1
|
Yang Z, Wang J, Wu Q, Yang Z, Liu T, Zeng L, Lin Z, Li M, Ibrahim IA, Yin H, Liu Z. Refining habitat selection for sulfate-reducing bacteria: Evaluating suitability and adaptability for sulfate-metal wastewater treatment during anaerobic-to-aerobic transitions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123002. [PMID: 39454379 DOI: 10.1016/j.jenvman.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Inoculating sulfate-reducing bacteria (SRB) habitats offers an eco-friendly method for treating sulfate-metal laden wastewater, characterized by high sulfate levels, low pH, and elevated heavy metals. This study optimizes source habitat selection of SRB by evaluating groundwater, sewage sludge, and lake sediment, focusing on their suitability and adaptability to aerobic-anaerobic transitions in industrial settings. Sewage sludge, with its slightly acidic pH, reducing environment, and high nutrient levels (Total organic carbon: 207.53 g kg-1, Total nitrogen: 47.12 g kg-1), provides robust SRB potential, as supported by its highest diversity index. However, heavy metals and polycyclic aromatic hydrocarbons pose application challenges. All habitats effectively reduced metal concentrations anaerobically, with Cu removal reaching 95%-99%, and groundwater achieved the highest chemical oxygen demand reduction (63.6%) aerobically. Sludge and sediment showed high biomass and extracellular polymeric substances (EPS) accumulation, while groundwater's nucleic acid-rich EPS enhanced metal immobilization, resulting in stable residual metal forms but with potential remobilization under oxidative conditions. Microbial analysis revealed that Proteobacteria and Firmicutes were key players during transitions, with the highest SRB abundance in groundwater. SRB composition varied across habitats, with Sedimentibacter (13.04%), Desulfovibrio (6.33%), and Desulfomonile (8.1%) dominating in groundwater, sludge, and sediment, respectively, during the anaerobic stage. Functional analysis highlighted sludge's persistence in sulfate reduction under aerobic conditions, while groundwater's limited nitrogen cycle involvement indicated broader biogeochemical limitations. Collectively, these findings highlight strengths and limitations of each habitat as SRB inoculum source, emphasizing the importance of tailored anaerobic-to-aerobic strategies for effective wastewater management.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Qihong Wu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Tuan Liu
- Zhenghao Gaojun (Yunnan) Water Affairs Development Co., Ltd., Kunming, 650000, Yunnan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhaogang Lin
- Yunnan Jiantou Tenth Construction Co., Ltd, Shaotong, 657000, Yunnan, China
| | - Mingjun Li
- Yunnan Jiantou Tenth Construction Co., Ltd, Shaotong, 657000, Yunnan, China
| | - I A Ibrahim
- Central Metallurgical Research and Development Institute, Cairo, 11421, Egypt
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
2
|
Lalzar M, Zvi-Kedem T, Kroin Y, Martinez S, Tchernov D, Meron D. Sediment Microbiota as a Proxy of Environmental Health: Discovering Inter- and Intrakingdom Dynamics along the Eastern Mediterranean Continental Shelf. Microbiol Spectr 2023; 11:e0224222. [PMID: 36645271 PMCID: PMC9927165 DOI: 10.1128/spectrum.02242-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedimentary marine habitats are the largest ecosystem on our planet in terms of area. Marine sediment microbiota govern most of the benthic biological processes and therefore are responsible for much of the global biogeochemical activity. Sediment microbiota respond, even rapidly, to natural change in environmental conditions as well as disturbances of anthropogenic sources. The latter greatly impact the continental shelf. Characterization and monitoring of the sediment microbiota may serve as an important tool for assessing environmental health and indicate changes in the marine ecosystem. This study examined the suitability of marine sediment microbiota as a bioindicator for environmental health in the eastern Mediterranean Sea. Integration of information from Bacteria, Archaea, and Eukaryota enabled robust assessment of environmental factors controlling sediment microbiota composition: seafloor-depth (here representing sediment grain size and total organic carbon), core depth, and season (11%, 4.2%, and 2.5% of the variance, respectively). Furthermore, inter- and intrakingdom cooccurrence patterns indicate that ecological filtration as well as stochastic processes may control sediment microbiota assembly. The results show that the sediment microbiota was robust over 3 years of sampling, in terms of both representation of region (outside the model sites) and robustness of microbial markers. Furthermore, anthropogenic disturbance was reflected by significant transformations in sediment microbiota. We therefore propose sediment microbiota analysis as a sensitive approach to detect disturbances, which is applicable for long-term monitoring of marine environmental health. IMPORTANCE Analysis of data, curated over 3 years of sediment sampling, improves our understanding of microbiota assembly in marine sediment. Furthermore, we demonstrate the importance of cross-kingdom integration of information in the study of microbial community ecology. Finally, the urgent need to propose an applicable approach for environmental health monitoring is addressed here by establishment of sediment microbiota as a robust and sensitive model.
Collapse
Affiliation(s)
- Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Stephane Martinez
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Mukherji S, Imchen M, Mondal S, Bhattacharyya A, Siddhardha B, Kumavath R, Ghosh A. Anthropogenic impact accelerates antibiotic resistome diversity in the mangrove sediment of Indian Sundarban. CHEMOSPHERE 2022; 309:136806. [PMID: 36220439 DOI: 10.1016/j.chemosphere.2022.136806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Mangroves are situated in convergence zones between fresh and marine water and are prone to pollution and deforestation. This study explored the microbiome structure, function and antibiotic resistome of Indian Sundarban. The taxonomic Chao1 estimated diversity was highest in uninhabited Kalash (1204.64 ± 12.72) and lowest in Godkhali, which experiences considerable human activities (1158.76 ± 11.18). The alpha diversity showed negative correlation (p < 0.05) with PAH such as Acenaphthene (r = -0.56), Acenaphthylene (r = -0.62), Fluoranthene (r = -0.59), Fluorene (r = -0.55), Phenanthrene (r = -0.57), while the biochemical parameters phosphate (r = 0.58) and salinity (r = 0.58) had a significant (p < 0.05) positive correlation. The data suggest the importance of physicochemical parameters in maintaining the mangrove microbiome. The taxonomic composition was dominated by Proteobacteria (54.12 ± 0.37). All sites were dominated by ARGs such as rpoB2, cpxR, ompR, camP, and bacA. Comparing the Sundarban mangrove sediment resistome with mangrove from other sites in India (Kerala) and China (Guangxi, Hainan, and Shenzhen) suggested that resistome from Indian mangrove has a significantly (p < 0.05) higher ARG diversity compared to Chinese mangroves. Yet, the abundance of the ARG was significantly (p < 0.05) lower in the Indian mangroves posing a much greater risk if enriched. The study suggests that anthropogenic activities and pollution degrade the microbiome diversity, disturb the microbiome functions, and enrich ARGs.
Collapse
Affiliation(s)
- Shayantan Mukherji
- Department of Biochemistry, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sangita Mondal
- Department of Biochemistry, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anish Bhattacharyya
- School of Biological Sciences, Division of Genomics and Evolution, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye P.O., Kasaragod, Kerala, 671316, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India.
