1
|
Xu H, He D, Tao H. A biomimetic nano-NET strategy for the treatment of MRSA-related implant-associated infection. RSC Adv 2025; 15:14821-14837. [PMID: 40337221 PMCID: PMC12057620 DOI: 10.1039/d5ra00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has spread across diverse global environments, and MRSA-related infection is a major threat to public health. Implant-associated infection (IAI) caused by MRSA remains a tough global clinical problem. Conventional antibiotic therapy has limited efficacy in treating MRSA-related IAI, and antibiotic abuse has resulted in the emergence of multidrug-resistant bacteria. Hence, there is a necessity to explore more effective approaches to deal with MRSA-related IAI. Herein, inspired by neutrophil extracellular traps (NETs) released by neutrophils to kill microorganisms, this study proposes a novel biomimetic nano-NET strategy using an epsilon-poly-l-lysine-coated CuO2 nanoplatform, denoted as PCPNAs. The function-adaptive nanoplatform exhibited excellent Fenton-like performance, including robust ROS generation and GSH scavenging ability. PCPNAs showed >90% cell viability in mammalian cells and reduced bacterial burden by 7.65 log10 CFU in vitro. Moreover, the positively charged PCPNAs could easily bind to negatively charged MRSA cells through charge-coupling and simultaneously exerted a trapping effect on MRSA cells. Notably, PCPNAs self-assembled into web-like structures to physically trap and kill biofilm bacteria, achieving 99.58% biofilm eradication. Furthermore, PCPNAs showed satisfactory biocompatibility in vivo and displayed ideal anti-bacterial and anti-inflammatory effects in a mouse model with implant-associated infection. With further development and optimization, the biomimetic nano-NET strategy based on PCPNAs provides a new therapeutic option for the treatment of MRSA-related implant-associated infection.
Collapse
Affiliation(s)
- Huan Xu
- Department of Orthopedics Surgery, Lishui Hospital, Zhejiang University School of Medicine No. 289, Kuocang Road Lishui Zhejiang 323000 China
| | - Dengwei He
- Department of Orthopedics Surgery, Lishui Hospital, Zhejiang University School of Medicine No. 289, Kuocang Road Lishui Zhejiang 323000 China
| | - Huimin Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine No. 88, Jiefang Road Hangzhou Zhejiang 310009 China
| |
Collapse
|
2
|
Yu J, Yuasa H, Hirono I, Koiwai K, Mori T. Dielectrophoresis for Isolating Low-Abundance Bacteria Obscured by Impurities in Environmental Samples. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:64. [PMID: 40085294 PMCID: PMC11909046 DOI: 10.1007/s10126-025-10441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Bacterial communities associated with living organisms play critical roles in maintaining health and ecological balance. While dominant bacteria have been widely studied, understanding the role of low-abundance bacteria has become increasingly important due to their unique roles, such as regulating bacterial community dynamics and supporting host-specific functions. However, detecting these bacteria remains challenging, as impurities in environmental samples mask signals and compromise the accuracy of analyses. This study explored the use of dielectrophoresis (DEP) as a practical approach to isolate low-abundance bacteria obscured by impurities, comparing its utility to conventional centrifugation methods. Using two shrimp species, Neocaridina denticulata and Penaeus japonicus, DEP effectively isolated bacterial fractions while reducing impurities, enabling the detection of bacteria undetected in centrifuged samples. These newly detected bacteria were potentially linked to diverse ecological and host-specific functions, such as nutrient cycling and immune modulation, highlighting DEP as a highly potential approach to support the study of host-microbial interactions. Overall, we believe that DEP offers a practical solution for detecting overlooked bacteria in conventional methods and exploring their diversity and functional roles, with potential contributions to aquaculture and environmental biotechnology.
Collapse
Affiliation(s)
- Jaeyoung Yu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| | - Hajime Yuasa
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
3
|
Lin Z, Liang Z, He S, Chin FWL, Huang D, Hong Y, Wang X, Li D. Salmonella dry surface biofilm: morphology, single-cell landscape, and sanitization. Appl Environ Microbiol 2024; 90:e0162324. [PMID: 39494899 PMCID: PMC11577771 DOI: 10.1128/aem.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, Salmonella Typhimurium dry surface biofilm (DSB) formation was investigated in comparison with wet surface biofilm (WSB) development. Confocal laser scanning microscopic analysis revealed a prominent green cell signal during WSB formation, whereas a red signal predominated during DSB formation. Electron microscopy was also used to compare the features of DSB and WSB. Overall, WSB was unevenly scattered over the surface, whereas DSB was evenly dispersed. In contrast to WSB cells, which have a distinct plasma membrane and outer membrane layer, DSB cells are contained in large capsules and compressed. Next, microbiome single-cell transcriptomics was used to investigate the functional heterogeneity of the Salmonella DSB microbiome, with nine clusters successfully identified. Although over 60% of the dried cells were metabolically inactive, the rest of the Salmonella cells still demonstrated specific antioxidative and virulence capabilities, suggesting a possible concern for low-moisture food (LMF) safety. Finally, because sanitization in LMF industries must be conducted without water, a list of 39 flavonoids was tested for their combined effect with 70% isopropyl alcohol (IPA) against DSB, and morin induced the greatest reduction in the green:red ratio from 3.67 to 0.43. Significantly higher reductions of Salmonella viability in DSB were achieved by 10-, 100-, 1,000-, and 10,000-µg/mL morin (1.69 ± 0.25, 3.21 ± 0.23, 4.32 ± 0.24, and 5.18 ± 0.16 log CFU/sample reductions) than 70% IPA alone (1.55 ± 0.20 log CFU/sample reduction) (P < 0.05), indicating the potential to be formulated as a dry sanitizer for the LMF industry.IMPORTANCEDSB growth of foodborne pathogens in LMF processing environments is associated with food safety, financial loss, and compromised consumer trust. This work is the first comprehensive examination of the characteristics of Salmonella DSB while exploring its underlying survival mechanisms. Furthermore, morin dissolved in 70% IPA was proposed as an efficient dry sanitizer against DSB to provide insights into biofilm control during LMF processing.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Zhiqian Liang
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Shuang He
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Fion Wei Lin Chin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
4
|
Silva AR, Melo LF, Keevil CW, Pereira A. Legionella colonization and 3D spatial location within a Pseudomonas biofilm. Sci Rep 2024; 14:16781. [PMID: 39039267 PMCID: PMC11263398 DOI: 10.1038/s41598-024-67712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Biofilms are known to be critical for Legionella settlement in engineered water systems and are often associated with Legionnaire's Disease events. One of the key features of biofilms is their heterogeneous three-dimensional structure which supports the establishment of microbial interactions and confers protection to microorganisms. This work addresses the impact of Legionella pneumophila colonization of a Pseudomonas fluorescens biofilm, as information about the interactions between Legionella and biofilm structures is scarce. It combines a set of meso- and microscale biofilm analyses (Optical Coherence Tomography, Episcopic Differential Interference Contrast coupled with Epifluorescence Microscopy and Confocal Laser Scanning Microscopy) with PNA-FISH labelled L. pneumophila to tackle the following questions: (a) does the biofilm structure change upon L. pneumophila biofilm colonization?; (b) what happens to L. pneumophila within the biofilm over time and (c) where is L. pneumophila preferentially located within the biofilm? Results showed that P. fluorescens structure did not significantly change upon L. pneumophila colonization, indicating the competitive advantage of the first colonizer. Imaging of PNA-labelled L. pneumophila showed that compared to standard culture recovery it colonized to a greater extent the 3-day-old P. fluorescens biofilms, presumably entering in VBNC state by the end of the experiment. L. pneumophila was mostly located in the bottom regions of the biofilm, which is consistent with the physiological requirements of both bacteria and confers enhanced Legionella protection against external aggressions. The present study provides an expedited methodological approach to address specific systematic laboratory studies concerning the interactions between L. pneumophila and biofilm structure that can provide, in the future, insights for public health Legionella management of water systems.
