samples had higher levels of Se than Hg, Se/Hg ratios were above 1, and Se-HBV were positive. Therefore, whiting and red mullet fishing should be restricted for a limited time period in the region.
Collapse
Affiliation(s)
- Hunkar Avni Duyar
- Department of Seafood Processing Technology, Faculty of Fisheries, Sinop University, 57000, Sinop, Turkey
| | - Baris Bayrakli
- Vocational School of Fisheries, Sinop University, 57100, Sinop, Turkey.
| | - Mutlu Altuntas
- Department of Statistics, Faculty of Arts and Science, Sinop University, 57100, Sinop, Turkey
| |
Collapse
|
38
|
My TTA, Dat ND, Hung NQ. Occurrence and Characteristics of Microplastics in Wild and Farmed Shrimps Collected from Cau Hai Lagoon, Central Vietnam. Molecules 2023; 28:4634. [PMID: 37375190 DOI: 10.3390/molecules28124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the occurrence of microplastics (MPs) in the gastrointestinal tracts (GT) and tissues of four common shrimps (including two wild-caught shrimps and two farmed shrimps) collected from a high-diversity lagoon in central Vietnam. The numbers of MP items in greasy-back shrimp (Metapenaeus ensis), green tiger shrimp (Penaeus semisulcatus), white-leg shrimp (Litopenaeus vannamei), and giant tiger shrimp (Penaeus monodon), determined per weight and individual, were 0.7 ± 0.3, 0.6 ± 0.2, 1.1 ± 0.4, and 0.5 ± 0.3 (items/g-ww), and 2.5 ± 0.5, 2.3 ± 0.7, 8.6 ± 3.5, 7.7 ± 3.5 (items/individual), respectively. The concentration of microplastics in the GT samples was significantly higher than that in the tissue samples (p < 0.05). The number of microplastics in the farmed shrimp (white-leg shrimp and black tiger shrimp) was statistically significantly higher than the number of microplastics in the wild-caught shrimp (greasy-back and green tiger shrimps) (p <0.05). Fibers and fragments were the dominant shapes of the MPs, followed by pellets, and these accounted for 42-69%, 22-57%, and 0-27% of the total microplastics, respectively. The chemical compositions determined using FTIR confirmed six polymers, in which rayon was the most abundant polymer, accounting for 61.9% of the MPs found, followed by polyamide (10.5%), PET (6.7%), polyethylene (5.7%), polyacrylic (5.8%), and polystyrene (3.8%). As the first investigation on the MPs in shrimps from Cau Hai Lagoon, central Vietnam, this study provides useful information on the occurrences and characteristics of the microplastics in the gastrointestinal tracts and tissues of four shrimp species that live in different living conditions.
Collapse
Affiliation(s)
- Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University, Hue 53000, Vietnam
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh 70000, Vietnam
| | - Nguyen Quoc Hung
- Center of Analytical Sevices and Experimentation HCMc, Ho Chi Minh 70000, Vietnam
| |
Collapse
|
39
|
Wu L, Dai X, Xu J, Ou D, Wang L, Lin H, He W, Lin H, Du R, Huang H, Li W, Pan Z. Assessment of microplastic contamination in an eastern Pacific tuna (Katsuwonus pelamis) and evaluation of its health risk implication through molecular docking and metabolomics studies. Food Chem 2023; 426:136507. [PMID: 37352712 DOI: 10.1016/j.foodchem.2023.136507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
This work investigated microplastic (MP) pollution in a commercially-important tuna species Katsuwonus pelamis (K. pelamis) from the Eastern Pacific and health implications. 125 MPs were extracted from gills, esophagus, stomachs, intestinal tracts, and muscle of K. pelamis. MPs in the esophagus was the highest, ∼7.6 times higher than that in the gill. Polyester and polyethylene terephthalate (PET) were dominant. Molecular docking implied that PET stabilized the complex via forming 4 new hydrogen bonds that interacted with Arg83, Gln246, Thr267, and Gly268, given that PET can enter glycerol kinase protein active pocket. Metabonomic results suggested that Glycerol 3-phosphate up expressed 1.66 more times that of control groups with no MPs in the muscle. This confirmed that MPs would lie in the glycerol kinase protein active pocket, which triggered menace to K. pelamis. The results provided insights into suggested the potential influence of MPs on the sustainability of fisheries and seafood safety.
