1
|
Iwanczyk Z, Vasudev K, Cozzi E, Cooper DKC. Contributions of Europeans to Xenotransplantation Research: 1. Pig Organ Xenotransplantation. Transpl Int 2025; 38:14041. [PMID: 40083833 PMCID: PMC11903215 DOI: 10.3389/ti.2025.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Xenotransplantation has a rich history, marked by European pioneers who laid the groundwork for many breakthroughs in the field. Pig organ xenotransplantation offers a solution to the global shortage of deceased human donor organs, whilst allowing the modification of the donor graft itself. The field has continued to garner interest, particularly with the recent advent of simpler and faster genetic-engineering technologies. This review highlights the contributions of European researchers to xenotransplantation, spanning pig kidney, heart, liver, and lung transplantation. Research has focused on (i) identifying and deleting key xenoantigens and modifying the source pig by expression of human "protective" proteins and (ii) testing novel immunosuppressive regimens. These contributions have played key roles in advancing xenotransplantation from the laboratory to early clinical experiments. Europeans have also addressed the potential risks of xenozoonotic infections and the regulatory challenges. The research endeavours of groups in Europe are summarized. Several European researchers moved either permanently or temporarily to US institutions, and their insight and innovations are also highlighted. While we aim to recognize the significant contributions of European physicians and scientists in this article, it is not an exhaustive list of all those who have influenced the field.
Collapse
Affiliation(s)
- Zuzanna Iwanczyk
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Krish Vasudev
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Emanuele Cozzi
- Transplantation Immunology Unit, University of Padua Hospital, Padua, Italy
| | - David K. C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Merlocco A, Hurst DJ. Challenges in Paediatric Xenotransplantation: Ethical Components Requiring Distinct Attention in Children and Obligations to Patients and Society. JOURNAL OF BIOETHICAL INQUIRY 2024:10.1007/s11673-024-10377-5. [PMID: 39388023 DOI: 10.1007/s11673-024-10377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024]
Abstract
The transplantation of non-human organs into humans, or xenotransplantation (XTx), has recently garnered new attention and is being developed to help address the problem of organ scarcity in transplantation. Ethical issues surrounding XTx have been studied since initial interest arose decades ago and have experienced renewed discussion in the literature. However, the distinct and relevant differences when applied to children has largely been overlooked with few groups attending to the concerns that XTx in children raises. In this paper, we explore ethical challenges to be expected in paediatric XTx, in particular exploring organ sizing concerns, infectious risks, psychological burdens, and issues of moral hazard. We review these domains with the aim of highlighting the implications of pursuing paediatric XTx and the cross-disciplinary approach needed to solve these issues. Children require a unique analysis from a bioethical perspective to best prepare for the issues XTx presents.
Collapse
Affiliation(s)
- Anthony Merlocco
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- LeBonheur Children's Hospital, 49 N. Dunlap St, 3rd Floor FOB, Memphis, TN, 38103, USA.
| | - Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
3
|
Hurst DJ, Padilla L, Merlocco A, Rodger D, Bobier C, Gray WH, Sorabella R, Cooper DKC, Pierson RN. Pediatric Cardiac Xenotransplantation: Recommendations for the Ethical Design of Clinical Trials. Transplantation 2024; 108:e292-e300. [PMID: 38419158 DOI: 10.1097/tp.0000000000004968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
For children with complex congenital heart problems, cardiac allotransplantation is sometimes the best therapeutic option. However, availability of hearts for pediatric patients is limited, resulting in a long and growing waitlist, and a high mortality rate while waiting. Cardiac xenotransplantation has been proposed as one therapeutic alternative for neonates and infants, either in lieu of allotransplantation or as a bridge until an allograft becomes available. Scientific and clinical developments in xenotransplantation appear likely to permit cardiac xenotransplantation clinical trials in adults in the coming years. The ethical issues around xenotransplantation of the heart and other organs and tissues have recently been examined, but to date, only limited literature is available on the ethical issues that are attendant with pediatric heart xenotransplantation. Here, we summarize the ethical issues, focusing on (1) whether cardiac xenotransplantation should proceed in adults or children first, (2) pediatric recipient selection for initial xenotransplantation trials, (3) special problems regarding informed consent in this context, and (4) related psychosocial and public perception considerations. We conclude with specific recommendations regarding ethically informed design of pediatric heart xenotransplantation trials.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ
| | - Luz Padilla
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Anthony Merlocco
- Department of Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Rodger
- Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, United Kingdom
- Department of Psychological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Christopher Bobier
- Department of Theology and Philosophy, Saint Mary's University of Minnesota, Winona, MN
| | - William H Gray
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Robert Sorabella
- Department of Surgery, Division of Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MN
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MN
| |
Collapse
|
4
|
Cooper DKC, Cozzi E. Clinical Pig Heart Xenotransplantation-Where Do We Go From Here? Transpl Int 2024; 37:12592. [PMID: 38371908 PMCID: PMC10869462 DOI: 10.3389/ti.2024.12592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Affiliation(s)
- David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital, Padova, Italy
| |
Collapse
|
5
|
Abstract
This Viewpoint examines how pediatrics should prepare for the prospect of cardiac xenotransplant, including its ethical implications.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey
| | - Luz Padilla
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham
| |
Collapse
|
6
|
Konstantinov IE, Cooper DKC, Adachi I, Bacha E, Bleiweis MS, Chinnock R, Cleveland D, Cowan PJ, Fynn-Thompson F, Morales DLS, Mohiuddin MM, Reichart B, Rothblatt M, Roy N, Turek JW, Urschel S, West L, Wolf E. Consensus statement on heart xenotransplantation in children: Toward clinical translation. J Thorac Cardiovasc Surg 2023; 166:960-967. [PMID: 36184321 PMCID: PMC10124772 DOI: 10.1016/j.jtcvs.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Igor E Konstantinov
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Mass
| | - Iki Adachi
- Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Emile Bacha
- Columbia University Medical Center, Morgan Stanley Children's Hospital, New York, NY
| | | | | | - David Cleveland
- Department of Surgery, University of Alabama, Birmingham, Ala
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | - David L S Morales
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, University of Maryland School of Medicine, Baltimore, Md
| | - Bruno Reichart
- Transregional Collaborative Research Center, Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Nathalie Roy
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Simon Urschel
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lori West
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
7
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Rivera NT, Baran DA. Expanding heart transplantation in 2022 and beyond. Curr Opin Cardiol 2023; 38:130-135. [PMID: 36598449 DOI: 10.1097/hco.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Despite advances in the technology of mechanical circulatory support, the need for heart transplantation continues to grow. The longevity of heart transplants continues to be superior to mechanical solutions, though the short-term differences are shrinking. In this review, we cover three timely developments and summarize the recent literature. RECENT FINDINGS After stagnant rates of heart transplant activity for some years, recently, transplant volume has increased. The developments that have ignited interest have been the use of hepatitis C infected donors, which can now be safely transplanted with the advent of curative oral regimens, and the worldwide use of donors following withdrawal of life support as opposed to traditional brain death donors. In addition, the recent experience of human cardiac xenotransplantation has been very exciting, and though it is not of clinical utility yet, it holds the promise for a virtually unlimited supply of organs at some time in the future. SUMMARY Much work remains to be done, but together, all three of these developments are exciting and important to be aware of in the future. Each will contribute to additional donors for human heart transplantation and hopefully will alleviate suffering and death on the waiting list.