Collapse
Affiliation(s)
- Ana Rosa Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luis F Melo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - C William Keevil
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ana Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Song Y, Mena-Aguilar D, Brown CL, Rhoads WJ, Helm RF, Pruden A, Edwards MA. Effects of Copper on Legionella pneumophila Revealed via Viability Assays and Proteomics. Pathogens 2024; 13:563. [PMID: 39057790 PMCID: PMC11279431 DOI: 10.3390/pathogens13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Utilities Department, 316 N. Academy St., Town of Cary, Cary, NC 27513, USA
| | - Didier Mena-Aguilar
- Biochemistry, Virginia Tech, 340 W Campus Dr, Blacksburg, VA 24060, USA
- Department of Biochemistry, University of Nebraska-Lincoln, N106, The Beadle Center, Lincoln, NE 68588, USA
| | - Connor L. Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Steger Hall, Blacksburg, VA 24061, USA
| | - William J. Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Black & Veatch, 8400 Ward Pkwy, Kansas City, MO 64114, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, 1015 Life Science Circle, 211B Steger Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| |
Collapse
|
6
|
Zhou J, Ji X, Wang H, Hsu JC, Hua C, Yang X, Liu Z, Guo H, Huang Y, Li Y, Cai W, Lin X, Ni D. Design of Ultrasound-Driven Charge Interference Therapy for Wound Infection. NANO LETTERS 2024; 24:7868-7878. [PMID: 38912706 PMCID: PMC11334693 DOI: 10.1021/acs.nanolett.4c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Wound infections, especially those caused by pathogenic bacteria, present a considerable public health concern due to associated complications and poor therapeutic outcomes. Herein, we developed antibacterial nanoparticles, namely, PGTP, by coordinating guanidine derivatives with a porphyrin-based sonosensitizer. The synthesized PGTP nanoparticles, characterized by their strong positive charge, effectively disrupted the bacterial biosynthesis process through charge interference, demonstrating efficacy against both Gram-negative and Gram-positive bacteria. Additionally, PGTP nanoparticles generated reactive oxygen species under ultrasound stimulation, resulting in the disruption of biofilm integrity and efficient elimination of pathogens. RNA-seq analysis unveiled the detailed mechanism of wound healing, revealing that PGTP nanoparticles, when coupled with ultrasound, impair bacterial metabolism by interfering with the synthesis and transcription of amino acids. This study presents a novel approach to combatting wound infections through ultrasound-driven charge-interfering therapy, facilitated by advanced antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xi Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zeyang Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
7
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
8
|
Morkus P, Rassenberg S, Montpetit D, Filipe CDM, Latulippe DR. Tuning the sensitivity of cell-based biosensors for the detection of biocides. CHEMOSPHERE 2023; 331:138740. [PMID: 37088207 DOI: 10.1016/j.chemosphere.2023.138740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The presence of biocides in wastewater can negatively impact the efficiency of wastewater treatment processes, particular the process of nitrification. In this paper, we describe the development of cell-based biosensors (CBBs) with tunable levels of sensitivity for rapidly detecting the presence and predicting the type and concentration of biocides. The CBB assay developed is performed by first exposing a panel of bacterial strains (E. coli, B. subtilis, B. cereus) to the sample being tested and to the control sample without biocide, and then adding a fluorescent dye (LIVE/DEAD BacLight). We then compare the fluorescence signals generated by the two samples, and the differences in the signals indicate the presence of a biocide, as previously reported in the literature. We found that the sensitivity of the CBB assay can be improved by tuning the type/salinity of the buffer used to suspend the cells, and by changing the number of cells used in the assay. These changes improved the level of detection (LOD) of the biocide Cetyltrimethylammonium bromide (CTAB) from 10 ppm to 0.625 ppm and the biocide Grotan® BK from 500 ppm to 7.8 ppm. With the optimized conditions for each strain, we also establish that the combined response from the panel of bacterial strains can be used to predict the type and concentration of biocide sample tested. Additionally, we provide evidence that the response of the tunable CBB assay can be quantitatively measured using a compact, commercially available fluorometer. Overall, the significance of this work will improve point-of-use testing and enable the discrimination between biocide-containing samples of similar toxicity and detection of lower toxicity samples, thereby improving the accuracy of the CBB assay.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Sarah Rassenberg
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
9
|
Wang M, Gu K, Wan M, Gan L, Chen J, Zhao W, Shi H, Li J. Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative. Photochem Photobiol Sci 2023:10.1007/s43630-023-00408-2. [PMID: 37022583 DOI: 10.1007/s43630-023-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 μM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 μM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Lu Gan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Jingtao Chen
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital, Fudan University, No.12, Rd. Wulumuqi, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
10
|
Palau M, Muñoz E, Lujan E, Larrosa N, Gomis X, Márquez E, Len O, Almirante B, Abellà J, Colominas S, Gavaldà J. In Vitro and In Vivo Antimicrobial Activity of Hypochlorous Acid against Drug-Resistant and Biofilm-Producing Strains. Microbiol Spectr 2022; 10:e0236522. [PMID: 36190404 PMCID: PMC9602778 DOI: 10.1128/spectrum.02365-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023] Open
Abstract
The aims of this study were as follows. First, we determined the antimicrobial efficacy of hypochlorous acid (HClO) against bacterial, fungal, and yeast strains growing planktonically and growing in biofilms. Second, we sought to compare the activity of the combination of daptomycin and HClO versus those of the antimicrobial agents alone for the treatment of experimental catheter-related Staphylococcus epidermidis infection (CRI) using the antibiotic lock technique (ALT) in a rabbit model. HClO was generated through direct electric current (DC) shots at determined amperages and times. For planktonic susceptibility studies, 1 to 3 DC shots of 2, 5, and 10 mA from 0 to 300 s were applied. A DC shot of 20 mA from 0 to 20 min was applied to biofilm-producing strains. Central venous catheters were inserted into New Zealand White rabbits, inoculated with an S. epidermidis strain, and treated with saline solution or ALT using daptomycin (50 mg/mL), HClO (20 mA for 45 min), or daptomycin plus HClO. One hundred percent of the planktonic bacterial, fungal, and yeast strains were killed by applying one DC shot of 2, 5, and 10 mA, respectively. One DC shot of 20 mA for 20 min was sufficient to eradicate 100% of the tested biofilm-producing strains. Daptomycin plus HClO lock therapy showed the highest activity for experimental CRI with S. epidermidis. HClO could be an effective strategy for treating infections caused by extensively drug-resistant or multidrug-resistant and biofilm-producing strains in medical devices and chronic wounds. The results of the ALT using daptomycin plus HClO may be promising. IMPORTANCE Currently, drug-resistant infections are increasing and there are fewer antibiotics available to treat them. Therefore, there is an urgent need to find new antibiotics and nonantimicrobial strategies to treat these infections. We present a new nonantibiotic strategy based on hypochlorous acid generation to treat long-term catheter-related and chronic wounds infections.