Collapse
Affiliation(s)
- Lijun Wu
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaojie Dai
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haitao Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Rupeng Du
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; College of Environment and Ecology, Xiamen University, Xiamen 361105, China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; National Distant-water Fisheries Engineering Research Center, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
40
|
Santonicola S, Volgare M, Cocca M, Dorigato G, Giaccone V, Colavita G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals (Basel) 2023; 13:1736. [PMID: 37889673 PMCID: PMC10252135 DOI: 10.3390/ani13111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/15/2023] Open
Abstract
The omnipresence of microfibers in marine environments has raised concerns about their availability to aquatic biota, including commercial fish species. Due to their tiny size and wide distribution, microfibers may be ingested by wild-captured pelagic or benthic fish and farmed species. Humans are exposed via seafood consumption. Despite the fact that research on the impact of microfibers on marine biota is increasing, knowledge on their role in food security and safety is limited. The present review aims to examine the current knowledge about microfiber contamination in commercially relevant fish species, their impact on the marine food chain, and their probable threat to consumer health. The available information suggests that among the marine biota, edible species are also contaminated, but there is an urgent need to standardize data collection methods to assess the extent of microfiber occurrence in seafood. In this context, natural microfibers should also be investigated. A multidisciplinary approach to the microfiber issue that recognizes the interrelationship and connection of environmental health with that of animals and humans should be used, leading to the application of strategies to reduce microfiber pollution through the control of the sources and the development of remediation technologies.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | | | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
41
|
Aytan Ü, Başak Esensoy F, Şentürk Y, Güven O, Karaoğlu K, Erbay M. Plastic occurrence in fish caught in the highly industrialized Gulf of İzmit (Eastern Sea of Marmara, Türkiye). CHEMOSPHERE 2023; 324:138317. [PMID: 36889476 DOI: 10.1016/j.chemosphere.2023.138317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Occurrence of micro- (<5 mm) and mesoplastics (5-25 mm) in twelve fish species caught off Gulf of İzmit in the Sea of Marmara was investigated. Plastics were found in the gastrointestinal tracks of all the analysed species: Trachurus mediterraneus, Chelon auratus, Merlangius merlangus, Mullus barbatus, Symphodus cinereus, Gobius niger, Chelidonichthys lastoviza, Chelidonichthys lucerna, Trachinus draco, Scorpaena porcus, Scorpaena porcus, Pegusa lascaris, Platichthys flesus. From a total of 374 individuals examined plastics were found in 147 individuals (39%). The average plastic ingestion was 1.14 ± 1.03 MP. fish-1 (considering all the analysed fish) and 1.77 ± 0.95 MP. fish-1 (considering only the fish with plastic). Fibres were the primary plastic types found in GITs (74%), followed by films (18%) and fragments (7%), no foams and microbeads were found. A total of ten different colours of plastics were found with blue (62%) being the most common colour. Length of plastics ranged from 0.13 to 11.76 mm with an average of 1.82 ± 1.59 mm. A total of 95.5% of plastics were microplastics, and 4.5% as mesoplastics. The mean frequency of plastic occurrence was higher in pelagic fish species (42%), followed by demersal (38%) and bentho-pelagic species (10%). Fourier-transform infrared spectroscopy confirmed that 75% of polymers were synthetic with polyethylene terephthalate being the most common polymer. Our results indicated that carnivore species with a preference for fish and decapods were the highest impacted trophic group in the area. Fish species in the Gulf of İzmit are contaminated with plastics, representing a potential risk to ecosystem and human health. Further research is needed to understand the effects of plastic ingestion on biota and possible pathways. Results of this study also provide baseline data for the implementation of the Marine Strategy Framework Directive Descriptor 10 in the Sea of Marmara.
Collapse
Affiliation(s)
- Ülgen Aytan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye.