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Liang C, Ye Q, Huang Y, Wang Y, Zhang Z, Wang H. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129305. [PMID: 35709619 DOI: 10.1016/j.jhazmat.2022.129305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial populations and understanding their responses to PAHs are crucial for the designing of appropriate bioremediation strategies. In this study, the responses of PAHs-degrading bacterial populations to different PAHs were studied in terms of the compositions and abundance variations of their new functional marker gene (pahE) by gene-targeted metagenomic and qPCR analysis. Overall, PAHs species significantly affected the composition and abundance of pahE gene within the PAHs-degrading bacteria in each treatment and different pahE of PAHs-degrading bacteria involved in the different stages of PAHs degradation. Noted that new pahE genotypes were also discovered in all PAHs treatment groups, indicating that some potential new PAHs-degrading bacterial genera were also involved in PAHs degradation. Besides, all three PAH removal rates were significantly positively related with pahE gene abundances (R2 = 0.908 ~ 0.922, p < 0.01), demonstrating that pahE could be a good indicator of PAHs degradation activity or potential. This is the first study focusing on the dynamic changes of the pahE gene within PAHs-degrading bacterial community during the degradation of PAHs in mangrove sediment, providing novel insights into the use of pahE gene as the functional marker to indicate PAH degradation.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119621. [PMID: 35709914 DOI: 10.1016/j.envpol.2022.119621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The recurrent dredging of marine sediments needs the use of ex-situ technologies such as sediment washing (SW) to effectively remove polycyclic aromatic hydrocarbons. Notwithstanding, the large volumes of generated spent SW effluents require adequate treatment by employing highly-efficient, inexpensive and environmentally-friendly solutions. This study proposes the phenanthrene (PHE) desorption from sediments using Tween® 80 (TW80) as extracting agent and the treatment of the resulting spent SW solution in a biochar (BC) immobilized-cell bioreactor. The SW process reached the highest PHE removal of about 91% using a surfactant solution containing 10,800 mg L-1 of TW80. The generated amount of spent PHE-polluted SW solution can be controlled by keeping a solid to liquid ratio of 1:4. A PHE degradation of up to 96% was subsequently achieved after 43 days of continuous reactor operation, aerobically treating the TW80 solution in the BC immobilized-cell bioreactor with a hydraulic retention time of 3.5 days. Brevundimonas, Chryseobacterium, Dysgonomonas, Nubsella, and both uncultured Weeksellaceae and Xanthobacteraceae genera were mainly involved in PHE biodegradation. A rough economic study showed a total cost of 342.60 € ton-1 of sediment, including the SW operations, TW80 and BC supply and the biological treatment of the SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
6
|
Gabriele I, Race M, Papirio S, Papetti P, Esposito G. Phytoremediation of a pyrene-contaminated soil by Cannabis sativa L. at different initial pyrene concentrations. CHEMOSPHERE 2022; 300:134578. [PMID: 35417760 DOI: 10.1016/j.chemosphere.2022.134578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
This study proposes the phytoremediation of a pyrene (PYR)-contaminated soil by Cannabis sativa L. The experimental campaign was conducted along a 60 days period using three different initial PYR concentrations (i.e., 50, 100 and 150 mg kg TS-1 of soil) in 300 mL volume pots under greenhouse conditions (18-25 °C and 45-55% humidity). After 60 days of hemp growth and flourishing, the highest PYR removal reached approximately 95% in planted soil, 35% higher than in the unplanted control. PYR accumulation was observed in both roots and aerial parts of the plant, with a higher PYR uptake at increasing initial PYR concentrations in soil. The initial PYR concentration affected the growth and, thus, the phytoremediation potential of C. sativa L., which was the result of different removal mechanisms. Overall, the lowest initial PYR concentration was the one that resulted in the highest PYR removal. The interaction between the plant roots and microorganisms in rhizosphere was likely associated with PYR removal in this study. The highest DHO activity of 66.26 μg INTF g-1 TS-1 was observed in the soil spiked with 50 mg PYR·kg TS-1.
Collapse
Affiliation(s)
- Ilaria Gabriele
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patrizia Papetti
- Department of Economics and Law, Territorial and Products Analysis Laboratory, University of Cassino and Southern Lazio, Via S. Angelo, Folcara, 03043, Cassino, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
7
|
Changes in Temporal Dynamics and Factors Influencing the Environment of the Bacterial Community in Mangrove Rhizosphere Sediments in Hainan. SUSTAINABILITY 2022. [DOI: 10.3390/su14127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural characteristics of the rhizosphere soil’s microbial community is crucial to understanding the ecological function of mangroves. However, the mechanism influencing mangrove plants in soil microbial communities has yet to be determined. Here, the mangrove ecosystem of Xinying Mangrove National Wetland Park in Hainan Province was taken as the research object. The microbial communities, external regulatory factors, and the relationship between communities were analyzed using 16S rRNA high-throughput sequencing in the rhizosphere and non-rhizosphere sediments of mangrove forests under different spatiotemporal conditions. The results showed that there was no significant difference in the α-diversity of the bacterial community between the rhizosphere and non-rhizosphere sediments. However, β-diversity was significantly different. Redundancy analysis (RDA) showed that other environmental factors besides sulfide and Fe2+ affected the bacterial community structure in sediments. The co-occurrence pattern analysis of bacteria in the mangrove ecosystem indicates that the bacteria in rhizosphere sediments were more closely related than those in non-rhizosphere sediments. The results reveal significant differences between the rhizosphere and non-rhizosphere bacterial community diversity, structure, and their interaction in the mangrove ecosystem. Therefore, the ecological system of the mangrove wetland needs to be preserved and rehabilitated, which would have a tremendous impact on the sustainable development.
Collapse
|
8
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
9
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
10
|
Xie X, Yuan K, Yao Y, Sun J, Lin L, Huang Y, Lin G, Luan T, Chen B. Identification of suspended particulate matters as the hotspot of polycyclic aromatic hydrocarbon degradation-related bacteria and genes in the Pearl River Estuary using metagenomic approaches. CHEMOSPHERE 2022; 286:131668. [PMID: 34346346 DOI: 10.1016/j.chemosphere.2021.131668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Bacterial degradation is unequivocally considered as an important way for the cleanup of polycyclic aromatic hydrocarbon (PAHs) in the aquatic environment. However, the diversity and distribution of PAH-degrading bacterial communities and PAH degradation-related genes (PAHDGs) in ambient environment need to be investigated. In this study, bacteria in the water of the Pearl River Estuary (PRE) were initially separated as the particle-attached bacteria (PAB) and free-living bacteria (FLB), and were further characterized using metagenomic approaches. Proteobacteria (80.1 %) was identified as the most abundant PAH-degrading phylum in the PRE water, followed by Bacteroidetes, Actinobacteria, and Firmicutes. A substantial difference in the community structure was observed between PAH-degrading PAB and FLB. Both of PAH-degrading bacteria and PAHDGs were enriched on the suspended particulate matters (SPMs), with the range of enrichment factor (EF) from 7.84 × 104 to 6.64 × 106 (PAH-degrading bacteria) and from 1.14 × 103 to 1.76 × 105 (PAHDGs). The levels of PAH-degrading bacteria 16 S rRNA genes and PAHDGs on the SPMs were both significantly correlated with those in the aqueous phase (AP) in the PRE water (p < 0.05), indicating a dynamic distribution of PAH-degrading bacteria between these two phases. The total PAH concentrations on the SPMs of the PRE water were also significantly correlated with the total PAHDG levels in the PAB (p < 0.05). Our results suggested that the SPMs could be the important compartment for the elimination of PAHs from the aquatic environment.
Collapse
Affiliation(s)
- Xiuqin Xie
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China
| | - Yongyi Yao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China
| | - Jingyu Sun
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Lin
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Ge Lin
- Longse Technology Co., Ltd., Guangzhou, 510700, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, 518000, China
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China.