Collapse
|
9
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Oscherwitz M, Nguyen HQ, Raza SS, Cleveland DC, Padilla LA, Sorabella RA, Ayares D, Maxwell K, Rhodes LA, Cooper DKC, Hara H. Will previous palliative surgery for congenital heart disease be detrimental to subsequent pig heart xenotransplantation? Transpl Immunol 2022; 74:101661. [PMID: 35787933 PMCID: PMC9762890 DOI: 10.1016/j.trim.2022.101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Pig heart xenotransplantation might act as a bridge in infants with complex congenital heart disease (CHD) until a deceased human donor heart becomes available. Infants develop antibodies to wild-type (WT, i.e., genetically-unmodified) pig cells, but rarely to cells in which expression of the 3 known carbohydrate xenoantigens has been deleted by genetic engineering (triple-knockout [TKO] pigs). Our objective was to test sera from children who had undergone palliative surgery for complex CHD (and who potentially might need a pig heart transplant) to determine whether they had serum cytotoxic antibodies against TKO pig cells. METHODS Sera were obtained from children with CHD undergoing Glenn or Fontan operation (n = 14) and healthy adults (n = 8, as controls). All of the children had complex CHD and had undergone some form of cardiac surgery. Seven had received human blood transfusions and 3 bovine pericardial patch grafts. IgM and IgG binding to WT and TKO pig red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were measured by flow cytometry, and killing of PBMCs by a complement-dependent cytotoxicity assay. RESULTS Almost all children and adults demonstrated relatively high IgM/IgG binding to WT RBCs, but minimal binding to TKO RBCs (p < 0.0001 vs WT), although IgG binding was greater in children than adults (p < 0.01). All sera showed IgM/IgG binding to WT PBMCs, but this was much lower to TKO PBMCs (p < 0.0001 vs WT) and was greater in children than in adults (p < 0.05). Binding to both WT and TKO PBMCs was greater than to RBCs. Mean serum cytotoxicity to WT PBMCs was 90% in both children and adults, whereas to TKO PBMCs it was only 20% and < 5%, respectively. The sera from 6/14 (43%) children were cytotoxic to TKO PBMCs, but no adult sera were cytotoxic. CONCLUSIONS Although no children had high levels of antibodies to TKO RBCs, 13/14 demonstrated antibodies to TKO PBMCs, in 6 of these showed mild cytotoxicity. As no adults had cytotoxic antibodies to TKO PBMCs, the higher incidence in children may possibly be associated with their exposure to previous cardiac surgery and biological products. However, the numbers were too small to determine the influence of such past exposures. Before considering pig heart xenotransplantation for children with CHD, testing for antibody binding may be warranted.
Collapse
Affiliation(s)
- Max Oscherwitz
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Quoc Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Syed Sikandar Raza
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luz A Padilla
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Sorabella
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kathryn Maxwell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leslie A Rhodes
- Department of Pediatric Cardiology, Division of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Stand der Technik und Durchbruch bei der kardialen Xenotransplantation. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022. [DOI: 10.1007/s00398-022-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chaban R, Cooper DKC, Pierson RN. Pig heart and lung xenotransplantation: Present status. J Heart Lung Transplant 2022; 41:1014-1022. [PMID: 35659792 PMCID: PMC10124776 DOI: 10.1016/j.healun.2022.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The recent pig heart transplant in a patient at the University of Maryland Medical Center has stimulated renewed interest in the xenotransplantation of organs from genetically engineered pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 approaches - (1) the deletion of expression of the three known pig carbohydrate xenoantigens against which humans have preformed antibodies, and (2) the transgenic introduction of human 'protective' proteins, such as complement-regulatory proteins. These gene modifications, coupled with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The initial clinical success at the University of Maryland reinforces encouraging preclinical results. It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their utility for destination therapy remains uncertain. Because of additional complex immunobiological problems, the same approach has been less successful in preclinical lung xenograft transplantation, where survival is still measured in days or weeks. The first formal clinical trials of pig heart transplantation may include patients who do not have access to an allotransplant, those with contraindications for mechanical circulatory support, those in need of retransplantation or with a high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also be considered.