| | - F Başak Esensoy
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye
| | - Yasemen Şentürk
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye
| | - Olgaç Güven
- Akdeniz University, Faculty of Fisheries, 07070, Antalya, Türkiye
| | - Kaan Karaoğlu
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences Department of Chemical and Chemical Processing Technologies, 53100, Rize, Türkiye
| | - Murat Erbay
- Republic of Türkiye Ministry of Agriculture and Forestry Central Fisheries Research Institute, Trabzon, Türkiye
| |
Collapse
|
42
|
Costa LL, Arueira VF, Silva TN, da Silva Oliveira A, Dos Santos Nascimento L, Sant'Anna MEAS, Viana CF, da Silva KC, Gunner B, Leite V, da Costa ID. Quantifying microplastics in fishes: The first case study contrasting the perspective of untrained and experienced researchers. MARINE POLLUTION BULLETIN 2023; 189:114736. [PMID: 36812717 DOI: 10.1016/j.marpolbul.2023.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Microplastic studies hold a low explored potential for citizen science and environmental education, but methodological issues challenge data produced by non-specialists. We compared microplastic abundance and diversity in the red tilapia Oreochromis niloticus recovered by untrained students with those recovered by researchers that have experience of three years studying the incorporation of this pollutant by aquatic organisms. Seven students dissected 80 specimens and performed digestion of digestive tract in hydrogen peroxide. The solution was filtered and inspected under a stereomicroscope by the students and by two expert researchers. A control treatment consisted of 80 samples handled only by experts. The students overestimated the abundance of fibers and fragments. Striking differences in abundance and richness of microplastics were verified between the fish dissected by students and by expert researchers. Therefore, citizen science projects involving the uptake of microplastics by fish should provide training until a satisfactory level of expertise is reached.
Collapse
Affiliation(s)
- Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Instituto Solar Brasil de Pesquisa e Desenvolvimento - ISOBRAS, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vitor Figueira Arueira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thayanne Nascimento Silva
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ariane da Silva Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leticia Dos Santos Nascimento
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Camyla Freitas Viana
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Kaique Carvalho da Silva
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Bruna Gunner
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Victor Leite
- Instituto Federal Fluminense, Campus Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Igor David da Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Universidade Federal Fluminense, Departamento de Ciências Exatas, Biológicas e da Terra, Santo Antônio de Pádua, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Liu W, Chen X, Liang T, Mu T, Ding Y, Liu Y, Liu X. Varying abundance of microplastics in tissues associates with different foraging strategies of coastal shorebirds in the Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161417. [PMID: 36621485 DOI: 10.1016/j.scitotenv.2023.161417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
With the wide application of plastic products, microplastics are now ubiquitous in coastal wetlands, representing a serious threat to the health of coastal organisms. In East Asia, millions of migratory shorebirds depend on the tidal flats of Yellow Sea in China, and they have experienced rapid populations declines due at least partially to the environmental pollution. However, our understanding about the specific exposures and hazards of microplastics, and the factors affecting the bioavailability of microplastics to different shorebird species remains limited, which hinders our ability to address the potential detrimental effects of microplastic accumulation to these fast-disappearing birds. Therefore, this study aims to assess the risk of microplastic exposure in shorebirds, determine the enrichment of microplastics in different tissues, and establish the relationship between shorebirds' foraging strategies and microplastic intake. We extracted and identified microplastics in different tissues sample from the carcasses of 13 individuals in four shorebird species, and measure the abundance, color, size, and roughness of all microplastics found. Microplastics were found in all species except one red-necked stint (Calidris ruficollis). Polyethylene, silicone, polypropylene, and polyurethane were the main polymers identified in shorebirds. Microplastics found in shorebirds that use mixed tactile and visual foraging strategy were smaller, less rough, and low in color diversity, compared to those found in shorebirds that forage predominately using visual cues. In addition, ingested microplastics were disproportionately enriched in different tissues; in particular, the abundance and size of microplastics in the digestive tract were significantly higher than those in the pectoral muscles. Understanding the stress of microplastics posed to coastal shorebirds is critical to facilitate more effective and targeted measurements in coastal pollution control.
Collapse
Affiliation(s)
- Wei Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaomei Chen
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Liang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Mu
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Yanzhe Ding
- Nantong Marine Environmental Monitoring Center, Ministry of Natural Resources of the People's Republic of China, Nantong 226334, China
| | - Yan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
44
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
45
|
Santonicola S, Volgare M, Di Pace E, Mercogliano R, Cocca M, Raimo G, Colavita G. Research and characterization of fibrous microplastics and natural microfibers in pelagic and benthic fish species of commercial interest. Ital J Food Saf 2023; 12:11032. [PMID: 37064521 PMCID: PMC10102967 DOI: 10.4081/ijfs.2023.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 03/10/2023] Open
Abstract
The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in Engraulis engrasicolus and Mullus barbatus, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.