| |
Collapse
|
11
|
Ahmad M, Ling J, Yang Q, Sajjad W, Zhou W, Yin J, Dong J. Insight into Bacterial Community Responses to Polycyclic Aromatic Hydrocarbons and the Degradation Potentials of Three Bacterial Isolates in Seagrass Halophila ovalis Sediments. Curr Microbiol 2021; 78:4084-4097. [PMID: 34687349 DOI: 10.1007/s00284-021-02670-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Seagrass meadows constitute a prestigious ecosystem in the marine environment, providing valuable ecological and commercial services. Among the various causes, pollutions are considered one of the significant reasons for seagrass decline globally. This study investigates the impacts of polycyclic aromatic hydrocarbons mixture (pyrene, phenanthrene, and fluorene) on bacterial communities in Halophila ovalis sediments. The seagrass sediment bacterial microbiome was evaluated in a batch culture experiment by Illumina MiSeq sequencing. Culture-able bacterial strains were isolated and characterized by 16S rRNA gene sequencing. The results demonstrated an excellent alpha diversity in the original sediments with a Shannon index of (8.078) compared to the subsequent control group (5.908) and PAH-treated group (PAH-T) (4.916). Three phyla, Proteobacteria, Firmicutes, and Bacteroidetes, were detected in high abundance in the control and PAH-T groups. However, a significant difference (P < 0.05) was observed at the genus level between control and PAH-T group bacterial consortia. Pseudomonas, Mycobacterium, Idiomarina, Hydrogenophaga, Alteromonas, Sphingobacterium, and several others were highly abundant in PAH-T groups. Most of the culture-able isolates recovered in this study showed the closest resemblance to previously identified hydrocarbon-degrading bacteria. Among the three strains, Mix-16 (Citricoccus yambaruensis) and Mix-20 (Gordonia rubripertincta) showed a higher degradation of PAHs than Mix-19 (Isoptericola halotolerans) in the monoculture experiment. The most increased degradation of PAHs was recorded in the co-culture experiment. The present work revealed that PAHs could act as environmental stress and can influence bacterial community succession. Moreover, the co-culture strategy significantly enhanced the biodegradation of PAHs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
12
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
13
|
Ling J, Zhou W, Yang Q, Lin X, Zhang Y, Ahmad M, Peng Q, Dong J. Effect of PAHs on nitrogen-fixing and sulfate-reducing microbial communities in seagrass Enhalus acoroides sediment. Arch Microbiol 2021; 203:3443-3456. [PMID: 33893827 DOI: 10.1007/s00203-021-02321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Seagrass meadows are vital ecosystems with high productivity and biodiversity and often in the oligotrophic area. Nitrogen usually limits productivity in this ecosystem as the main nutrient factor. Biological nitrogen fixation by diazotrophs in the rhizosphere sediment can introduce "new" nitrogen into the ecosystem. Previous studies revealed that most sulfate-reducing bacteria (SRB) can also fix nitrogen like the nitrogen-fixing bacteria (NFB). Moreover, both sulfate reduction and nitrogen fixation were affected by the organic pollutant. However, rare information is available regarding the NFB and SRB community composition and their temporal response to the pollutant. The quantitative real-time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis have been used to analyze NFB and SRB communities' shifts under different PAHs concentrations. They both experienced a dramatic shift under PAHs stress but exhibited different patterns. SRB could use the low and high concentration PAHs at the early stage of the incubation, while only the low concentration of PAHs could stimulate the growth of NFB through the whole incubation period. The predominant species of NFB communities were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria; while for SRB communities were class Epsilonproteobacteria. Redundancy analysis indicated the significant environmental factors for the two communities were both ammonium and pH (P < 0.05). There existed nifH sequences related to known nitrogen fixing SRB Desulfatibacillum alkenivorans, which confirmed that microbial N2 fixation and sulfate reduction were coupled in the seagrass ecosystem by molecular technique. Our investigation provides new insight into the NFB and SRB community in the seagrass meadow.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinying Peng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China.
| |
Collapse
|
14
|
Angelova AG, Berx B, Bresnan E, Joye SB, Free A, Gutierrez T. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. mBio 2021; 12:e03701-20. [PMID: 33727364 PMCID: PMC8092327 DOI: 10.1128/mbio.03701-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Hydrocarbon-degrading bacteria naturally degrade and remove petroleum pollutants, yet baselines do not currently exist for these critical microorganisms in many regions where the oil and gas industry is active. Furthermore, understanding how a baseline community changes across the seasons and its potential to respond to an oil spill event are prerequisites for predicting their response to elevated hydrocarbon exposures. In this study, 16S rRNA gene-based profiling was used to assess the spatiotemporal variability of baseline bacterioplankton community composition in the Faroe-Shetland Channel (FSC), a deepwater sub-Arctic region where the oil and gas industry has been active for the last 40 years. Over a period of 2 years, we captured the diversity of the bacterioplankton community within distinct water masses (defined by their temperature and salinity) that have a distinct geographic origin (Atlantic or Nordic), depth, and direction of flow. We demonstrate that bacterioplankton communities were significantly different across water samples of contrasting origin and depth. Taxa of known hydrocarbon-degrading bacteria were observed at higher-than-anticipated abundances in water masses originating in the Nordic Seas, suggesting these organisms are sustained by an unconfirmed source of oil input in that region. In the event of an oil spill, our results suggest that the response of these organisms is severely hindered by the low temperatures and nutrient levels that are typical for the FSC.IMPORTANCE Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria. While a significant effort was made to monitor and track the microbial response and degradation of the oil in the water column in the wake of the Deepwater Horizon spill, the lack of baseline data on the microbiology of the Gulf of Mexico confounded scientists' abilities to provide an accurate assessment of how the system responded relative to prespill conditions. This data gap highlights the need for long-term microbial ocean observatories in regions at high risk of oil spills. Here, we provide the first microbiological baseline established for a subarctic region experiencing high oil and gas industry activity, the northeast Atlantic, but with no apparent oil seepage or spillage. We also explore the presence, relative abundances, and seasonal dynamics of indigenous hydrocarbon-degrading communities. These data will advance the development of models to predict the behavior of such organisms in the event of a major oil spill in this region and potentially impact bioremediation strategies by enhancing the activities of these organisms in breaking down the oil.
Collapse
Affiliation(s)
- Angelina G Angelova
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Barbara Berx
- Marine Scotland Science, Aberdeen, United Kingdom
| | | | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Andrew Free
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Hamdan HZ, Salam DA. Ferric iron stimulation in marine SMFCs: Impact on the microbial structure evolution in contaminated sediments with low and high molecular weight PAHs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111636. [PMID: 33218829 DOI: 10.1016/j.jenvman.2020.111636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The impact of ferric iron stimulation on the evolution of microbial structure in marine sediment microbial fuel cells (SMFCs), operated for the bioremediation of a complex mixture of low and high molecular weight PAHs (naphthalene, fluorene, pyrene and benzo(a)pyrene), was assessed. Microbial evolution profiles showed high relative abundances of exoelectrogenic iron-reducing bacteria throughout the biodegradation, namely Geoalkalibacter, under ferric iron stimulation and anode reducing conditions, irrespective of sulfate reducing bacteria (SRB) inhibition. Highest PAHs removal was measured in the absence of anode reduction, under Fe stimulation and SRB inhibition, reaching 40.85% for benzo(a)pyrene, the most persistent PAH used in this study. Results suggest that amendment of contaminated sediment with ferric iron could constitute a better bioremediation strategy than using SMFCs. This becomes significant when considering the well-established and dominant indigenous SRB population in marine sediments that usually limits the performance of the anode as a terminal electron acceptor in marine SMFCs.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
16
|
Mukherji S, Ghosh A, Bhattacharyya C, Mallick I, Bhattacharyya A, Mitra S, Ghosh A. Molecular and culture-based surveys of metabolically active hydrocarbon-degrading archaeal communities in Sundarban mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110481. [PMID: 32203775 DOI: 10.1016/j.ecoenv.2020.110481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Archaea remain important players in global biogeochemical cycles worldwide, including in the highly productive mangrove estuarine ecosystems. In the present study, we have explored the diversity, distribution, and function of the metabolically active fraction of the resident archaeal community of the Sundarban mangrove ecosystem, using both culture-independent and culture-dependent approaches. To evaluate the diversity and distribution pattern of the active archaeal communities, RNA based analysis of the 16S rRNA gene was performed on an Illumina platform. The active Crenarchaeal community was observed to remain constant while active Euryarchaeal community underwent considerable change across the sampling sites depending on varying anthropogenic factors. Haloarchaea were the predominant group in hydrocarbon polluted sediments, leading us to successfully isolate eleven p-hydroxybenzoic acid degrading haloarchaeal species. The isolates could also survive in benzoic acid, naphthalene, and o-phthalate. Quantitative estimation of p-hydroxybenzoic acid degradation was studied on select isolates, and their ability to reduce COD of polluted saline waters of Sundarban was also evaluated. To our knowledge, this is the first ever study combining culture-independent (Next Generation sequencing and metatranscriptome) and culture-dependent analyses for an assessment of archaeal function in the sediment of Sundarban.