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Raza SS, Hara H, Cleveland DC, Cooper DKC. The potential of genetically engineered pig heart transplantation in infants with complex congenital heart disease. Pediatr Transplant 2022; 26:e14260. [PMID: 35233893 PMCID: PMC10124767 DOI: 10.1111/petr.14260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Despite advances in surgical and medical techniques, complex congenital heart disease in neonates and infants continues to be associated with significant mortality and morbidity. More than 500 infants in the USA are placed on the cardiac transplantation wait-list annually. However, there remains a critical shortage of deceased human donor organs for transplantation with a median wait-time of 4 months. Hence, infant mortality on the heart transplant wait-list in the USA is higher than for any other solid organ transplant group. Orthotopic transplantation of a pig heart as a bridge to allotransplantation might offer the best prospect of long-term survival of these patients. In recent years, there have been several advances in genetic engineering of pigs to mitigate the vigorous antibody-mediated rejection of a pig heart transplanted into a nonhuman primate. In this review, we briefly highlight (i) the history of clinical heart xenotransplantation, (ii) current advances and techniques of genetically engineering pigs, (iii) the current status of pig orthotopic cardiac graft survival in nonhuman primates, and (iv) progress toward pursuing clinical trials of cardiac xenotransplantation. Ultimately, we argue that pig heart xenotransplantation should initially be used as a bridge to cardiac allotransplantation in neonates and infants.
Collapse
Affiliation(s)
- Syed Sikandar Raza
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David C Cleveland
- Department of Cardiothoracic Surgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Kelly JM, Anderson C, Breuer CK. The Potential Role of Regenerative Medicine on the Future Management of Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9040107. [PMID: 35448083 PMCID: PMC9030758 DOI: 10.3390/jcdd9040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The development and translation of regenerative medicine approaches for the treatment of hypoplastic left heart syndrome (HLHS) provides a promising alternative to the current standard of care. We review the strategies that have been pursued to date and those that hold the greatest promise in moving forward. Significant challenges remain. Continued scientific advances and technological breakthroughs will be required if we are to translate this technology to the clinic and move from palliative to curative treatment.
Collapse
Affiliation(s)
- John M. Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Cole Anderson
- Biomedical Engineering Graduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-2000
| |
Collapse
|
16
|
Hurst DJ, Padilla LA, Cooper DKC, Paris W. Scientific and psychosocial ethical considerations for initial clinical trials of kidney xenotransplantation. Xenotransplantation 2021; 29:e12722. [PMID: 34800313 DOI: 10.1111/xen.12722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022]
Abstract
The initial clinical trials of pig solid organ xenotransplantation (XTx) are drawing closer and could begin in the coming years. The first clinical trials may aim to transplant genetically-modified pig kidneys into adult humans. The impetus for beginning these first-in-human trials is the severe lack of deceased donor kidneys for transplantation and the number of patients with end-stage renal disease currently on transplant waitlists, which in the USA approaches 100 000. The majority of patients on the kidney transplant waitlist receive continuous renal replacement therapy. In the United States, for patients on the kidney waitlist, the median wait-time to receive a deceased human donor organ is approximately 4.5 years for patients aged 45-74, with a 5-year mortality (or removal from the waitlist because of deteriorating health) of approximately 40%. XTx has the potential to reduce the kidney waitlist morbidity and mortality while improving quality of life. By focusing on scientific and psychosocial criteria, we present ethical considerations of certain inclusion and exclusion criteria for these first-in-human clinical trials that we suggest have not yet been fully explored.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Luz A Padilla
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wayne Paris
- School of Social Work, Abilene Christian University, Abilene, Texas, USA
| |
Collapse
|
17
|
Hurst DJ, Padilla L, Paris W, Cooper DKC, Cleveland DC. Addressing concerns toward xenotransplantation. J Card Surg 2021; 36:4821. [PMID: 34486774 DOI: 10.1111/jocs.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Luz Padilla
- Departments of Surgery and Epidemiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne Paris
- School of Social Work, Abilene Christian University, Abilene, Texas, USA
