1
|
Shi J, Jin Y, Wang S, Luo C. Trade-off movement between hydraulic resistance escape and shear stress escape by cancer cells. Biophys J 2025; 124:528-539. [PMID: 39719013 PMCID: PMC11866947 DOI: 10.1016/j.bpj.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
In the circulatory system, the microenvironment surrounding cancer cells is complex and involves multiple coupled factors. We selected two core physical factors, shear stress and hydraulic resistance, and constructed a microfluidic device with dual negative inputs to study the trade-off movement behavior of cancer cells when facing coupled factors. We detected significant shear stress escape phenomena in the MDA-MB-231 cell line and qualitatively explained this behavior using a cellular force model. Through the dual validation of substrate anti-cell-adhesion modification and employment of the MCF-7 cell line, we further substantiated the predictability and feasibility of our model. This study provides an explanation for the trade-off underlying the direction-choosing mechanism of cancer cells when facing environmental selection.
Collapse
Affiliation(s)
- Jialin Shi
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shujing Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ostrikov K, Kashani MN, Vasilev K, MacGregor MN. Fluid Flow Dependency in Immunoselective Cell Capture via Liquid Biopsy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12388-12396. [PMID: 34596407 DOI: 10.1021/acs.langmuir.1c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid biopsy targets rare cells that overexpress disease-specific membrane markers and capture these cells via immunoaffinity. The diagnosis efficiency of liquid biopsy can be impaired by the presence of healthy adherent cells also expressing the same biomarkers. Here, we investigated the effect of settling times and rinsing flow rates on the efficiency of EpCAM-based immunocapture using both simulation and experiments with three different cell types. Cell-surface adhesion forces and shear rates were calculated to define the range of rinsing flow rates to test experimentally. Healthy adherent cells did not adhere to blocked immunofunctionalized surfaces within the timeframe of the experiment; however, healthy EpCAM positive cells did bind to the surface to some extent. The greatest difference in capture efficiency was obtained using a high rinsing flow rate of 25 mL/min following 40 min static incubation, indicating that optimizing rinsing flow rates could be a viable option to capture, more specifically, cancer cells overexpressing EpCAM.
Collapse
Affiliation(s)
- Kola Ostrikov
- UniSA STEM, University of South Australia, Mawson Lakes 5095, Australia
| | - Moein Navvab Kashani
- UniSA STEM, University of South Australia, Mawson Lakes 5095, Australia
- South Australian Node of the Australian National Fabrication Facility, Mawson Lakes 5095, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes 5095, Australia
| | | |
Collapse
|
3
|
Paddillaya N, Mishra A, Kondaiah P, Pullarkat P, Menon GI, Gundiah N. Biophysics of Cell-Substrate Interactions Under Shear. Front Cell Dev Biol 2019; 7:251. [PMID: 31781558 PMCID: PMC6857480 DOI: 10.3389/fcell.2019.00251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Cells adhere to substrates through mechanosensitive focal adhesion complexes. Measurements that probe how cells detach from substrates when they experience an applied force connect molecular-scale aspects of cell adhesion with the biophysical properties of adherent cells. Such forces can be applied through shear devices that flow fluid in a controlled manner across cells. The signaling pathways associated with focal adhesions, in particular those that involve integrins and receptor tyrosine kinases, are complex, receiving mechano-chemical feedback from the sensing of substrate stiffness as well as of external forces. This article reviews the signaling processes involved in mechanosensing and mechanotransduction during cell-substrate interactions, describing the role such signaling plays in cancer metastasis. We examine some recent progress in quantifying the strength of these interactions, describing a novel fluid shear device that allows for the visualization of the cell and its sub-cellular structures under a shear flow. We also summarize related results from a biophysical model for cellular de-adhesion induced by applied forces. Quantifying cell-substrate adhesions under shear should aid in the development of mechano-diagnostic techniques for diseases in which cell-adhesion is mis-regulated, such as cancers.
Collapse
Affiliation(s)
- Neha Paddillaya
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ashish Mishra
- Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Pramod Pullarkat
- Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
| | - Gautam I Menon
- The Institute of Mathematical Sciences, Chennai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Physics, Ashoka University, Sonepat, India
| | - Namrata Gundiah
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Zhang S, Skinner D, Joshi P, Criado-Hidalgo E, Yeh YT, Lasheras JC, Caffrey CR, del Alamo JC. Quantifying the mechanics of locomotion of the schistosome pathogen with respect to changes in its physical environment. J R Soc Interface 2019; 16:20180675. [PMID: 30958153 PMCID: PMC6364656 DOI: 10.1098/rsif.2018.0675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023] Open
Abstract
Schistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host's hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen's adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male Schistosoma mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. However, while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S. mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but gives S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to manoeuvre in narrow-bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, the rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Danielle Skinner
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Prateek Joshi
- School of Engineering, Brown University, Providence, RI, USA
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Juan C. del Alamo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Institute for Engineering in Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Jötten A, Angermann S, Stamp MEM, Breyer D, Strobl FG, Wixforth A, Westerhausen C. Correlation of in vitro cell adhesion, local shear flow and cell density. RSC Adv 2019; 9:543-551. [PMID: 35521589 PMCID: PMC9059541 DOI: 10.1039/c8ra07416j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/15/2018] [Indexed: 02/03/2023] Open
Abstract
By combination of particle image velocimetry and live cell imaging in an acoustically driven microfluidic chamber, we study shear and cell density dependent adhesion. We find excellent agreement with simulations considering pure geometrical effects.