Collapse
Affiliation(s)
- Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anandita Ghosh
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Ivy Mallick
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anish Bhattacharyya
- Department of Biochemistry, 35 Ballygunge Circular Road, University of Calcutta, Kolkata, 700019, India
| | - Suparna Mitra
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Thoresby Place, Leeds, LS1 3EX, W. Yorkshire, United Kingdom
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
17
|
Duan J, Han J, Zhou H, Lau YL, An W, Wei P, Cheung SG, Yang Y, Tam NFY. Development of a digestion method for determining microplastic pollution in vegetal-rich clayey mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136030. [PMID: 31869617 DOI: 10.1016/j.scitotenv.2019.136030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Microplastics are ubiquitous pollutants found in environments. Mangrove sediments containing vegetal litter are different from other environmental matrices such as river and marine sediments. The presence of vegetal litter leads to an under-estimation of microplastic pollution, particularly classical digestion methods are not suitable for removing this type of organic matter. The present study aims to develop a digestion method to remove vegetal litter and improve the determination of microplastic pollution in mangrove sediments. Results showed that our three-stage method with repeatedly addition of hydrogen peroxide had the highest efficiency in removing mangrove vegetal litter when compared with the three classical digestion methods. The high match scores of Fourier Transform Infrared Spectroscopy proved that the developed method had little impacts on the integrity of five polymer types of microplastics. The developed method also achieved high efficiency in extracting microplastics from mangrove sediments containing different content of vegetal litter. CAPSULE: A digestion method was developed for extracting microplastics in clayey mangrove sediments rich in vegetal litter.
Collapse
Affiliation(s)
- Jiehan Duan
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Jie Han
- School of Science and Technology, The Open University of Hong Kong, Hong Kong, China
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yat Long Lau
- School of Science and Technology, The Open University of Hong Kong, Hong Kong, China
| | - Wenwen An
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pingping Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Siu Gin Cheung
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Nora Fung-Yee Tam
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Ahmad M, Yang Q, Zhang Y, Ling J, Sajjad W, Qi S, Zhou W, Zhang Y, Lin X, Zhang Y, Dong J. The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120863. [PMID: 31401251 DOI: 10.1016/j.jhazmat.2019.120863] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the microbial community succession to polycyclic aromatic hydrocarbons (PAHs) and identification of important degrading microbial groups are crucial for the designing of appropriate bioremediation strategies. In the present study, two distinct phenanthrene enriched bacterial consortia were treated against high molecular weight (Pyrene, Benzo (a) pyrene and Benzo (a) fluoranthene) and the response was studied in term of taxonomic variations by using High Throughput Illumina sequencing and qPCR analysis. Overall, the type of PAHs significantly affected the composition and the relative abundance of bacterial communities while no obvious difference was detected between bacterial communities of benzo (a) pyrene and benzo (a) fluoranthene treatments. Genera, Novosphingobium, Pseudomonas, Flavobacterium, Mycobacterium, Hoeflae, and Algoriphagus dominated all PAHs treatment groups indicating that they could be the key PAHs degrading phylotypes. Due to the higher abundance of gram-negative PAH-ring hydroxylating dioxygenase gene than that of gram-positive bacteria in all treated groups, we speculated that gram-negative bacteria may contribute more in the PAH degradation. The studied sediments harbored rich PAHs degrading bacterial assemblages involved in both low and high molecular weight PAHs and these findings provided new insight into the perspective of microbial PAHs bioremediation in the mangrove ecosystem.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Shuhua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuhang Zhang
- Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
19
|
Lin X, Hetharua B, Lin L, Xu H, Zheng T, He Z, Tian Y. Mangrove Sediment Microbiome: Adaptive Microbial Assemblages and Their Routed Biogeochemical Processes in Yunxiao Mangrove National Nature Reserve, China. MICROBIAL ECOLOGY 2019; 78:57-69. [PMID: 30284602 DOI: 10.1007/s00248-018-1261-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms play important roles in mangrove ecosystems. However, we know little about the ecological implications of mangrove microbiomes for high productivity and the efficient circulation of elements in mangrove ecosystems. Here, we focused on mangrove sediments located at the Yunxiao National Mangrove Reserve in southeast China, uncovering the mangrove microbiome using the 16S rRNA gene and shotgun metagenome sequencing approaches. Physicochemical assays characterized the Yunxiao mangrove sediments as carbon (C)-rich, sulfur (S)-rich, and nitrogen (N)-limited environment. Then phylogenetic analysis profiling a distinctive microbiome with an unexpected high frequency of Chloroflexi and Nitrospirae appeared to be an adaptive characteristic of microbial structure in S-rich habitat. Metagenome sequencing analysis revealed that the metabolic pathways of N and S cycling at the community-level were routed through ammonification and dissimilatory nitrate reduction to ammonium for N conservation in this N-limited habitat, and dissimilatory sulfate reduction along with polysulfide formation for generating bioavailable S resource avoiding the biotoxicity of sulfide in mangrove sediments. In addition, methane metabolism acted as a bridge to connect C cycling to N and S cycling. Further identification of possible biogeochemical linkers suggested Syntrophobacter, Sulfurovum, Nitrospira, and Anaerolinea potentially drive the coupling of C, N, and S cycling. These results highlighting the adaptive routed metabolism flow, a previously undescribed property of mangrove sediment microbiome, appears to be a defining characteristic of this habitat and may significantly contribute to the high productivity of mangrove ecosystems, which could be used as indicators for the health and biodiversity of mangrove ecosystems.
Collapse
Affiliation(s)
- Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Buce Hetharua
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Lian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hong Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
20
|
Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 2019; 9:8406. [PMID: 31182804 PMCID: PMC6557889 DOI: 10.1038/s41598-019-44788-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differences among the five soil samples. Rhizobiales with higher abundance were observed in inner mangrove forest samples, while Desulfobacterales were in the seaward edge samples, and Frankiales, Gaiellales and Rhodospirillales in the landedge sample. For archaea, Crenarchaeota and Euryarchaeota dominated in five samples, but the proportion in each samples were different. Dominant archaeal community composition at the order level was similar in the seaward edge samples. The dominant archaeal clusters in the two inner mangrove forest samples were different, with Soil Crenarchaeotic Group (SCG) and Halobacteriales in sample inside of Bruguiera sexangula forest and SCG, Methanosarcinales and Marine Benthic Group B (MBGB) in sample inside of Xylocarpus mekongensis forest. The dominant archaeal clusters in land sample were unique, with Terrestrial Group and South African Gold Mine Group 1. The metabolic pathways including metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases were all detected for bacterial and archaeal functional profiles, but metabolic potentials among five samples were different.
Collapse
|
21
|
Ghizelini AM, Martins KG, Gießelmann UC, Santoro E, Pasqualette L, Mendonça-Hagler LCS, Rosado AS, Macrae A. Fungal communities in oil contaminated mangrove sediments - Who is in the mud? MARINE POLLUTION BULLETIN 2019; 139:181-188. [PMID: 30686417 DOI: 10.1016/j.marpolbul.2018.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Mangroves are ecosystems located in tropical and subtropical regions of the world and are vital for coastal protection. Their unique characteristics make them hotspots for carbon cycling and biological diversity. Studies on isolated filamentous fungi and environmental and anthropogenic factors that influence sediments offer new understandings on how to preserve mangroves. Here we report on the filamentous fungi isolated from four mangroves. We correlated fungal community composition with sediment texture, polycyclic aromatic hydrocarbons concentration (oil pollution), pH, salinity, organic matter, total and thermotolerant coliforms (sewage pollution). In total we identified 34 genera and 97 species. The most polluted sites had highest species richness whereas the best preserved site showed the lowest species richness. Oil spill and sewage pollution were identified as the drivers of fungal community composition in the most polluted sites. We found very distinct fungal communities with no >5 species shared between any two mangrove sites.