| | - David K C Cooper
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David C Cleveland
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Reichart B, Längin M, Denner J, Schwinzer R, Cowan PJ, Wolf E. Pathways to Clinical Cardiac Xenotransplantation. Transplantation 2021; 105:1930-1943. [PMID: 33350675 DOI: 10.1097/tp.0000000000003588] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart transplantation is the only long-lasting lifesaving option for patients with terminal cardiac failure. The number of available human organs is however far below the actual need, resulting in substantial mortality of patients while waiting for a human heart. Mechanical assist devices are used to support cardiac function but are associated with a high risk of severe complications and poor quality of life for the patients. Consistent success in orthotopic transplantation of genetically modified pig hearts into baboons indicates that cardiac xenotransplantation may become a clinically applicable option for heart failure patients who cannot get a human heart transplant. In this overview, we project potential paths to clinical cardiac xenotransplantation, including the choice of genetically modified source pigs; associated requirements of microbiological, including virological, safety; optimized matching of source pig and recipient; and specific treatments of the donor heart after explantation and of the recipients. Moreover, selection of patients and the regulatory framework will be discussed.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Reinhard Schwinzer
- Department of General-, Visceral-, and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Loebe M, Parker B. Don't pig(!) the wrong heart! J Card Surg 2021; 36:3802-3804. [PMID: 34309898 DOI: 10.1111/jocs.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Cardiac xenotransplantation is believed to have approached clinical application. However, this approach to advanced heart failure is burdened with a multitude of ethical issues. These issues need to be addressed openly and be broadly discussed in public. Only through an honest and transparent approach, it will be possible to engage the lay audience in the evaluation of pig to human transplant.
Collapse
Affiliation(s)
- Matthias Loebe
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Brandon Parker
- Department of Surgery, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Bikhet M, Iwase H, Yamamoto T, Jagdale A, Foote JB, Ezzelarab M, Anderson DJ, Locke JE, Eckhoff DE, Hara H, Cooper DKC. What Therapeutic Regimen Will Be Optimal for Initial Clinical Trials of Pig Organ Transplantation? Transplantation 2021; 105:1143-1155. [PMID: 33534529 DOI: 10.1097/tp.0000000000003622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We discuss what therapeutic regimen might be acceptable/successful in the first clinical trial of genetically engineered pig kidney or heart transplantation. As regimens based on a calcineurin inhibitor or CTLA4-Ig have proved unsuccessful, the regimen we administer to baboons is based on induction therapy with antithymocyte globulin, an anti-CD20 mAb (Rituximab), and cobra venom factor, with maintenance therapy based on blockade of the CD40/CD154 costimulation pathway (with an anti-CD40 mAb), with rapamycin, and a corticosteroid. An anti-inflammatory agent (etanercept) is administered for the first 2 wk, and adjuvant therapy includes prophylaxis against thrombotic complications, anemia, cytomegalovirus, and pneumocystis. Using this regimen, although antibody-mediated rejection certainly can occur, we have documented no definite evidence of an adaptive immune response to the pig xenograft. This regimen could also form the basis for the first clinical trial, except that cobra venom factor will be replaced by a clinically approved agent, for example, a C1-esterase inhibitor. However, none of the agents that block the CD40/CD154 pathway are yet approved for clinical use, and so this hurdle remains to be overcome. The role of anti-inflammatory agents remains unproven. The major difference between this suggested regimen and those used in allotransplantation is the replacement of a calcineurin inhibitor with a costimulation blockade agent, but this does not appear to increase the complications of the regimen.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Douglas J Anderson
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jayme E Locke
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Devin E Eckhoff
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
21
|