Collapse
Affiliation(s)
- Marta Palau
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Muñoz
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Enric Lujan
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Nieves Larrosa
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Gomis
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Márquez
- Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Oscar Len
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Benito Almirante
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Joan Gavaldà
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Ihadjadene Y, Walther T, Krujatz F. Optimized Protocol for Microalgae DNA Staining with SYTO9/SYBR Green I, Based on Flow Cytometry and RSM Methodology: Experimental Design, Impacts and Validation. Methods Protoc 2022; 5:76. [PMID: 36287048 PMCID: PMC9612149 DOI: 10.3390/mps5050076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple fluorochromes are extensively used to investigate different microalgal aspects, such as viability and physiology. Some of them can be used to stain nucleic acids (DNA). Well-known examples are SYBR Green I and SYTO 9, the latter of which offers several advantages, especially when combined with flow cytometry (FCM)—a powerful method for studying microalgal population heterogeneity and analyzing their cell cycles. However, the effects of these dyes on the microalgae cell physiology have not been fully elucidated yet. A statistical experimental design, using response surface methodology (RSM) with FCM was applied in this study to optimize the DNA staining of a non-conventional microalgae, Chromochloris zofingiensis, with SYBR Green I and SYTO 9, and to optimize the variables affecting staining efficiency, i.e., the dye concentration, incubation time and staining temperature. We found that none of these factors affects the staining efficiency, which was not less than 99.65%. However, for both dyes, the dye concentration was shown to be the most significant factor causing cell damage (p-values: 0.0003; <0.0001) for SYBR Green I and SYTO 9, respectively. The staining temperature was only significant for SYTO 9 (p-value: 0.0082), and no significant effect was observed regarding the incubation time for both dyes. The values of the optimized parameters (0.5 µM, 05 min and 25 °C) for SYTO 9 and (0.5 X, 5 min and 25 °C) for SYBR Green I resulted in the maximum staining efficiency (99.8%; 99.6%), and the minimum damaging effects (12.86%; 13.75%) for SYTO 9 and SYBR Green I, respectively. These results offer new perspectives for improving the use of DNA staining fluorochromes and provides insights into their possible side effects on microalgae.
Collapse
Affiliation(s)
- Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
| |
Collapse
|
12
|
Melatonin inhibits Gram-negative pathogens by targeting citrate synthase. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1430-1444. [PMID: 35000061 DOI: 10.1007/s11427-021-2032-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Bacterial infections caused by Gram-negative pathogens represent a growing burden for public health worldwide. Despite the urgent need for new antibiotics that effectively fight against pathogenic bacteria, very few compounds are currently under development or approved in the clinical setting. Repurposing compounds for other uses offers a productive strategy for the development of new antibiotics. Here we report that the multifaceted melatonin effectively improves survival rates of mice and decreases bacterial loads in the lung during infection. Mechanistically, melatonin specifically inhibits the activity of citrate synthase of Gram-negative pathogens through directly binding to the R300, D363, and H265 sites, particularly for the notorious Pasteurella multocida. These findings highlight that usage of melatonin is a feasible and alternative therapy to tackle the increasing threat of Gram-negative pathogen infections via disrupting metabolic flux of bacteria.
Collapse
|
13
|
Müllerová L, Marková K, Obruča S, Mravec F. Use of Flavin-Related Cellular Autofluorescence to Monitor Processes in Microbial Biotechnology. Microorganisms 2022; 10:microorganisms10061179. [PMID: 35744697 PMCID: PMC9231254 DOI: 10.3390/microorganisms10061179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).
Collapse
|
14
|
Wang M, Ateia M, Hatano Y, Miyanaga K, Yoshimura C. Novel fluorescence-based method for rapid quantification of live bacteria in river water and treated wastewater. ENVIRONMENTAL SCIENCE. ADVANCES 2022; 1:30-36. [PMID: 36778842 PMCID: PMC9909780 DOI: 10.1039/d1va00017a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring bacteria is essential for ensuring microbial safety of water sources, including river water and treated wastewater. The plate count method is common for monitoring bacterial abundance, although it cannot detect all live bacteria such as viable but non-culturable bacteria, causing underestimation of microbial risks. Live/Dead BacLight kit, involving fluorochromes SYTO 9 and propidium iodide (PI), provides an alternative to assess bacterial viability using flow cytometry or microscopy. However, its application is limited due to the high cost of flow cytometry and the inapplicability of microscopy to most environmental waters. Thus, this study introduces the combination of BacLight kit and fluorescence spectroscopy for quantifying live bacteria in river water and treated wastewater. Mixtures of live and dead Escherichia coli (E. coli) with various ratios and total cell concentrations were stained with SYTO 9 and PI and measured by fluorescence spectroscopy. The fluorescence emission peak area of SYTO 9 in the range of 500-510 nm at the excitation wavelength of 470 nm correlates linearly with the viable cell counts (R 2 > 0.99, p < 0.0001) with only slight variations in the complex water matrix. The tested method can quantify the live E. coli from 3.67 × 104 to 2.70 × 107 cells per mL. This method is simple, sensitive and reliable for quantifying live bacteria in environmental water, which can be later integrated into real-time monitoring systems.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Kazuhiko Miyanaga
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Artificial Human Sweat as a Novel Growth Condition for Clinically Relevant Pathogens on Hospital Surfaces. Microbiol Spectr 2022; 10:e0213721. [PMID: 35357242 PMCID: PMC9045197 DOI: 10.1128/spectrum.02137-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The emergence of biofilms on dry hospital surfaces has led to the development of numerous models designed to challenge the efficacious properties of common antimicrobial agents used in cleaning. This is in spite of limited research defining how dry surfaces are able to facilitate biofilm growth and formation in such desiccating and nutrient-deprived environments. While it is well established that the phenotypical response of biofilms is dependent on the conditions in which they are formed, most models incorporate a nutrient-enriched, hydrated environment dissimilar to the clinical setting. In this study, we piloted a novel culture medium, artificial human sweat (AHS), which is perceived to be more indicative of the nutrient sources available on hospital surfaces, particularly those in close proximity to patients. AHS was capable of sustaining the proliferation of four clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa) and achieved biofilm formation at concentration levels equivalent to those found in situ (average, 6.00 log10 CFU/cm2) with similar visual characteristics upon microscopy. The AHS model presented here could be used for downstream applications, including efficacy testing of hospital cleaning products, due to its resemblance to clinical biofilms on dry surfaces. This may contribute to a better understanding of the true impact these products have on surface hygiene. IMPORTANCE Precise modeling of dry surface biofilms in hospitals is critical for understanding their role in hospital-acquired infection transmission and surface contamination. Using a representative culture condition which includes a nutrient source is key to developing a phenotypically accurate biofilm community. This will enable accurate laboratory testing of cleaning products and their efficacy against dry surface biofilms.