Collapse
Affiliation(s)
- Angela Michelato Ghizelini
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Urs Christian Gießelmann
- Institute of Biology, Department of Chemistry-Biology, Faculty of Science and Technology, University of Siegen, Germany
| | - Erika Santoro
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Pasqualette
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leda C S Mendonça-Hagler
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew Macrae
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Shen T, Liu L, Li Y, Wang Q, Dai J, Wang R. Long-term effects of untreated wastewater on soil bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:940-950. [PMID: 30067964 DOI: 10.1016/j.scitotenv.2018.07.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
For 46 years (1957-2002), irrigation with wastewater has increased the amount of heavy metal and organic contaminants in soils and altered bacterial communities in Shenyang, northeastern China. There has been characterization of the different heavy metal and petroleum contaminants in two types of land uses (cornfields and paddy fields). The Nemerow composite indices of heavy metal contaminants have been higher in cornfields (1.17-4.73) than those in paddy fields (0.57-1.64). Molecular-based techniques and biochemical-based techniques were used to analyze soil microbial diversity in our study. The metabolic activity of soil microbe communities was higher in paddy sites than that in cornfields. Organic pollutants such as saturated and polycyclic aromatic hydrocarbons have significantly affected soil bacterial compositions. Heavy metals differed in how they disturbed the microbial communities. Arsenic (As) and lead (Pb) shifted the community composition and decreased microbial diversity; copper (Cu) reduced bacterial abundance in soil; and cadmium (Cd) and chromium (Cr) lowered the metabolic capabilities of bacteria.
Collapse
Affiliation(s)
- Tianlin Shen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; Environmental Research Institute, Shandong University, Jinan 250100, China; Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Yuncong Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Qiang Wang
- Environmental Research Institute, Shandong University, Jinan 250100, China
| | - Jiulan Dai
- Environmental Research Institute, Shandong University, Jinan 250100, China; Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA.
| | - Renqing Wang
- Environmental Research Institute, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Ding Q, Huang X, Hu H, Hong M, Zhang D, Wang K. Impact of pyrene and cadmium co-contamination on prokaryotic community in coastal sediment microcosms. CHEMOSPHERE 2017; 188:320-328. [PMID: 28888120 DOI: 10.1016/j.chemosphere.2017.08.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Acute ecological impacts of co-contamination of polycyclic aromatic hydrocarbons (PAHs) and heavy metals on diversity and composition of coastal benthic prokaryotes were unclear. We took pyrene (Pyr) and cadmium (Cd) as the representatives and mimicked an eight-week exposure of moderate and high levels of Pyr, Cd and their mixtures. 16S rRNA amplicon sequencing was used to investigate interaction of the contaminants in temporal succession of prokaryotes. Generally, concentrations of Pyr and HCl-extractable Cd in the sediments were stable over time. Effects and interaction of Pyr and Cd on prokaryotic α-diversity were temporally- and dose-dependent with a decreasing trend in richness and Shannon index under various contamination regimes, particularly in the single-Cd contaminated groups at the early stage. Temporal variability and Pyr-induced pattern in prokaryotic composition were observed. However, Pyr and Cd showed a persistent interaction in prokaryotic composition after 7 days, altering successional trajectories of communities. The communities under Pyr contamination regardless of Cd could be at a developing stage for an active PAH-degrading community with appearance of a pioneer Cycloclasticus phylotype, persistently showing a strong correlation with Pyr level. The associations of phylotypes and Cd level were short-lived and weak, corresponding to the overall resistance of prokaryotic composition to Cd. In the high-throughput sequencing era, using microcosm experiment, we renewed the knowledge about how prokaryotes vary in terms of α-diversity, composition and specific taxa in response to co-contamination of model contaminants at a temporal scale.
Collapse
Affiliation(s)
- Qifang Ding
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Xiaolin Huang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Hanjing Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Man Hong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
24
|
Zhong J, Luo L, Chen B, Sha S, Qing Q, Tam NFY, Zhang Y, Luan T. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil. MARINE POLLUTION BULLETIN 2017; 114:926-933. [PMID: 27865521 DOI: 10.1016/j.marpolbul.2016.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in petroleum, and alkylated phenanthrenes are considered as the primary PAHs during some oil spill events. Bacterial strain of Sphingobium sp. MP9-4, isolated from petroleum-contaminated soil, was efficient to degrade 1-methylphenanthrene (1-MP). A detailed metabolism map of 1-MP in this strain was delineated based on analysis of metabolites with gas chromatograph-mass spectrometer (GC-MS). 1-MP was initially oxidized via two different biochemical strategies, including benzene ring and methyl-group attacks. Benzene ring attack was initiated with dioxygenation of the non-methylated aromatic ring via similar degradation pathways of phenanthrene (PHE) by bacteria. For methyl-group attack, mono oxygenase system was involved and more diverse enzymes were needed than that of PHE degradation. This study enhances the understanding of the metabolic pathways of alkylated PAHs and shows the significant potential of Sphingobium sp. MP9-4 for the bioremediation of alkylated PAHs contaminated environments.
Collapse
Affiliation(s)
- Jianan Zhong
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lijuan Luo
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sha Sha
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Qing
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nora F Y Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Aubé J, Senin P, Pringault O, Bonin P, Deflandre B, Bouchez O, Bru N, Biritxinaga-Etchart E, Klopp C, Guyoneaud R, Goñi-Urriza M. The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats. MARINE POLLUTION BULLETIN 2016; 111:115-125. [PMID: 27449831 DOI: 10.1016/j.marpolbul.2016.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination.
Collapse
Affiliation(s)
- Johanne Aubé
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Pavel Senin
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France; Plateforme Bioinformatique Genotoul, UR875, Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France.
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS, Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | - Patricia Bonin
- MIO, Institut Méditerranéen d'Océanologie, UMR 7294, F13288 Marseille, France.
| | - Bruno Deflandre
- EPOC, UMR 5805, Université de Bordeaux, F33615 Pessac, France.
| | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, F31326 Castanet-Tolosan, France.
| | - Noëlle Bru
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications de Pau, UMR CNRS 5142, FED 4155 MIRA, Campus Montaury, 64600 Anglet, France.
| | - Edurne Biritxinaga-Etchart
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications de Pau, UMR CNRS 5142, FED 4155 MIRA, Campus Montaury, 64600 Anglet, France.
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875, Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France.
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| |
Collapse
|
26
|
Bourceret A, Cébron A, Tisserant E, Poupin P, Bauda P, Beguiristain T, Leyval C. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. MICROBIAL ECOLOGY 2016; 71:711-724. [PMID: 26440298 DOI: 10.1007/s00248-015-0682-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).
Collapse
Affiliation(s)
- Amélia Bourceret
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France.
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
| | - Emilie Tisserant
- INRA, IAM UMR1136, Centre INRA de Nancy, 54280, Champenoux, France
| | - Pascal Poupin
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Pascale Bauda
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Thierry Beguiristain
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Corinne Leyval
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
27
|
Wang Y, Wu Y, Wu Z, Tam NFY. Genotypic responses of bacterial community structure to a mixture of wastewater-borne PAHs and PBDEs in constructed mangrove microcosms. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:91-101. [PMID: 26005923 DOI: 10.1016/j.jhazmat.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
Mangrove microcosms capable of removing polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) from wastewater were established under everyday tidal and non-tidal flooding regimes, along with two different mangrove species. Defining how bacterial communities change with pollutants or across treatments will contribute to understanding the microbial ecology of in situ bioremediation systems. A semi-nested PCR-DGGE (denaturing gradient gel electrophoresis) approach was employed, with known genus/species-specific primers targeting the 16S rRNA genes of Sphingomonas and Mycobacterium (related to PAH degradation) and Dehalococcoides (related to PBDE degradation). Results showed that the composition of Mycobacterium- and Dehalococcoides-like populations was critically determined by tidal regime during a medium-term (4-8 months) exposure, while that of Sphingomonas-like population, along with total bacterial community, was more dependent on sediment layer and became prominently affected by tidal regime till the end of 8-month treatment. The effect of plant species was relatively small. Canonical correspondence analysis (CCA) further revealed that Sphingomonas- and Mycobacterium-like populations were significantly associated with phenanthrene and benzo(a)pyrene, respectively, while Dehalococcoides-like population was the only group significantly related to the highest PBDE congener (BDE-209) in the mangrove microcosms.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yan Wu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
28
|
Ling J, Jiang YF, Wang YS, Dong JD, Zhang YY, Zhang YZ. Responses of bacterial communities in seagrass sediments to polycyclic aromatic hydrocarbon-induced stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1517-1528. [PMID: 26048240 DOI: 10.1007/s10646-015-1493-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The seagrass meadows represent one of the highest productive marine ecosystems, and have the great ecological and economic values. Bacteria play important roles in energy flow, nutrient biogeochemical cycle and organic matter turnover in marine ecosystems. The seagrass meadows are experiencing a world-wide decline, and the pollution is one of the main reasons. Polycyclic aromatic hydrocarbons (PAHs) are thought be the most common. Bacterial communities in the seagrass Enhalus acoroides sediments were analyzed for their responses to PAHs induced stress. Dynamics of the composition and abundance of bacterial communities during the incubation period were explored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR assay, respectively. Both the incubation time and the PAHs concentration played significant roles in determining the microbial diversity, as reflected by the detected DGGE bands. Analysis of sequencing results showed that the Gammaproteobacteria were dominant in the seagrass sediments, accounting for 61.29 % of all sequenced bands. As PAHs could be used as carbon source for microbes, the species and diversity of the PAH-added groups (group 1 and 2) presented higher Shannon Wiener index than the group CK, with the group 1 showing the highest values almost through the same incubation stage. Patterns of changes in abundance of the three groups over the experiment time were quite different. The bacterial abundance of the group CK and group 2 decreased sharply from 4.15 × 10(11) and 6.37 × 10(11) to 1.17 × 10(10) and 1.07 × 10(10) copies/g from day 2 to 35, respectively while bacterial abundance of group 1 increased significantly from 1.59 × 10(11) copies/g at day 2 to 8.80 × 10(11) copies/g at day 7, and then dropped from day 14 till the end of the incubation. Statistical analysis (UMPGA and PCA) results suggested that the bacterial community were more likely to be affected by the incubation time than the concentration of the PAHs. This study provided the important information about dynamics of bacterial community under the PAHs stress and revealed the high bacterial diversity in sediments of E. acoroides. Investigation results also indicated that microbial community structure in the seagrass sediment were sensible to the PAHs induced stress, and may be used as potential indicators for the PAHs contamination.