Cleveland DC, Jagdale A, Carlo WF, Iwase H, Crawford J, Walcott GP, Dabal RJ, Sorabella RA, Rhodes L, Timpa J, Litovsky S, O'Meara C, Padilla LA, Foote J, Mauchley D, Bikhet M, Ayares D, Yamamoto T, Hara H, Cooper DK. The Genetically Engineered Heart as a Bridge to Allotransplantation in Infants Just Around the Corner? Ann Thorac Surg 2021; 114:536-544. [PMID: 34097894 DOI: 10.1016/j.athoracsur.2021.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Mortality for infants on the heart transplant wait list remains unacceptably high, and available mechanical circulatory support is suboptimal. Our goal is to demonstrate the feasibility of utilizing genetically engineered pig (GEP) heart as a bridge to allotransplantation by transplantation of a GEP heart in a baboon. METHODS Four baboons underwent orthotopic cardiac transplantation from GEP donors. All donor pigs had galactosyl-1,3-galactose knocked out. Two donor pigs had human complement regulatory CD55 transgene and the other 2 had human complement regulatory CD46 and thrombomodulin. Induction immunosuppression included thymoglobulin, and Anti-CD20. Maintenance immunosuppression was Rapamycin, AntiCD-40 and methylprednisolone. One donor heart was preserved with University of Wisconsin (UW) solution and the other three with del Nido solution. RESULTS All baboons weaned from cardiopulmonary bypass. B217 received a donor heart preserved with UW. Ventricular arrhythmias and depressed cardiac function resulted in early death. All recipients of del Nido preserved hearts easily weaned from cardiopulmonary bypass with minimal inotropic support. B15416 and B1917 survived for 90 days and 241 days respectively. Histopathology in B15416 revealed no significant myocardial rejection but cellular infiltrate around Purkinje fibers. Histopathology in B1917 was consistent with severe rejection. B37367 had uneventful transplant but developed significant respiratory distress with a cardiac arrest. CONCLUSIONS Survival of B15416 and B1917 demonstrates the feasibility of pursuing additional research to document the ability to bridge an infant to cardiac allotransplant with a GEP heart.
Collapse
Affiliation(s)
- David C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.
| | - Abhijit Jagdale
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Waldemar F Carlo
- Division of Pediatric Cardiology, Department of Cardiology, University of Alabama at Birmingham, Birmingham, AL
| | - Hayato Iwase
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jack Crawford
- Department of Anesthesiology, Chair, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory P Walcott
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Robert J Dabal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Robert A Sorabella
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Leslie Rhodes
- Division of Pediatric Cardiology, Department of Cardiology, University of Alabama at Birmingham, Birmingham, AL
| | - Joey Timpa
- Department of Cardiovascular Perfusion, Children's of Alabama, Birmingham, Alabama
| | - Silvio Litovsky
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Carlisle O'Meara
- Department of Cardiovascular Perfusion, Children's of Alabama, Birmingham, Alabama
| | - Luz A Padilla
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - David Mauchley
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Mohamed Bikhet
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | | | - Takayuki Yamamoto
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hidetaka Hara
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David Kc Cooper
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
Hara H, Nguyen H, Wang ZY, Jagdale A, Bikhet M, Yamamoto T, Iwase H, Ayares D, Cooper DKC. Evidence that sensitization to triple-knockout pig cells will not be detrimental to subsequent allotransplantation. Xenotransplantation 2021; 28:e12701. [PMID: 34053125 DOI: 10.1111/xen.12701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The current evidence is that sensitization to a pig xenograft does not result in the development of antibodies that cross-react with alloantigens, and therefore, sensitization to a pig xenograft would not be detrimental to the outcome of a subsequent allograft. This evidence relates almost entirely to the transplantation of cells or organs from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. However, it is not known whether recipients of triple-knockout (TKO) pig grafts who become sensitized to TKO pig antigens develop antibodies that cross-react with alloantigens and thus be detrimental to a subsequent organ allotransplant. We identified a single baboon (B1317) in which no (or minimal) serum anti-TKO pig antibodies could be measured-in our experience unique among baboons. We sensitized it by repeated subcutaneous injections of TKO pig peripheral blood mononuclear cells (PBMCs) in the absence of any immunosuppressive therapy. After TKO pig PBMC injection, there was a transient increase in anti-TKO pig IgM, followed by a sustained increase in IgG binding to TKO cells. In contrast, there was no serum IgM or IgG binding to PBMCs from any of a panel of baboon PBMCs (n = 8). We conclude that sensitization to TKO pig PBMCs in the baboon did not result in the development of antibodies that also bound to baboon cells, suggesting that there would be no detrimental effect of sensitization on a subsequent organ allotransplant.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zheng-Yu Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Hara H, Li Q, Ayares D, Cooper DKC. Natural anti-pig antibodies in infant baboons. Xenotransplantation 2021; 28:e12692. [PMID: 33929061 DOI: 10.1111/xen.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Thompson CP, Jagdale A, Walcott G, Iwase H, Foote JB, Cron RQ, Hara H, Cleveland DC, Cooper DKC. A perspective on the potential detrimental role of inflammation in pig orthotopic heart xenotransplantation. Xenotransplantation 2021; 28:e12687. [PMID: 33786912 DOI: 10.1111/xen.12687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