Collapse
|
16
|
Kim JY, Song H, Kim D, Lee SY. Physiological changes and stress responses of heat shock treated Salmonella enterica serovar Typhimurium. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Kumar P, Saha T, Behera S, Gupta S, Das S, Mukhopadhyay K. Enhanced efficacy of a Cu 2+ complex of curcumin against Gram-positive and Gram-negative bacteria: Attributes of complex formation. J Inorg Biochem 2021; 222:111494. [PMID: 34091095 DOI: 10.1016/j.jinorgbio.2021.111494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
Curcumin is a tantalizing molecule with multifaceted therapeutic potentials. However, its therapeutic applications are severely hampered because of poor bioavailability, attributed to its instability and aqueous insolubility. In an attempt to overcome this inherent limitation and develop curcumin-based antibacterials, we had earlier synthesized and characterized a metal complex of Cu(II) with curcumin, having the formula [Cu(Curcumin)(OCOCH3)(H2O)], hereafter referred to as Cu(Cur). In this study, the complex, i.e., Cu(Cur), was investigated for its stability and antibacterial activity along with its possible mechanism of action in comparison to the parent molecule, curcumin. Complex formation resulted in improved stability as Cu(Cur) was found to be highly stable under different physiological conditions. Such improved stability was verified with the help of UV-Vis spectroscopy and HPLC. With improved stability, Cu(Cur) exhibited potent and significantly enhanced activity over curcumin against both E. coli and S. aureus. Calcein leakage assay revealed that the complex triggered immediate membrane permeabilization in S. aureus. This membrane disruptive mode of action was further corroborated by microscopic visualization. The excellent potency of the complex was augmented by its safe toxicological profile as it was non-hemolytic and non-cytotoxic towards mammalian cells, making it a suitable candidate for in vivo investigations. Altogether, this investigation is a critical appraisal that advocates the antibacterial potential of this stable, membrane-targeting and non-toxic complex, thereby presenting new perspectives for its therapeutic application against bacterial infections.
Collapse
Affiliation(s)
- Prince Kumar
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Tanmoy Saha
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Shalini Gupta
- Molecular Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
18
|
Biofilm Development on Urinary Catheters Promotes the Appearance of Viable but Nonculturable Bacteria. mBio 2021; 12:mBio.03584-20. [PMID: 33758085 PMCID: PMC8092313 DOI: 10.1128/mbio.03584-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several antimicrobial urinary catheter materials have been developed, but, although laboratory studies may show a benefit, none have significantly improved clinical outcomes. The use of poorly designed laboratory testing and lack of consideration of the impact of VBNC populations may be responsible. Catheter-associated urinary tract infections have serious consequences, for both patients and health care resources. Much work has been carried out to develop an antimicrobial catheter. Although such developments have shown promise under laboratory conditions, none have demonstrated a clear advantage in clinical trials. Using a range of microbiological and advanced microscopy techniques, a detailed laboratory study comparing biofilm development on silicone, hydrogel latex, and silver alloy-coated hydrogel latex catheters was carried out. Biofilm development by Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis on three commercially available catheters was tracked over time. Samples were examined with episcopic differential interference contrast (EDIC) microscopy, culture analysis, and staining techniques to quantify viable but nonculturable (VBNC) bacteria. Both qualitative and quantitative assessments found biofilms to develop rapidly on all three materials. EDIC microscopy revealed the rough surface topography of the materials. Differences between culture counts and quantification of total and dead cells demonstrated the presence of VBNC populations, where bacteria retain viability but are not metabolically active. The use of nonculture-based techniques showed the development of widespread VBNC populations. These VBNC populations were more evident on silver alloy-coated hydrogel latex catheters, indicating a bacteriostatic effect at best. The laboratory tests reported here, which detect VBNC bacteria, allow more rigorous assessment of antimicrobial catheters, explaining why there is often minimal benefit to patients.
Collapse
|
19
|
Zhong J, Yang D, Zhou Y, Liang M, Ai Y. Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis. Analyst 2021; 146:1848-1858. [PMID: 33619511 DOI: 10.1039/d0an02476g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (∼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | | | | | | | | |
Collapse
|
20
|
Vatansever C, Turetgen I. Investigation of the effects of various stress factors on biofilms and planktonic bacteria in cooling tower model system. Arch Microbiol 2021; 203:1411-1425. [PMID: 33388788 DOI: 10.1007/s00203-020-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/27/2022]
Abstract
Biofilm is a microbial population which live in a self-produced extracellular polymeric matrix by attaching to surfaces. Biofilms consist of different different types of organisms such as bacteria, fungi, protozoa, etc. Many biofilms that develop in nature consist of more than one type of organism. Biofilms protect bacteria from adverse conditions such as temperature fluctuation and disinfectants. The aim of this study was to determine the effective elimination strategies for combating biofilm and planktonic bacteria in cooling tower model system using different decontamination / disinfection techniques. In this study, 14 week-old biofilms were treated with temperatures of 4 °C, 65 °C; pH of 3, 11; 2 and 10 mg/l chlorine, 2 and 10 mg/l monochloramine; hypotonic salt (0.01% NaCl) and hypertonic salt (3% NaCl) solution. For enumeration, number of aerobic heterotrophic bacteria was determined by conventional culture method, number of live bacteria was determined by LIVE/DEAD viability kit, CTC-DAPI and Alamar blue staining methods. Temperature of 65 °C, pH of 3, 10 mg/l monochloramine and hypertonic salt solution were the most effective parameters for decontamination of biofilm and planktonic bacteria. Biofilm bacteria in the circulating water system were significantly more resistant than planktonic bacteria against stress factors. When the numbers of epifluorescence microscopy and conventional culture technique were compared, significantly higher number of live bacteria were detected using epifluorescence microscopy. Bacteria enter the viable but non-culturable phase by loosing their culturability under stress conditions. For this reason, the conventional culture method should be supported by different techniques to get more realistic numbers.