Collapse
Affiliation(s)
- Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Chinese Academy of Sciences, Sanya, 57200, China
| | - Yu-Feng Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Chinese Academy of Sciences, Sanya, 57200, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Jun-De Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Hainan Tropical Marine Biological Research Station, Chinese Academy of Sciences, Sanya, 57200, China.
| | - Yan-Ying Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Chinese Academy of Sciences, Sanya, 57200, China
| | - Yuan-Zhou Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Chinese Academy of Sciences, Sanya, 57200, China
| |
Collapse
|
29
|
Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress. Int J Mol Sci 2015; 16:14039-55. [PMID: 26096007 PMCID: PMC4490537 DOI: 10.3390/ijms160614039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 11/17/2022] Open
Abstract
Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination.
Collapse
|
30
|
Revathy T, Jayasri MA, Suthindhiran K. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments. SCIENTIFICA 2015; 2015:867586. [PMID: 26605106 PMCID: PMC4641207 DOI: 10.1155/2015/867586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 05/08/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs.
Collapse
Affiliation(s)
- T. Revathy
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - M. A. Jayasri
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - K. Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
- *K. Suthindhiran:
| |
Collapse
|
31
|
Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:689-697. [PMID: 25464311 DOI: 10.1016/j.jhazmat.2014.09.068] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.
Collapse
Affiliation(s)
- Hernando Pactao Bacosa
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
32
|
Kaci A, Petit F, Lesueur P, Boust D, Vrel A, Berthe T. Distinct diversity of the czcA gene in two sedimentary horizons from a contaminated estuarine core. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10787-10802. [PMID: 24894751 DOI: 10.1007/s11356-014-3029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
In estuarine ecosystems, trace metals are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediments accumulate and are then transformed by diagenetic processes, recording the history of the estuary's chemical contamination. In such a specific environment, we investigated to what extent a chronic exposure to contaminants could affect metal-resistant sedimentary bacteria in subsurface sediments. The occurrence and diversity of cadmium resistance genes (cadA, czcA) was investigated in 5- and 33-year-old sediments from a highly contaminated estuary (Seine France). Primers were designed to detect a 252-bp fragment of the czcA gene, specifically targeting a transmembrane helice domain (TMH IV) involved in the proton substrate antiport of this efflux pump. Although the cadA gene was not detected, the highest diversity of the sequence of the czcA gene was observed in the 5-year-old sediment. According to the percentage of identity at the amino acid level, the closest CzcA relatives were identified among Proteobacteria (α, β, γ, and δ), Verrucomicrobia, Nitrospirae, and Bacteroidetes. The most abundant sequences were affiliated with Stenotrophomonas. In contrast, in the 33-year-old sediment, CzcA sequences were mainly related to Rhodanobacter thiooxydans and Stenotrophomonas, suggesting a shaping of the metal-resistant microbial communities over time by both diagenetic processes and trace metal contamination.
Collapse
Affiliation(s)
- Assia Kaci
- CNRS, UMR 6143 M2C, Universités de Rouen-Caen, Normandie Université, 76821, Mont-Saint-Aignan, Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Louati H, Said OB, Soltani A, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E. Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3670-3679. [PMID: 24277429 DOI: 10.1007/s11356-013-2330-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
A microcosm experiment was setup to examine (1) the effect of phenanthrene contamination on meiofauna and bacteria communities and (2) the effects of different bioremediation strategies on phenanthrene degradation and on the community structure of free-living marine nematodes. Sediments from Bizerte lagoon were contaminated with (100 mg kg(-1)) phenanthrene and effects were examined after 20 days. Biostimulation (addition of nitrogen and phosphorus fertilizer or mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Meiofauna was counted and identified at the higher taxon level using a stereomicroscope. Nematodes, comprising approximately two thirds of total meiofauna abundance, were identified to genus or species. Phenanthrene contamination had a severe impact on bacteria and meiofauna abundances with a strong decrease of nematodes with a complete disappearance of polychaetes and copepods. Bioremediation counter balanced the toxic effects of phenanthrene since meiofauna and bacteria abundances were significantly higher (p < 0.01) than those observed in phenanthrene contamination. Up to 98 % of phenanthrene removal was observed. In response to phenanthrene contamination, the nematode species had different behavior: Daptonema fallax was eliminated in contaminated microcosms, suggesting that it is an intolerant species to phenanthrene; Neochromadora peocilosoma, Spirinia parasitifera, and Odontophora n. sp., which significantly (p < 0.05) increased in contaminated microcosms, could be considered as "opportunistic" species to phenanthrene whereas Anticoma acuminata and Calomicrolaimus honestus increased in the treatment combining biostimulation and bioaugmentation. Phenanthrene had a significant effect on meiofaunal and bacterial abundances (p < 0.05), with a strong reduction of density and change in the nematode communities. Biostimulation using mineral salt medium strongly enhanced phenanthrene removal, leading to a decrease of its toxicity. This finding opens exciting axes for the future use of biostimulation to reduce toxic effects of PAHs for meiofauna and bacteria in lagoon sediment.
Collapse
Affiliation(s)
- Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Bizerte, Tunisia,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cébron A, Arsène-Ploetze F, Bauda P, Bertin PN, Billard P, Carapito C, Devin S, Goulhen-Chollet F, Poirel J, Leyval C. Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. MICROBIAL ECOLOGY 2014; 67:129-44. [PMID: 24189653 DOI: 10.1007/s00248-013-0313-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/10/2013] [Indexed: 05/08/2023]
Abstract
The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties.
Collapse
Affiliation(s)
- A Cébron
- LIEC UMR7360, CNRS-Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Louati H, Said OB, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. CHEMOSPHERE 2013; 93:2535-2546. [PMID: 24206831 DOI: 10.1016/j.chemosphere.2013.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30 days. Bioremediation treatments, nutrient amendment and addition of a hydrocarbon-degrading bacterium, were also tested to enhance PAH biodegradation. Results clearly show the important role of meiofauna as structuring factor for bacterial communities with significant changes observed in the molecular fingerprints. However, these structural changes were not concomitant with changes in biomass or function. PAH contamination had a severe impact on total meiofaunal abundance with a strong decrease of nematodes and the complete disappearance of polychaetes and copepods. In contrast, correspondence analysis, based on T-RFLP fingerprints, showed that contamination by PAH resulted in small shifts in microbial composition, with or without meiofauna, suggesting a relative tolerance of bacteria to the PAH cocktail. The PAH bioremediation treatments were highly efficient with more than 95% biodegradation. No significant difference was observed in presence or absence of meiofauna. Nutrient addition strongly enhanced bacterial and meiofaunal abundances as compared to control and contaminated microcosms, as well as inducing important changes in the bacterial community structure. Nutrients thus were the main structural factor in shaping bacterial community composition, while the role of meiofauna was less evident.