There is a critical shortage of deceased human donor organs for transplantation. The need is perhaps most acute in neonates and infants with life-threatening congenital heart disease, in whom mechanical support devices are largely unsuccessful. If orthotopic (life-supporting) heart transplantation (OHTx) were consistently successful in the genetically engineered pig-to-nonhuman primate (NHP) model, a clinical trial of bridging with a pig heart in such patients might be justified. However, the results of pig OHTx in NHPs have been mixed and largely poor. We hypothesise that a factor is the detrimental effects of the inflammatory response that is known to develop (a) during any surgical procedure that requires cardiopulmonary bypass, and (b) immediately after an NHP recipient is exposed to a pig xenograft. We suggest that the combination of these two inflammatory responses has a direct detrimental effect on pig heart graft function, but also, and possibly of more importance, on recipient baboon pulmonary function, which further impacts survival of the pig heart graft. In addition, the inflammatory response almost certainly adversely impacts the immune response to the graft. If our hypothesis is correct, the potential steps that could be taken to reduce the inflammatory response or its effects (with varying degrees of efficacy) include (a) white blood cell filtration, (b) complement depletion or inactivation, (c) immunosuppressive therapy, (d) high-dose corticosteroid therapy, (e) cytokine/chemokine-targeted therapy, (f) ultrafiltration or CytoSorb hemoperfusion, (g) reduction in the levels of endogenous catecholamines, (h) triiodothyronine therapy and (i) genetic engineering of the organ-source pig. Prevention of the inflammatory response, or attenuation of its effects, by judicious anti-inflammatory therapy may contribute not only to early survival of the recipient of a genetically engineered pig OHTx, but also to improved long-term pig heart graft survival. This would open the possibility of initiating a clinical trial of genetically engineered pig OHTx as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Charles P Thompson
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory Walcott
- Department of Medicine/Cardiovascular Diseases, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Randall Q Cron
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Cleveland
- Division of Cardiothoracic Surgery, Children's Hospital of Alabama, and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Padilla LA, Rhodes L, Sorabella RA, Hurst DJ, Cleveland DC, Dabal RJ, Cooper DK, Paris W, Carlo WF. Attitudes toward xenotransplantation: A survey of parents and pediatric cardiac providers. Pediatr Transplant 2021; 25:e13851. [PMID: 33022840 DOI: 10.1111/petr.13851] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Scientific advancements are occurring in cardiac xenotransplantation (XTx). However, there have been religious and social concerns surrounding this allotransplantation alternative. The purpose of this study was to explore the acceptance of XTx among stakeholders of the congenital heart disease (CHD) community. METHODS A Likert-scale anonymous survey was distributed to physicians and nurses who care for children with CHD and parents of children with CHD. Psychosocial and clinical attitudes were compared across all groups to identify differences, and regression analysis was performed to identify factors associated with XTx acceptance. RESULTS A total of 297 responded to the survey: 134 physicians, 62 nurses, and 101 parents. Potential acceptance of XTx if outcomes were similar to allotransplantation was high overall (75.3%), but different between the groups (physicians 86%; nurses 71%, parents 64%; P < .0001). Regression analysis showed respondents who reported religion would influence medical decision making (OR 0.48; 95%CI 0.24-0.97) and those who would not use a pig heart transplant as a bridge until a human heart became available were less likely to accept XTx (OR 0.09; 95%CI 0.04-0.21). Psychosocial concerns to XTx were minimal but were also associated with XTx acceptance particularly among parents (OR 0.17; 95%CI 0.03-0.80). CONCLUSIONS Potential acceptance of XTx is high, assuming results are similar to allotransplantation. Religious beliefs and attitudes toward the use of XTx as a bridge to allotransplant may present barriers to XTx acceptance. Future research is needed to assess potential attitude differences in light of ethical, psychosocial, and religious objections to XTx.