Collapse
Affiliation(s)
- Cansu Vatansever
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Altinbas University, Istanbul, Turkey.
| | - Irfan Turetgen
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
21
|
Gu G, Bolten S, Mowery J, Luo Y, Gulbronson C, Nou X. Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Rosenberg M, Azevedo NF, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 2019; 9:6483. [PMID: 31019274 PMCID: PMC6482146 DOI: 10.1038/s41598-019-42906-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Combining membrane impermeable DNA-binding stain propidium iodide (PI) with membrane-permeable DNA-binding counterstains is a widely used approach for bacterial viability staining. In this paper we show that PI staining of adherent cells in biofilms may significantly underestimate bacterial viability due to the presence of extracellular nucleic acids (eNA). We demonstrate that gram-positive Staphylococcus epidermidis and gram-negative Escherichia coli 24-hour initial biofilms on glass consist of 76 and 96% PI-positive red cells in situ, respectively, even though 68% the cells of either species in these aggregates are metabolically active. Furthermore, 82% of E. coli and 89% S. epidermidis are cultivable after harvesting. Confocal laser scanning microscopy (CLSM) revealed that this false dead layer of red cells is due to a subpopulation of double-stained cells that have green interiors under red coating layer which hints at eNA being stained outside intact membranes. Therefore, viability staining results of adherent cells should always be validated by an alternative method for estimating viability, preferably by cultivation.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia. .,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy; Department of Chemical Engineering; Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| |
Collapse
|
23
|
Shaku M, Park JH, Inouye M, Yamaguchi Y. Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence. J Mol Microbiol Biotechnol 2019; 28:269-280. [PMID: 30893701 DOI: 10.1159/000497146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022] Open
Abstract
MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.
Collapse
Affiliation(s)
- Mao Shaku
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan, .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,
| |
Collapse
|
24
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
25
|
Zhao J, Li Y, Pan S, Tu Q, Dang W, Wang Z, Zhu H. Effects of magnesium chloride on the anaerobic digestion and the implication on forward osmosis membrane bioreactor for sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 268:700-707. [PMID: 30144745 DOI: 10.1016/j.biortech.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
This work elucidates the effects of model reversed salt MgCl2 on methane production in an anaerobic digestion bioreactor treating waste sludge. Along with MgCl2 concentration being raised stepwise, the methane production was only slightly less than in the control when MgCl2 was 20 g/L and under, and then suddenly reduced to only about 10 mL/(L·d) at a MgCl2 concentration of 30 g/L, and finally stopped when the MgCl2 concentration reached 50 g/L. However, the total relative abundance of methanogens Methanomicrobia and Methanobacteria still accounted for 84.97% of the archaeal community when MgCl2 was 50 g/L. The high correlation between live/dead cell ratio and methane production suggests that the live/dead cell ratio instead of the inhibition of methanogen might be the major cause for the halt of methane production at a magnesium chloride concentration of 50 g/L.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuang Pan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Tu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenyue Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhuo Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Zhu Y, Huang X, Xie X, Bahnemann J, Lin X, Wu X, Wang S, Hoffmann MR. Propidium monoazide pretreatment on a 3D-printed microfluidic device for efficient PCR determination of live versus dead'microbial cells. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2018; 4:956-964. [PMID: 33365136 PMCID: PMC7705123 DOI: 10.1039/c8ew00058a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 06/12/2023]
Abstract
Waterborne microbial pathogen detection via nucleic acid analysis on portable microfluidic devices is a growing area of research, development, and application. Traditional polymerase chain reaction (PCR)-based nucleic acid analysis detects total extracted DNA, but cannot differentiate live and dead cells. A propidium monoazide (PMA) pretreatment step before PCR can effectively exclude DNA from nonviable cells, as PMA can selectively diffuse through compromised cell membranes and intercalate with DNA to form DNA-PMA complex upon light exposure. The complex strongly inhibits the amplification of the bound DNA in PCR, and thus, only cells with intact cell membranes are detected. Herein, this study reports the development of a microfluidic device to carry out PMA pretreatment 'on-chip'. Chip design was guided by computer simu-lations, and prototypes were fabricated using a high-resolution 3D printer. The optimized design utilizes split and recombine mixers for initial PMA-sample mixing and a serpentine flow channel containing her-ringbone structures for dark and light incubation. On-chip PMA pretreatment to differentiate live and dead bacterial cells in buffer and natural pond water samples was successfully demonstrated.
Collapse
Affiliation(s)
- Yanzhe Zhu
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xiao Huang
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xing Xie
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Janina Bahnemann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
- Institute of Technical Chemistry, Leibniz University, Hannover, Germany
| | - Xingyu Lin
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xunyi Wu
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Siwen Wang
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael R. Hoffmann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
27
|
Purevdorj-Gage L, Nixon B, Bodine K, Xu Q, Doerrler WT. Differential Effect of Food Sanitizers on Formation of Viable but Nonculturable Salmonella enterica in Poultry. J Food Prot 2018; 81:386-393. [PMID: 29419335 DOI: 10.4315/0362-028x.jfp-17-335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit-based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.
Collapse
Affiliation(s)
- Laura Purevdorj-Gage
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Brian Nixon
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Kyle Bodine
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Qilong Xu
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820
| | - William T Doerrler
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820.,3 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
28
|
Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep 2016; 6:32104. [PMID: 27580964 PMCID: PMC5007472 DOI: 10.1038/srep32104] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023] Open
Abstract
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Collapse
|
29
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
30
|
Abbott ZD, Yakhnin H, Babitzke P, Swanson MS. csrR, a Paralog and Direct Target of CsrA, Promotes Legionella pneumophila Resilience in Water. mBio 2015; 6:e00595. [PMID: 26060275 PMCID: PMC4471563 DOI: 10.1128/mbio.00595-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for "CsrA-similar protein for resilience"). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila's switch to a cell type that is resilient in water supplies. IMPORTANCE Persistence of L. pneumophila in water systems is a public health risk, and yet there is little understanding of the genetic determinants that equip this opportunistic pathogen to adapt to and survive in natural or engineered water systems. A potent regulator of this pathogen's intracellular life cycle is CsrA, a protein widely distributed among bacterial species that is understood quite well. Our finding that every sequenced L. pneumophila strain carries several csrA paralogs-including two common to all isolates--indicates that the legionellae exploit CsrA regulatory switches for multiple purposes. Our discovery that one paralog, CsrR, is a target of CsrA that enhances survival in water is an important step toward understanding colonization of the engineered environment by pathogenic L. pneumophila.