Collapse
|
36
|
Thompson C, Beys-da-Silva W, Santi L, Berger M, Vainstein M, Guima rães J, Vasconcelos AT. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express 2013; 3:65. [PMID: 24160319 PMCID: PMC3922913 DOI: 10.1186/2191-0855-3-65] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The mangroves are among the most productive and biologically important environments. The possible presence of cellulolytic enzymes and microorganisms useful for biomass degradation as well as taxonomic and functional aspects of two Brazilian mangroves were evaluated using cultivation and metagenomic approaches. From a total of 296 microorganisms with visual differences in colony morphology and growth (including bacteria, yeast and filamentous fungus), 179 (60.5%) and 117 (39.5%) were isolated from the Rio de Janeiro (RJ) and Bahia (BA) samples, respectively. RJ metagenome showed the higher number of microbial isolates, which is consistent with its most conserved state and higher diversity. The metagenomic sequencing data showed similar predominant bacterial phyla in the BA and RJ mangroves with an abundance of Proteobacteria (57.8% and 44.6%), Firmicutes (11% and 12.3%) and Actinobacteria (8.4% and 7.5%). A higher number of enzymes involved in the degradation of polycyclic aromatic compounds were found in the BA mangrove. Specific sequences involved in the cellulolytic degradation, belonging to cellulases, hemicellulases, carbohydrate binding domains, dockerins and cohesins were identified, and it was possible to isolate cultivable fungi and bacteria related to biomass decomposition and with potential applications for the production of biofuels. These results showed that the mangroves possess all fundamental molecular tools required for building the cellulosome, which is required for the efficient degradation of cellulose material and sugar release.
Collapse
|
37
|
Stephens EL, Molina V, Cole KM, Laws E, Johnson CN. In situ and in vitro impacts of the Deepwater Horizon oil spill on Vibrio parahaemolyticus. MARINE POLLUTION BULLETIN 2013; 75:90-97. [PMID: 23987095 DOI: 10.1016/j.marpolbul.2013.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Most established virulence genes in Vibrio parahaemolyticus (Vp), e.g., thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and type three secretion system 2 (TTSS2), are on the chromosome 2 pathogenicity island, which also possesses numerous uncharacterized genes. We hypothesized the 2010 Deepwater Horizon (DH) oil spill would cause an increase in populations of Vibrio parahaemolyticus carrying environmental adaptation genes. Vp isolated pre- and post-spill were analyzed for TTSS2 genes, and impacts of DH oil on Vp were examined in vitro. There was no change in TTSS2 in situ, but tdh and V. vulnificus levels were higher post-spill. In vitro exposure of water samples to DH oil produced no changes in Vp densities. Two years post-spill, total Vp remained low; tdh and trh increased. These results indicate the effects of the DH oil spill on potentially pathogenic Vp subpopulations were complex and difficult to discern from other concurrent anthropogenic and natural events.
Collapse
Affiliation(s)
| | - Vanessa Molina
- Louisiana State University, Baton Rouge, LA, United States
| | - Krystal M Cole
- Louisiana State University, Baton Rouge, LA, United States
| | - Edward Laws
- Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
38
|
Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. MARINE POLLUTION BULLETIN 2013; 74:95-104. [PMID: 23928000 DOI: 10.1016/j.marpolbul.2013.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
Collapse
Affiliation(s)
- Wanwasan Wongwongsee
- Microbiology Program in Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|
39
|
Microbial community shift with decabromodiphenyl ether (BDE 209) in sediments of the Pearl River estuary, China. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0227-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NFY. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. MICROBIAL ECOLOGY 2013; 66:96-104. [PMID: 23649297 DOI: 10.1007/s00248-013-0238-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/21/2013] [Indexed: 05/19/2023]
Abstract
The microbial community plays an essential role in the high productivity in mangrove wetlands. A proper understanding of the spatial variations of microbial communities will provide clues about the underline mechanisms that structure microbial groups and the isolation of bacterial strains of interest. In the present study, the diversity and composition of the bacterial community in sediments collected from four locations, namely mudflat, edge, bulk, and rhizosphere, within the Mai Po Ramsar Wetland in Hong Kong, SAR, China were compared using the barcoded Illumina paired-end sequencing technique. Rarefaction results showed that the bulk sediment inside the mature mangrove forest had the highest bacterial α-diversity, while the mudflat sediment without vegetation had the lowest. The comparison of β-diversity using principal component analysis and principal coordinate analysis with UniFrac metrics both showed that the spatial effects on bacterial communities were significant. All sediment samples could be clustered into two major groups, inner (bulk and rhizosphere sediments collected inside the mangrove forest) and outer mangrove sediments (the sediments collected at the mudflat and the edge of the mangrove forest). With the linear discriminate analysis scores larger than 3, four phyla, namely Actinobacteria, Acidobacteria, Nitrospirae, and Verrucomicrobia, were enriched in the nutrient-rich inner mangrove sediments, while abundances of Proteobacteria and Deferribacterias were higher in outer mangrove sediments. The rhizosphere effect of mangrove plants was also significant, which had a lower α-diversity, a higher amount of Nitrospirae, and a lower abundance of Proteobacteria than the bulk sediment nearby.
Collapse
Affiliation(s)
- Xiao-Tao Jiang
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | | | | | | | | | | | | |
Collapse
|
41
|
Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution. World J Microbiol Biotechnol 2013; 29:1989-2002. [PMID: 23632908 DOI: 10.1007/s11274-013-1362-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Nowadays, because of substantial use of petroleum-derived fuels the number and extension of hydrocarbon polluted terrestrial ecosystems is in growth worldwide. In remediation of aforementioned sites bioremediation still tends to be an innovative, environmentally attractive technology. Although huge amount of information is available concerning the hydrocarbon degradation potential of cultivable hydrocarbonoclastic bacteria little is known about the in situ long-term effects of petroleum derived compounds on the structure of soil microbiota. Therefore, in this study our aim was to determine the long-term impact of total petroleum hydrocarbons (TPHs), volatile petroleum hydrocarbons (VPHs), total alkyl benzenes (TABs) as well as of polycyclic aromatic hydrocarbons (PAHs) on the structure of bacterial communities of four different contaminated soil samples. Our results indicated that a very high amount of TPH affected positively the diversity of hydrocarbonoclastic bacteria. This finding was supported by the occurrence of representatives of the α-, β-, γ-Proteobacteria, Actinobacteria, Flavobacteriia and Bacilli classes. High concentration of VPHs and TABs contributed to the predominance of actinobacterial isolates. In PAH impacted samples the concentration of PAHs negatively correlated with the diversity of bacterial species. Heavily PAH polluted soil samples were mainly inhabited by the representatives of the β-, γ-Proteobacteria (overwhelming dominance of Pseudomonas sp.) and Actinobacteria.