Collapse
Affiliation(s)
- A. M. Jötten
- Chair for Experimental Physics I
- University of Augsburg
- Germany
- Nanosystems Initiative Munich
- 80799 Munich
| | - S. Angermann
- Chair for Experimental Physics I
- University of Augsburg
- Germany
| | - M. E. M. Stamp
- Chair for Experimental Physics I
- University of Augsburg
- Germany
- Nanosystems Initiative Munich
- 80799 Munich
| | - D. Breyer
- Chair for Experimental Physics I
- University of Augsburg
- Germany
| | - F. G. Strobl
- Chair for Experimental Physics I
- University of Augsburg
- Germany
| | - A. Wixforth
- Chair for Experimental Physics I
- University of Augsburg
- Germany
- Nanosystems Initiative Munich
- 80799 Munich
| | - C. Westerhausen
- Chair for Experimental Physics I
- University of Augsburg
- Germany
- Nanosystems Initiative Munich
- 80799 Munich
| |
Collapse
|
6
|
Maan R, Rani G, Menon GI, Pullarkat PA. Modeling cell-substrate de-adhesion dynamics under fluid shear. Phys Biol 2018; 15:046006. [DOI: 10.1088/1478-3975/aabc66] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Das J, Maji S, Agarwal T, Chakraborty S, Maiti TK. Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clin Exp Metastasis 2018. [DOI: 10.1007/s10585-018-9887-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Kugler EM, Michel K, Kirchenbüchler D, Dreissen G, Csiszár A, Merkel R, Schemann M, Mazzuoli-Weber G. Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience 2018; 372:213-224. [PMID: 29317262 DOI: 10.1016/j.neuroscience.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
Collapse
Affiliation(s)
- Eva Maria Kugler
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Klaus Michel
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - David Kirchenbüchler
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Georg Dreissen
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Gemma Mazzuoli-Weber
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| |
Collapse
|
9
|
Pandya HJ, Dhingra K, Prabhakar D, Chandrasekar V, Natarajan SK, Vasan AS, Kulkarni A, Shafiee H. A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosens Bioelectron 2017; 94:632-642. [PMID: 28371753 DOI: 10.1016/j.bios.2017.03.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
Development of resistance to chemotherapy treatments is a major challenge in the battle against cancer. Although a vast repertoire of chemotherapeutics is currently available for treating cancer, a technique for rapidly identifying the right drug based on the chemo-resistivity of the cancer cells is not available and it currently takes weeks to months to evaluate the response of cancer patients to a drug. A sensitive, low-cost diagnostic assay capable of rapidly evaluating the effect of a series of drugs on cancer cells can significantly change the paradigm in cancer treatment management. Integration of microfluidics and electrical sensing modality in a 3D tumour microenvironment may provide a powerful platform to tackle this issue. Here, we report a 3D microfluidic platform that could be potentially used for a real-time deterministic analysis of the success rate of a chemotherapeutic drug in less than 12h. The platform (66mm×50mm; L×W) is integrated with the microsensors (interdigitated gold electrodes with width and spacing 10µm) that can measure the change in the electrical response of cancer cells seeded in a 3D extra cellular matrix when a chemotherapeutic drug is flown next to the matrix. B16-F10 mouse melanoma, 4T1 mouse breast cancer, and DU 145 human prostate cancer cells were used as clinical models. The change in impedance magnitude on flowing chemotherapeutics drugs measured at 12h for drug-susceptible and drug tolerant breast cancer cells compared to control were 50,552±144 Ω and 28,786±233 Ω, respectively, while that of drug-susceptible melanoma cells were 40,197±222 Ω and 4069±79 Ω, respectively. In case of prostate cancer the impedance change between susceptible and resistant cells were 8971±1515 Ω and 3281±429 Ω, respectively, which demonstrated that the microfluidic platform was capable of delineating drug susceptible cells, drug tolerant, and drug resistant cells in less than 12h.
Collapse
Affiliation(s)
- Hardik J Pandya
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Karan Dhingra
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Devbalaji Prabhakar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Siva Kumar Natarajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Anish S Vasan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA.