Collapse
Affiliation(s)
- Zachary D Abbott
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Obłąk E, Piecuch A, Dworniczek E, Olejniczak T. The influence of biodegradable gemini surfactants, N,N'-bis(1-decyloxy-1-oxopronan-2-yl)-N,N,N',N' tetramethylpropane-1,3-diammonium dibromide and N,N'-bis(1-dodecyloxy-1-oxopronan-2-yl) N,N,N',N'-tetramethylethane-1,2-diammonium dibromide, on fungal biofilm and adhesion. J Oleo Sci 2015; 64:527-37. [PMID: 25843277 DOI: 10.5650/jos.ess14195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A group of biodegradable alanine-derived gemini quaternary ammonium salts (bromides and chlorides) with various alkyl chains and spacer lengths was tested for anti-adhesive and anti-biofilm activity. The strongest antifungal activity was exhibited by bromides with 10 and 12 carbon atoms within hydrophobic chains (N,N'-bis(1-decyloxy-1-oxopronan-2-yl)-N,N,N',N'-tetramethylpropane-1,3-diammonium dibromide and N,N'-bis(1-dodecyloxy-1-oxopronan-2-yl)-N,N,N',N'-tetramethylethane-1,2-diammonium dibromide). It was also demonstrated that these gemini surfactants enhanced the sensitivity of Candida albicans to azoles (itraconazole and fluconazole) and polyenes (amphotericin B and nystatine). Gemini quaternary ammonium salts effectively inhibited fungal cell adhesion to polystyrene and silicone surface. These compounds reduced C. albicans filamentation and eradicated C. albicans and Rhodotorula mucilaginosa biofilms, as it was shown in crystal violet and fluorescent staining. None of the tested compounds were cytotoxic against yeast mitochondrial metabolism.
Collapse
Affiliation(s)
- Ewa Obłąk
- Institute of Genetics and Microbiology, University of Wroclaw
| | | | | | | |
Collapse
|
32
|
Mustapha P, Epalle T, Allegra S, Girardot F, Garraud O, Riffard S. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry. Res Microbiol 2015; 166:215-9. [DOI: 10.1016/j.resmic.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
|
33
|
Lambadi PR, Sharma TK, Kumar P, Vasnani P, Thalluri SM, Bisht N, Pathania R, Navani NK. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomedicine 2015; 10:2155-71. [PMID: 25834431 PMCID: PMC4370915 DOI: 10.2147/ijn.s72923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host’s immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections.
Collapse
Affiliation(s)
| | - Tarun Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Piyush Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Priyanka Vasnani
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | | | - Neha Bisht
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India ; Centre of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India ; Centre of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
34
|
Gião MS, Wilks SA, Keevil CW. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water. Biometals 2015; 28:329-39. [PMID: 25686789 DOI: 10.1007/s10534-015-9835-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.
Collapse
Affiliation(s)
- M S Gião
- Environmental Healthcare Unit, Centre for Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK,
| | | | | |
Collapse
|
35
|
Hestyani Arum R, Program Studi Ilmu Pangan, Institut Pertanian Bogor, Bogor, Indonesia, Satiawihardja B, D. Kusumaningrum H, Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor, Indonesia, Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor, Indonesia. AKTIVITAS ANTIBAKTERI GETAH PEPAYA KERING TERHADAP Staphylococcus aureus PADA DANGKE. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2014. [DOI: 10.6066/jtip.2014.25.1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Gião MS, Keevil CW. Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. MICROBIAL ECOLOGY 2014; 67:603-611. [PMID: 24452996 DOI: 10.1007/s00248-013-0364-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that can be transmitted through contaminated raw food or by ready-to-eat products that have been in contact with contaminated surfaces. Tap water (TW) is used to wash produce, as a processed food constituent and to wash processing surfaces and floors. The main aim of this work was to investigate the formation and survival of L. monocytogenes biofilms on stainless steel (SS) coupons in TW at 4, 22, 30 and 37 °C. For that, coupons with biofilm were visualised in situ while other coupons were scraped to quantify total cells by SYTO 9, cultivable numbers by plating onto brain heart infusion agar and viable numbers by the direct viable count method. Results showed that L. monocytogenes can form biofilms on SS surfaces in TW at any temperature, including at 4 °C. The number of total cells was similar for all the conditions tested while cultivable numbers varied between the level of detection (<8.3 CFU cm(-2)) and 3.5 × 10(5) CFU cm(-2), meaning between 7.0 × 10(4) and 1.1 × 10(7) cells cm(-2) have entered the viable but non-cultivable (VBNC) state. This work clearly demonstrates that L. monocytogenes can form biofilms in TW and that sessile cells can remain viable and cultivable in some conditions for at least the 48 h investigated. On the other hand, VBNC adaptation suggests that the pathogen can remain undetectable using traditional culture recovery techniques, which may give a false indication of processing surface hygiene status, leading to potential cross-contamination of food products.
Collapse
Affiliation(s)
- Maria S Gião
- Environmental Healthcare Unit, Centre for Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK,
| | | |
Collapse
|
37
|
Goncharuk VV, Roi IY, Klymenko NA, Zdorovenko GM. Characteristic of resistance to compounds of chlorine of water microorganisms according to cultural-morphological indices. J WATER CHEM TECHNO+ 2014. [DOI: 10.3103/s1063455x14010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ducret A, Chabalier M, Dukan S. Characterization and resuscitation of 'non-culturable' cells of Legionella pneumophila. BMC Microbiol 2014; 14:3. [PMID: 24383402 PMCID: PMC3882098 DOI: 10.1186/1471-2180-14-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legionella pneumophila is a waterborne pathogen responsible for Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. After disinfection, L. pneumophila has been detected, like many other bacteria, in a "viable but non culturable" state (VBNC). The physiological significance of the VBNC state is unclear and controversial: it could be an adaptive response favoring long-term survival; or the consequence of cellular deterioration which, despite maintenance of certain features of viable cells, leads to death; or an injured state leading to an artificial loss of culturability during the plating procedure. VBNC cells have been found to be resuscitated by contact with amoebae. RESULTS We used quantitative microscopic analysis, to investigate this "resuscitation" phenomenon in L. pneumophila in a model involving amending solid plating media with ROS scavengers (pyruvate or glutamate), and co-culture with amoebae. Our results suggest that the restoration observed in the presence of pyruvate and glutamate may be mostly due to the capacity of these molecules to help the injured cells to recover after a stress. We report evidence that this extracellular signal leads to a transition from a not-culturable form to a culturable form of L. pneumophila, providing a technique for recovering virulent and previously uncultivated forms of L. pneumophila. CONCLUSION These new media could be used to reduce the risk of underestimation of counts of virulent of L. pneumophila cells in environmental samples.