Collapse
|
46
|
Fan S, Yan Z, Qiao L, Gui F, Li T, Yang Q, Zhang X, Ren C. Biological effects on the migration and transformation of microplastics in the marine environment. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105875. [PMID: 36652887 DOI: 10.1016/j.marenvres.2023.105875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Microplastics(MPs) are ubiquitous, difficult to degrade, and potentially threatening to organisms in marine environment, so it is important to clarify the factors that affect their biogeochemical processes. The impact of biological activities on the MPs in marine environment is ubiquitous and complex, and there is currently a lack of systematic summaries. This paper reviews the effects of biological actions on the migration, distribution and degradation of MPs in marine environment from four aspects: biological ingestion and digestion, biological movement, biological colonization and biological adhesion. MPs in seawater and sediments can be closely combined with organisms through three pathways: biological ingestion, biofilm formation or adhesion to organisms, and are passed between species at different trophic levels through the food chain. The generation and degradation of faecal pellets and biofilms can alter the density of "environmental MPs", thereby affecting their vertical migration and deposition in water bodies. The movement of swimming organisms and the disturbance by benthic organisms can promote the migration of MPs in water and vertical migration and resuspension in sediments, thereby changing the distribution of MPs in local sea areas. The grinding effect of the digestive tract and the secretion of chemicals from the biofilm (such as enzymes and acids) can reduce the particle size and increase surface roughness of MPs, or even degrade them completely. Besides, biological adhesion may be an important mechanism affecting the distribution, migration and preservation of MPs. There may be complex interactions and linkages among marine dynamical processes, photochemical degradation and biological processes that collectively affect the biogeochemical processes of MPs, but their relative contributions remain to be more studied.
Collapse
Affiliation(s)
- Songyao Fan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zezheng Yan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Ling Qiao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316012, China
| | - Feng Gui
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316012, China
| | - Qiao Yang
- ABI Group, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xiaoling Zhang
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Chengzhe Ren
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
47
|
Barboza LGA, Lourenço SC, Aleluia A, Dos Santos NCL, Huang M, Wang J, Guilhermino L. A global synthesis of microplastic contamination in wild fish species: Challenges for conservation, implications for sustainability of wild fish stocks and future directions. ADVANCES IN MARINE BIOLOGY 2023; 94:159-200. [PMID: 37244677 DOI: 10.1016/bs.amb.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Research on the occurrence of microplastics in wild fish populations is a constantly growing area, requiring continuous reviews to properly keep up with the fast pace of publications and guide future work. This review analyses the scientific output of 260 field studies covering 1053 different fish taxa for the presence of microplastics. To date, microplastics have been recorded in 830 wild fish species, including 606 species of interest to commercial and subsistence fisheries. Among these, based on IUCN Red List status, 34 species are globally classified in one of the three threatened categories (Critically Endangered, Endangered or Vulnerable) and another 22 species were assessed as "Near Threatened". Of the species for which the IUCN Red List tracks population trend data, the fish species reported to have microplastics so far include 81 which are recorded as declining, 134 as stable and just 16 as increasing. This review highlights the potential implications of fish microplastic contamination to biodiversity conservation, sustainability of wild fish stocks, and human food safety and security. Finally, recommendations for future research are presented.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Matosinhos, Portugal.
| | - Sara Couto Lourenço
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Matosinhos, Portugal
| | - Alexandre Aleluia
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Matosinhos, Portugal
| | | | - Minrui Huang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China; Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Jun Wang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China; College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lúcia Guilhermino
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Matosinhos, Portugal
| |
Collapse
|
48
|
Khan A, Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience 2023; 26:106061. [PMID: 36818296 PMCID: PMC9929686 DOI: 10.1016/j.isci.2023.106061] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microplastics and nanoplastics (M-NPLs) are ubiquitous environmentally, chemically, or mechanically degraded plastic particles. Humans are exposed to M-NPLs of various sizes and types through inhalation of contaminated air, ingestion of contaminated water and food, and other routes. It is estimated that Americans ingest tens of thousands to millions of M-NPLs particles yearly, depending on socioeconomic status, age, and gender. M-NPLs have spurred interest in toxicology because of their abundance, ubiquitous nature, and ability to penetrate bodily and cellular barriers, producing toxicological effects in cells, tissues, organs, and organ systems. The present review paper highlights: (1) The current knowledge in understanding the detrimental effects of M-NPLs in mouse models and human cell lines, (2) cellular organelle localization of M-NPLs, and the underlying uptake mechanisms focusing on endocytosis, (3) the possible pathways involved in M-NPLs toxicity, particularly reactive oxygen species, nuclear factor-erythroid factor 2-related factor 2 (NRF2), Wnt/β-Catenin, Nuclear Factor Kappa B (NF-kB)-regulated inflammation, apoptosis, and autophagy signaling. We also highlight the potential role of M-NPLs in increasing the incubation time, spread, and transport of the COVID-19 virus. Finally, we discuss the future prospects in this field.