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Siddique A, Meckel T, Stark RW, Narayan S. Improved cell adhesion under shear stress in PDMS microfluidic devices. Colloids Surf B Biointerfaces 2017; 150:456-464. [DOI: 10.1016/j.colsurfb.2016.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022]
|
11
|
Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. PLoS One 2017; 12:e0169797. [PMID: 28085924 PMCID: PMC5235371 DOI: 10.1371/journal.pone.0169797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the most effective drug and drug combination for individual patients in a cost effective and timely manner.
Collapse
Affiliation(s)
- Angela Babetski Holton
- Draper, Cambridge, Massachusetts, United States of America
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
| | | | - Jenny Kreahling
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Amy J. Conway
- Draper, Cambridge, Massachusetts, United States of America
| | | | - Soner Altiok
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kim HW, Han S, Kim W, Lim J, Kim DS. Modulating wall shear stress gradient via equilateral triangular channel for in situ cellular adhesion assay. BIOMICROFLUIDICS 2016; 10:054119. [PMID: 27822327 PMCID: PMC5074993 DOI: 10.1063/1.4965822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
This study introduces an equilateral triangular channel (ETRIC), a novel microfluidic channel with an equilateral triangular cross-section, for cell adhesion assay by modulating the wall shear stress (WSS) gradient. The channel can generate a parabolic WSS gradient perpendicular to the flow direction at a single flow rate, and cell detachment can be in situ screened in response to spatially different levels of WSS. The existence of a simple form of exact solution for the velocity field inside the entire ETRIC region enables the easy design and modulation of the WSS levels at the bottom surface; therefore, the detachment of the cells can be investigated at the pre-defined observation window in real time. The exact solution for the velocity field was validated by comparing the analytical velocity profile with those obtained from both numerical simulation and experimental particle image velocimetry. The parabolic WSS gradient can be generated stably and consistently over time at a steady-state condition and easily modulated by changing the flow rate for the given ETRIC geometry. The WSS gradient in the ETRIC is in a symmetric parabolic form, and this symmetry feature doubles the experimental data, thereby efficiently minimizing the number of experiments. Finally, a WSS gradient ranging from 0 to 160 dyn/cm2 was generated through the present ETRIC, which enables not only to measure the adhesion strength but also to investigate the time-dependent detachment of NIH-3T3 cells attached on the glass.
Collapse
Affiliation(s)
- Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Seonjin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Wonkyoung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jiwon Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| |
Collapse
|
13
|
Quantifying cell adhesion through impingement of a controlled microjet. Biophys J 2015; 108:23-31. [PMID: 25564849 DOI: 10.1016/j.bpj.2014.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 11/20/2022] Open
Abstract
The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m(2)). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 10(9) cells/m(2), above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied.
Collapse
|
14
|
Garza-García LD, García-López E, Camacho-León S, Del Refugio Rocha-Pizaña M, López-Pacheco F, López-Meza J, Araiz-Hernández D, Tapia-Mejía EJ, Trujillo-de Santiago G, Rodríguez-González CA, Alvarez MM. Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. LAB ON A CHIP 2014; 14:1320-1329. [PMID: 24519447 DOI: 10.1039/c3lc51301g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We used continuous flow micro-devices as bioreactors for the production of a glycosylated pharmaceutical product (a monoclonal antibody). We cultured CHO cells on the surface of PMMA/PDMS micro-channels that had been textured by micromachining and coated with fibronectin. Three different micro-channel geometries (a wavy channel, a zigzag channel, and a series of donut-shape reservoirs) were tested in a continuous flow regime in the range of 3 to 6 μL min(-1). Both the geometry of the micro-device and the flow rate had a significant effect on cell adhesion, cell proliferation, and monoclonal antibody production. The most efficient configuration was a series of donut-shaped reservoirs, which yielded mAb concentrations of 7.2 mg L(-1) at residence times lower than one minute and steady-state productivities above 9 mg mL(-1) min(-1). These rates are at about 3 orders of magnitude higher than those observed in suspended-cell stirred tank fed-batch bioreactors.