Collapse
Affiliation(s)
- Adrien Ducret
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
- Present address: Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
| | - Maïalène Chabalier
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
| | - Sam Dukan
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
39
|
Buse HY, Donohue MJ, Ashbolt NJ. Hartmannella vermiformis inhibition of Legionella pneumophila cultivability. MICROBIAL ECOLOGY 2013; 66:715-726. [PMID: 23764733 DOI: 10.1007/s00248-013-0250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Hartmannella vermiformis and Acanthamoeba polyphaga are frequently isolated from drinking water and permissive to Legionella pneumophila parasitization. In this study, extracellular factor(s) produced by H. vermiformis and A. polyphaga were assessed for their effects on cultivability of L. pneumophila. Page's amoeba saline (PAS) was used as an encystment medium for H. vermiformis and A. polyphaga monolayers, and the culture supernatants (HvS and ApS, respectively) were assessed against L. pneumophila growth. Compared to PAS and ApS, HvS significantly inhibited L. pneumophila strain Philadelphia-1 (Ph-1) cultivability by 3 log(10) colony forming unit (CFU) mL(-1) after 3 days of exposure compared to <0.5 log(10) CFU mL(-1) reduction of strain Lp02 (P < 0.001). Flow cytometric analysis revealed changes in the percentage and cultivability of three bacterial subpopulations: intact/slightly damaged membrane (ISM), undefined membrane status (UD), and mixed type (MT). After 3 days of HvS exposure, the MT subpopulation decreased significantly (31.6 vs 67.2 %, respectively, P < 0.001), while the ISM and UD subpopulations increased (+26.7 and +6.9 %, respectively) with the ISM subpopulation appearing as viable but nonculturable (VBNC) cells. HvS was separated into two fractions based on molecular weight, with more than 99 % of the L. pneumophila inhibition arising from the <5 kDa fraction (P < 0.001). Liquid chromatography indicated the inhibitory molecule(s) are likely polar and elute from a Novapak C18 column between 6 and 15 min. These results demonstrate that H. vermiformis is capable of extracellular modulation of L. pneumophila cultivability and probably promote the VBNC state for this bacterium.
Collapse
Affiliation(s)
- Helen Y Buse
- Dynamac c/o US Environmental Protection Agency, 26 W Martin Luther King Dr, Cincinnati, OH, 45268, USA,
| | | | | |
Collapse
|
40
|
Zhu T, Xu X. Efficacy of a dual fluorescence method in detecting the viability of overwintering cyanobacteria. Lett Appl Microbiol 2013; 57:174-80. [PMID: 23627896 DOI: 10.1111/lam.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Chill in the light is the major environmental stress that cyanobacteria encounter in winter. Cyanobacterial cells may acquire chill-light tolerance upon exposure to low temperature in autumn and early winter. We sought to establish the efficacy of the dual fluorescence method in detecting the viability of overwintering cyanobacteria and to provide further evidence for the chill-light tolerance of preconditioned cyanobacteria. Synechocystis sp. PCC 6803 and Microcystis aeruginosa PCC 7806 were exposed to chill (5°C)-light stress with or without pretreatment at 15°C and stained with SYTO 9 and propidium iodide. Live and dead cells were observed under a fluorescence microscope, and the percentage of viable cells was quantified on a microplate reader. The dual fluorescence method showed consistent results with tests of the ability to reinitiate growth. Cell viability was quantitatively correlated with ratio of SYTO 9/propidium iodide fluorescence. Previously, Microcystis colonies in Lake Taihu had been found to accumulate RNA-binding protein 1 in autumn and winter. Use of this method directly showed the viability of such Microcystis colonies throughout the winter.
Collapse
Affiliation(s)
- T Zhu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | |
Collapse
|
41
|
Malki M, Casado S, López MF, Caillard R, Palomares FJ, Gago JAM, Vaz-Domínguez C, Cuesta A, Amils R, Fernández VM, Velez M, De Lacey AL, Olea D. Physicochemical Characterization ofAcidiphiliumsp. Biofilms. Chemphyschem 2013; 14:1237-44. [DOI: 10.1002/cphc.201201034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Indexed: 11/07/2022]
|
42
|
Thomas P, Reddy KM. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana. AOB PLANTS 2013; 5:plt011. [PMCID: PMC4455319 DOI: 10.1093/aobpla/plt011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 02/05/2013] [Indexed: 05/21/2023]
Abstract
Plants are known to harbor endophytic bacteria, the organisms residing internally without imparting any apparent adverse effects on the host. Endophytes are generally known to be present in few numbers colonizing the intercellular spaces, primarily in roots. This study adopting SYTO 9 staining and live confocal imaging of fresh tissue sections from the shoot-tip region of banana, supported by transmission electron microscopy, brings out, possibly for the first time, extensive bacterial colonization in the confined cell wall – plasma membrane peri-space. The integral host-association and their abundance suggest a prominent role of endophytes in the biology of the host. This study was aimed at generating microscopic evidence of intra-tissue colonization in banana in support of the previous findings on widespread association of endophytic bacteria with the shoot tips of field-grown plants and micropropagated cultures, and to understand the extent of tissue colonization. Leaf-sheath tissue sections (∼50–100 µm) from aseptically gathered shoot tips of cv. Grand Naine were treated with Live/Dead bacterial viability kit components SYTO 9 (S9) and propidium iodide (PI) followed by epifluorescence or confocal laser scanning microscopy (CLSM). The S9, which targets live bacteria, showed abundant green-fluorescing particles along the host cell periphery in CLSM, apparently in between the plasma membrane and the cell wall. These included non-motile and occasional actively motile single bacterial cells seen in different x–y planes and z-stacks over several cell layers, with the fluorescence signal similar to that of pure cultures of banana endophytes. Propidium iodide, which stains dead bacteria, did not detect any, but post-ethanol treatment, both PI and 4′,6-diamidino-2-phenylindole detected abundant bacteria. Propidium iodide showed clear nuclear staining, as did S9 to some extent, and the fluorophores appeared to detect bacteria at the exclusion of DNA-containing plant organelles as gathered from bright-field and phase-contrast microscopy. The S9–PI staining did not work satisfactorily with formalin- or paraformaldehyde-fixed tissue. The extensive bacterial colonization in fresh tissue was further confirmed with the suckers of different cultivars, and was supported by transmission electron microscopy. This study thus provides clear microscopic evidence of the extensive endophytic bacterial inhabitation in the confined cell wall–plasma membrane peri-space in shoot tissue of banana with the organisms sharing an integral association with the host. The abundant tissue colonization suggests a possible involvement of endophytes in the biology of the host besides recognizing cell wall–plasma membrane peri-space as a major niche for plant-associated bacteria.