Collapse
Affiliation(s)
- Luz A Padilla
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leslie Rhodes
- Division of Pediatric Cardiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Sorabella
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel J Hurst
- Department of Family Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - David C Cleveland
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Dabal
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Cooper
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wayne Paris
- Department of Social Work, Abilene Christian University, Abilene, TX, USA
| | - Waldemar F Carlo
- Division of Pediatric Cardiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Hurst DJ, Padilla LA, Cooper DKC, Cleveland DC, Paris W. Clinical trials of pediatric cardiac xenotransplantation. Am J Transplant 2021; 21:433-434. [PMID: 32946176 DOI: 10.1111/ajt.16151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Daniel J Hurst
- Department of Medical Professionalism, Ethics, and Humanities, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Luz A Padilla
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David C Cleveland
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne Paris
- Department of Social Work, Abilene Christian University, Abilene, Texas, USA
| |
Collapse
|
27
|
Cooper DKC, Cleveland DC. The first clinical trial-Kidney or heart? Xenotransplantation 2020; 28:e12644. [PMID: 33336862 DOI: 10.1111/xen.12644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Cleveland
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.,Children's Hospital of Alabama, Birmingham, AL, USA
| |
Collapse
|
28
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Considerable advancements have been made in the field of cardiac xenotransplantation in the recent years, achieving prolonged survival of the life-supporting cardiac xenograft and paving the way toward first clinical implications. RECENT FINDINGS The combination of genetic modifications and novel immunosuppression with costimulation blockade, as well as supporting therapy with antiinflammatory treatment, growth prevention, and adaptation of the heart procurement system to reduce myocardial ischemia and reperfusion injury improves the overall cardiac xenograft function and overall survival in nonhuman primates. Through the newly identified xenoantigens and novel gene-editing techniques, further genetic modification of the porcine xenografts should be explored, to ensure clinical safety. SUMMARY With continuous progress in all fields of cardiac xenotransplantation, first clinical use in humans seems accomplishable. To ensure the clinical safety and to conform to the ethical regulations, further investigation of the infectious and immunological implications on humans should be explored prior to first clinical use. The first clinical use of cardiac xenotransplantation will be limited to only highly selected patients.
Collapse
|
30
|
Mascio CE. Commentary: Unicorns and leprechauns. J Thorac Cardiovasc Surg 2020; 159:1462-1463. [DOI: 10.1016/j.jtcvs.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022]
|
31
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
32
|
Mascio CE. WITHDRAWN: Commentary: Unicorns and leprechauns. J Thorac Cardiovasc Surg 2019:S0022-5223(19)32127-0. [PMID: 31757459 DOI: 10.1016/j.jtcvs.2019.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.jtcvs.2019.12.017. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Christopher E Mascio
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
33
|
Sweeney DM, Arcadi J. Stage 1 Palliation of Hypoplastic Left Heart Syndrome: What the Pediatric Anesthesiologist Needs to Know. CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|