Collapse
|
42
|
Muangchinda C, Pansri R, Wongwongsee W, Pinyakong O. Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. J Appl Microbiol 2013; 114:1311-24. [DOI: 10.1111/jam.12128] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- C. Muangchinda
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
| | - R. Pansri
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
| | - W. Wongwongsee
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
- Microbiology Program in Science; Graduate School, Chulalongkorn University; Bangkok Thailand
| | - O. Pinyakong
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
- Center of Excellence for Environmental and Hazardous Waste Management (EHWM); Bangkok Thailand
| |
Collapse
|
43
|
Louati H, Ben Said O, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O. Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:300-310. [PMID: 22441697 DOI: 10.1007/s11356-012-0860-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE The main goals of this study were to investigate (1) the behavior of microbial communities in response to low-dose bioavailable anthracene addition in lightly contaminated sediment from Bizerte Lagoon and (2) the effects of bioremediation treatments on microbial biomass, activity, and community structure. METHODS Sediment microcosms amended with 1 ppm anthracene were incubated in triplicate during 30 days. Biostimulation (addition of nitrogen and phosphorus fertilizer) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Sediment oxygen consumption was measured with oxygen microelectrodes. Bacterial community structure was assessed by molecular fingerprints (terminal restriction fragment length polymorphism; T-RFLP) analysis. RESULTS Anthracene contamination resulted in a significant reduction of bacterial abundance with an impact on cell integrity. Concomitantly, sediment oxygen consumption was strongly inhibited. Correspondence analysis on T-RFLP data indicated that bacterial community structures from anthracene-contaminated microcosms were different from that of the control. Interestingly, the changes observed in microbial biomass, structure, and activities as a result of anthracene contamination were not alleviated even with the use of biostimulation and combination of biostimulation and bioaugmentation strategy for anthracene bioremediation. Nevertheless, both treatment methods resulted in different community structures relative to the contaminated and control microcosms with the appearance of distinct populations. CONCLUSION Anthracene spiking severely affected microbial communities, suggesting dominance of nontolerant populations in this lightly-contaminated sediment. Although biostimulation and/or bioaugmentation treatments did not alleviate the anthracene toxic effects, the changes observed in microbial population and structure suggest that the proposed treatments might be promising to promote bacterial growth. Further works are still required to propose a more efficient strategy to stimulate biodegradation that takes into account the complex interactions between species for resource access.
Collapse
Affiliation(s)
- Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bacosa HP, Suto K, Inoue C. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:835-846. [PMID: 23485232 DOI: 10.1080/10934529.2013.761476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Graduate School of Environmental Studie, Tohoku University, Aramaki, Sendai, Japan.
| | | | | |
Collapse
|
45
|
Bengtsson G, Törneman N, De Lipthay JR, Sørensen SJ. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. MICROBIAL ECOLOGY 2013; 65:91-100. [PMID: 22940734 DOI: 10.1007/s00248-012-0112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.
Collapse
Affiliation(s)
- Göran Bengtsson
- Department of Ecology, Lund University, Sölvegatan 37, SE, 223 62, Lund, Sweden.
| | | | | | | |
Collapse
|
46
|
Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. MICROBIAL ECOLOGY 2012; 64:605-616. [PMID: 22580956 DOI: 10.1007/s00248-012-0051-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
Although sediments are the natural hydrocarbon sink in the marine environment, the ecology of hydrocarbon-degrading bacteria in sediments is poorly understood, especially in cold regions. We studied the diversity of alkane-degrading bacterial populations and their response to oil exposure in sediments of a chronically polluted Subantarctic coastal environment, by analyzing alkane monooxygenase (alkB) gene libraries. Sequences from the sediment clone libraries were affiliated with genes described in Proteobacteria and Actinobacteria, with 67 % amino acid identity in average to sequences from isolated microorganisms. The majority of the sequences were most closely related to uncultured microorganisms from cold marine sediments or soils from high latitude regions, highlighting the role of temperature in the structuring of this bacterial guild. The distribution of alkB sequences among samples of different sites and years, and selection after experimental oil exposure allowed us to identify ecologically relevant alkB genes in Subantarctic sediments, which could be used as biomarkers for alkane biodegradation in this environment. 16 S rRNA amplicon pyrosequencing indicated the abundance of several genera for which no alkB genes have yet been described (Oleispira, Thalassospira) or that have not been previously associated with oil biodegradation (Spongiibacter-formerly Melitea-, Maribius, Robiginitomaculum, Bizionia and Gillisia). These genera constitute candidates for future work involving identification of hydrocarbon biodegradation pathway genes.
Collapse
Affiliation(s)
- Lilian M Guibert
- Centro Nacional Patagónico (CENPAT - CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Ho KT, Pelletier MC, Campbell DE, Burgess RM, Johnson RL, Rocha KJ. Diagnosis of potential stressors adversely affecting benthic communities in New Bedford Harbor, MA (USA). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2012; 8:685-702. [PMID: 22447411 DOI: 10.1002/ieam.1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/17/2011] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
Diagnosing the causes of impaired ecosystems in the marine environment is critical for effective management action. When ecological impairment is based on toxicological or biological criteria (i.e., degraded benthic community composition or toxicity test results), managers are faced with the additional problem of diagnosing the cause of impairment before plans can be initiated to reduce the pollutant loading. We evaluated a number of diagnostic tools to determine their ability to identify pollutants in New Bedford Harbor (NBH), Massachusetts (USA), using a modified version of the US Environmental Protection Agency's (USEPA) stressor identification (SI) guidance. In this study, we linked chemical sources and toxic chemicals in the sediment with spatial concentration studies; we also linked toxic chemicals in the sediment with toxicity test results using toxicity identification and evaluation (TIE) studies. We used geographical information systems (GIS) maps to determine sources and to aid in determining spatially integrated inorganic nitrogen (SIIN). The SIIN values of reference and test estuaries were quantified and compared. Using this approach, we determined that toxic chemicals continue to be active stressors in NBH and that a moderate nutrient stress exists, but we were unable to link the nutrient stressor with a source. Also excess sedimentation was evaluated, but it does not appear to be an active stressor in this harbor. The research included an evaluation of the effectiveness of tools under development that may be used to evaluate stressors in water bodies. We found that the following tools were useful in diagnosing active stressors: toxicity tests, toxicity identification and evaluation (TIE) methods, comparison of grain size-normalized total organic carbon (TOC) ratios with reference sites, and comparison of SIIN with reference sites. This approach allowed us to successfully evaluate stressors in NBH retrospectively; however, a limitation in using retrospective data sets is that the approach may underestimate current or newly emerging stressors.
Collapse
Affiliation(s)
- Kay T Ho
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, 27 Tarzwell Avenue, Narragansett, Rhode Island 02882, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Sun MY, Dafforn KA, Brown MV, Johnston EL. Bacterial communities are sensitive indicators of contaminant stress. MARINE POLLUTION BULLETIN 2012; 64:1029-1038. [PMID: 22385752 DOI: 10.1016/j.marpolbul.2012.01.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
With many environments worldwide experiencing at least some degree of anthropogenic modification, there is great urgency to identify sensitive indicators of ecosystem stress. Estuarine organisms are particularly vulnerable to anthropogenic contaminants. This study presents bacterial communities as sensitive indicators of contaminant stress. Sediments were collected from multiple sites within inner and outer zones of three heavily modified and three relatively unmodified estuaries. Bacterial communities were censused using Automated Ribosomal Intergenic Spacer Analysis and analysed for a suite of metal and PAH contaminants. Shifts in both bacterial community composition and diversity showed strong associations with sediment contaminant concentrations, particularly with metals. Importantly, these changes are discernable from environmental variation inherent to highly complex estuarine environments. Moreover, variation in bacterial communities within sites was limited. This allowed for differences between sites, zones and estuaries to be explained by variables of interest such as contaminants that vary between, but not within individual sites.
Collapse
Affiliation(s)
- Melanie Y Sun
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
49
|
Chang BV, Yuan SY, Ren YL. Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment. CHEMOSPHERE 2012; 87:535-541. [PMID: 22245059 DOI: 10.1016/j.chemosphere.2011.12.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k(1)) and half-lives (t(1/2)) for TBBPA (50 μg g(-1)) ranged from 0.053 to 0.077 d(-1) and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g(-1)) was enhanced by adding yeast extract (5 mg L(-1)), sodium chloride (10 ppt), cellulose (0.96 mg L(-1)), humic acid (0.5 g L(-1)), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L(-1)), or surfactin (43 mg L(-1)), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g(-1))>nonylphenol (NP) (50 μg g(-1))>4,4'-dibrominated diphenyl ether (BDE-15) (50 μg g(-1))>TBBPA (50 μg g(-1))>2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) (50 μg g(-1)). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.
Collapse
Affiliation(s)
- B V Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| | | | | |
Collapse
|
50
|
Lewis M, Pryor R, Wilking L. Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2328-2346. [PMID: 21601968 DOI: 10.1016/j.envpol.2011.04.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/12/2011] [Accepted: 04/17/2011] [Indexed: 05/30/2023]
Abstract
The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria.
Collapse
Affiliation(s)
- Michael Lewis
- US Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| | | | | |
Collapse
|