Collapse
Affiliation(s)
- Pious Thomas
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessarghatta Lake, Bangalore 560089, India
- Corresponding author's e-mail addresses: ,
| | - Krishna M. Reddy
- Division of Plant Pathology, Indian Institute of Horticultural Research, Hessarghatta Lake, Bangalore 560089, India
| |
Collapse
|
43
|
Abstract
Antimicrobial surfaces for food and medical applications have historically involved antimicrobial coatings that elute biocides for effective kill in solution or at surfaces. However, recent efforts have focused on immobilized antimicrobial agents in order to avoid toxicity and the compatibility and reservoir limitations common to elutable agents. This review critically examines the assorted antimicrobial agents reported to have been immobilized, with an emphasis on the interpretation of antimicrobial testing as it pertains to discriminating between eluting and immobilized agents. Immobilization techniques and modes of antimicrobial action are also discussed.
Collapse
|
44
|
Bodet C, Sahr T, Dupuy M, Buchrieser C, Héchard Y. Legionella pneumophila transcriptional response to chlorine treatment. WATER RESEARCH 2012; 46:808-816. [PMID: 22192759 DOI: 10.1016/j.watres.2011.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 05/31/2023]
Abstract
Legionella pneumophila is a ubiquitous environmental microorganism found in freshwater that can cause an acute form of pneumonia known as Legionnaires' disease. Despite widespread use of chlorine to ensure drinking water quality and awareness that L. pneumophila may escape these treatments, little is known about its effects on L. pneumophila. The aim of this study was to investigate the L. pneumophila transcriptional response induced by chlorine treatment. Transcriptome analysis, using DNA arrays, showed that a sublethal dose of chlorine induces a differential expression of 391 genes involved in stress response, virulence, general metabolism, information pathways and transport. Many of the stress response genes were significantly upregulated, whereas a significant number of virulence genes were repressed. In particular, exposure of L. pneumophila to chlorine induced the expression of cellular antioxidant proteins, stress proteins and transcriptional regulators. In addition, glutathione S-transferase specific activity was enhanced following chlorine treatment. Our results clearly indicate that chlorine induces expression of proteins involved in cellular defence mechanisms against oxidative stress that might be involved in adaptation or resistance to chlorine treatment.
Collapse
Affiliation(s)
- Charles Bodet
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR 6008, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
45
|
Vriezen JAC, de Bruijn FJ, Nüsslein KR. Desiccation induces viable but Non-Culturable cells in Sinorhizobium meliloti 1021. AMB Express 2012; 2:6. [PMID: 22260437 PMCID: PMC3293009 DOI: 10.1186/2191-0855-2-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 11/30/2022] Open
Abstract
Sinorhizobium meliloti is a microorganism commercially used in the production of e.g. Medicago sativa seed inocula. Many inocula are powder-based and production includes a drying step. Although S. meliloti survives drying well, the quality of the inocula is reduced during this process. In this study we determined survival during desiccation of the commercial strains 102F84 and 102F85 as well as the model strain USDA1021. The survival of S. meliloti 1021 was estimated during nine weeks at 22% relative humidity. We found that after an initial rapid decline of colony forming units, the decline slowed to a steady 10-fold reduction in colony forming units every 22 days. In spite of the reduction in colony forming units, the fraction of the population identified as viable (42-54%) based on the Baclight live/dead stain did not change significantly over time. This change in the ability of viable cells to form colonies shows (i) an underestimation of the survival of rhizobial cells using plating methods, and that (ii) in a part of the population desiccation induces a Viable But Non Culturable (VBNC)-like state, which has not been reported before. Resuscitation attempts did not lead to a higher recovery of colony forming units indicating the VBNC state is stable under the conditions tested. This observation has important consequences for the use of rhizobia. Finding methods to resuscitate this fraction may increase the quality of powder-based seed inocula.
Collapse
|
46
|
Buse HY, Brehm A, Santo Domingo JW, Ashbolt NJ. Screening-level assays for potentially human-infectious environmental Legionella spp. J Microbiol 2011; 49:200-7. [DOI: 10.1007/s12275-011-0233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
|
47
|
Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 2011; 11:57. [PMID: 21418578 PMCID: PMC3068934 DOI: 10.1186/1471-2180-11-57] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/18/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. RESULTS Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. CONCLUSIONS It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.
Collapse
Affiliation(s)
- Maria S Gião
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
- LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sandra A Wilks
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Maria J Vieira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Charles W Keevil
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
48
|
Takao M, Takeda K. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry. Cytometry A 2011; 79:107-17. [PMID: 21246706 DOI: 10.1002/cyto.a.21014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTC) are an important biomarker for several solid cancers. Most of the commercially available systems for enumeration of CTC are based on immunomagnetic enrichment of epithelial cell adhesion molecule (EpCAM/CD326)-expressing CTC before microscopic cell imaging or reverse-transcription PCR (RT-PCR). The aim of this study was to establish a practical method for enumeration of CTC using a novel flow cytometer that has a disposable microfluidic chip, which is designed to realize absolute cross contamination-free measurements and to collect the analyzed cell sample. Although the process of enumeration and labeling of CTC was optimized for this device, the simplified protocol described here could be applied to other flow cytometers. Cultured cancer cells spiked into normal blood were enriched using MACS® EpCAM-MicroBeads following cell labeling with an allophycocyanin (APC)-conjugated EpCAM mAb, instead of by intracellular staining of cytokeratins (CK). The EpCAM double-positive selection/labeling method allows enumeration of intact CTC, maintenance of cellular integrity, and the concomitant performance of a CTC viability test. The combination of the fine-tuned CTC enrichment process and the cytometric multicolor analysis resulted in a linear relationship between the output cell count and the input cell number from zero to hundreds of cells. In particular, a satisfactory signal/noise ratio was obtained by gate-exclusion of leukocyte signals using an anti-CD45 mAb. The entire process had little influence on the viability of the spiked lung cancer cell PC-9. Measured PC-9 and breast cancer MCF-7 cells bearing EpCAM-MicroBeads, APC-conjugated EpCAM mAb, and the DNA staining dye SYTO9 grew normally, demonstrating the potential usefulness of the collected samples for further studies. This intact CTC enumeration and analysis procedure (iCeap) would be of great benefit to clinicians by providing them with rapid stratification of antitumor therapy, and to basic researchers by permitting further molecular and cellular characterization of CTC.
Collapse
Affiliation(s)
- Masashi Takao
- Department of Molecular Genetics, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
49
|
Sjøholm OR, Nybroe O, Aamand J, Sørensen J. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3618-3625. [PMID: 20828902 DOI: 10.1016/j.envpol.2010.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 05/29/2023]
Abstract
Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before (14)C-labelled BAM (0.1mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10(-16)molCintact cell(-1)day(-1)) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation.
Collapse
Affiliation(s)
- Ole R Sjøholm
- Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
50
|
Louvet JN, Heluin Y, Attik G, Dumas D, Potier O, Pons MN. Assessment of erythromycin toxicity on activated sludge via batch experiments and microscopic techniques (epifluorescence and CLSM). Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|