Collapse
Affiliation(s)
- Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC 27412, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC 27412, USA
| |
Collapse
|
49
|
Del Piano F, Lama A, Monnolo A, Pirozzi C, Piccolo G, Vozzo S, De Biase D, Riccio L, Fusco G, Mercogliano R, Meli R, Ferrante MC. Subchronic Exposure to Polystyrene Microplastic Differently Affects Redox Balance in the Anterior and Posterior Intestine of Sparus aurata. Animals (Basel) 2023; 13:ani13040606. [PMID: 36830393 PMCID: PMC9951662 DOI: 10.3390/ani13040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Microplastics (MPs) are pollutants widely distributed in aquatic ecosystems. MPs are introduced mainly by ingestion acting locally or in organs far from the gastroenteric tract. MPs-induced health consequences for fish species still need to be fully understood. We aimed to investigate the effects of the subchronic oral exposure to polystyrene microplastics (PS-MPs) (1-20 μm) in the gilthead seabreams (Sparus aurata) used as the experimental model. We studied the detrimental impact of PS-MPs (25 and 250 mg/kg b.w./day) on the redox balance and antioxidant status in the intestine using histological analysis and molecular techniques. The research goal was to examine the anterior (AI) and posterior intestine (PI) tracts, characterized by morphological and functional differences. PS-MPs caused an increase of reactive oxygen species and nitrosylated proteins in both tracts, as well as augmented malondialdehyde production in the PI. PS-MPs also differently affected gene expression of antioxidant enzymes (i.e., superoxide dismutase, catalase, glutathione reductase). Moreover, an increased up-regulation of protective heat shock proteins (HSPs) (i.e., hsp70 and hsp90) was observed in PI. Our findings demonstrate that PS-MPs are responsible for oxidative/nitrosative stress and alterations of detoxifying defense system responses with differences in AI and PI of gilthead seabreams.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Simone Vozzo
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Lorenzo Riccio
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Giovanna Fusco
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Via Delpino 1, 80137 Naples, Italy
- Correspondence:
| |
Collapse
|
50
|
Sultan MB, Rahman MM, Khatun MA, Shahjalal M, Akbor MA, Siddique MAB, Huque R, Malafaia G. Microplastics in different fish and shellfish species in the mangrove estuary of Bangladesh and evaluation of human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159754. [PMID: 36349632 DOI: 10.1016/j.scitotenv.2022.159754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The water bodies in Bangladesh thrive from plastic pollution. Estuaries are pools of environmental contaminants, and the world's largest mangrove forest, Sundarbans' estuary, is no exception. Thus, for the first time, we investigate MPs abundance in the muscle and gastrointestinal tract (GIT) of twenty estuarine species of fish and shellfish of the Sundarbans, as well as the human health risk. MPs abundance was evident in all the samples ranging from 5.37 ± 1.07 to 54.30 ± 16.53 MP items/g wet body weight (dw) in muscle samples and 7.33 ± 1.89 to 205.61 ± 136.88 MP items/g (dw) in GIT samples. The estimated health risk from MPs is substantial, where the average human intake will be 85,710.08 items of MPs per year per capita for the population of Bangladesh. The dominant polymer types observed using ATR-FTIR are PP and PE (17.5 %), PA (17.5 %) in the muscle tissues, and PP and PE (11.11 %), and EVA (11.11 %) in the GITs. Bottom-feeding species, such as demersal and benthic species, are more contaminated. However, the level of MPs in the species shows a negative correlation with the length and weight of the species. This study reveals that MP pollution is widespread and concerning in Bangladesh's Sundarban mangrove estuarine zone.
Collapse
Affiliation(s)
- Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals, Dhaka 1216, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Science, Bangladesh University of Professionals, Dhaka 1216, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Mst Afifa Khatun
- Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
| | - Md Shahjalal
- Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Roksana Huque
- Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|