Collapse
Affiliation(s)
- Lucía D Garza-García
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza-Sada 2501, Monterrey, N. L., México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
HE L, LUO ZY, XU F, BAI BF. EFFECT OF FLOW ACCELERATION ON DEFORMATION AND ADHESION DYNAMICS OF CAPTURED CELLS. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413400022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell deformation and adhesion under shear flows play an important role in both cell migration in vivo and capture based microfluidic devices in vitro. Adhesion dynamics of captured cell (e.g., firm adhesion, cell rolling and cell detachment) under steady shear flows have been studied extensively. However, cell adhesion under accelerating flows is common both in vivo and in vitro, and dynamics of cell adhesion under accelerating flows remains unknown. As such, we used a mathematical model based on the front tracking method and investigated the effect of flow acceleration on deformation and adhesion dynamics of captured cells, including cell deformation index, cell shape evolution, the velocities of cell center, contact time and wall shear stress for cell rolling and detachment by using a series of parameter values for leukocyte. The results showed that the cell presented three dynamics states (i.e., firm adhesion, rolling and detachment) with increasing wall shear stress under uniform flows. Wall shear stresses were < 0.56 Pa and > 1.12 Pa for firm adhesion and detachment, respectively. The wall shear stresses were at the range 1.48–1.63 Pa (higher than 1.12 Pa) when cell left the bottom surface of the channel under flow accelerations (a = 0.975–1.625 m/s2). The minimum of deformation index under accelerating flow was smaller than that under uniform flow. In conclusion, the flow acceleration promotes the deformation and adhesion of captured cells. These findings could further the understanding of cell migration in vivo and promote the development of capture based microfluidic devices in vitro.
Collapse
Affiliation(s)
- L. HE
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P. R. China
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, P. R. China
| | - Z. Y. LUO
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P. R. China
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, P. R. China
| | - F. XU
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - B. F. BAI
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P. R. China
| |
Collapse
|
16
|
Maeda E, Hagiwara Y, Wang JHC, Ohashi T. A new experimental system for simultaneous application of cyclic tensile strain and fluid shear stress to tenocytes in vitro. Biomed Microdevices 2013; 15:1067-75. [DOI: 10.1007/s10544-013-9798-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Luo ZY, Wang SQ, He L, Lu TJ, Xu F, Bai BF. Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Peschetola V, Laurent VM, Duperray A, Michel R, Ambrosi D, Preziosi L, Verdier C. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton (Hoboken) 2013; 70:201-14. [PMID: 23444002 DOI: 10.1002/cm.21100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/08/2013] [Accepted: 02/05/2013] [Indexed: 12/18/2022]
Abstract
The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T24), and a less invasive one (RT112). Invasive cancer cells move in a nearly periodic motion, with peaks in velocity corresponding to higher traction forces exerted on the substrate, whereas less invasive cells develop traction stresses almost constant in time. The dynamics of focal adhesions (FAs) as well as cytoskeleton features reveals that different mechanisms are activated to migrate: T24 cells show an interconnected cytoskeleton linked to mature adhesion sites, leading to small traction stresses, whereas less invasive cells (RT112) show a less-structured cytoskeleton and unmature adhesions corresponding to higher traction stresses. Migration velocities are smaller in the case of less invasive cells. The mean squared displacement shows super-diffusive motion in both cases with higher exponent for the more invasive cancer cells. Further correlations between traction forces and the actin cytoskeleton reveal an unexpected pattern of a large actin rim at the RT112 cell edge where higher forces are colocalized, whereas a more usual cytoskeleton structure with stress fibers and FAs are found for T24 cancer cells. We conjecture that this kind of analysis can be useful to classify cancer cell invasiveness.
Collapse
|
19
|
Liu Y, Barua D, Liu P, Wilson BS, Oliver JM, Hlavacek WS, Singh AK. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform. PLoS One 2013; 8:e60159. [PMID: 23544131 PMCID: PMC3609784 DOI: 10.1371/journal.pone.0060159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.
Collapse
Affiliation(s)
- Yanli Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Peng Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Bridget S. Wilson
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Janet M. Oliver
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anup K. Singh
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Das T, Chakraborty S. Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research? BIOMICROFLUIDICS 2013; 7:11811. [PMID: 24403993 PMCID: PMC3574074 DOI: 10.1063/1.4789750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
According to the World Health Organization, cancer is one of the leading causes of death worldwide. Cancer research, in its all facets, is truly interdisciplinary in nature, cutting across the fields of fundamental and applied sciences, as well as biomedical engineering. In recent years, microfluidics has been applied successfully in cancer research. There remain, however, many elusive features of this disease, where microfluidic systems could throw new lights. In addition, some inherent features of microfluidic systems remain unexploited in cancer research. In this article, we first briefly review the advancement of microfluidics in cancer biology. We then describe the biophysical aspects of cancer and outline how microfluidic system could be useful in developing a deeper understanding on the underlying mechanisms. We next illustrate the effects of the confined environment of microchannel on cellular dynamics and argue that the tissue microconfinement could be a crucial facet in tumor development. Lastly, we attempt to highlight some of the most important problems in cancer biology, to inspire next level of microfluidic applications in cancer research.
Collapse
Affiliation(s)
- Tamal Das
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute for Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
21
|
BAI BOFENG, LUO ZHENGYUAN, LU TIANJIAN, XU FENG. NUMERICAL SIMULATION OF CELL ADHESION AND DETACHMENT IN MICROFLUIDICS. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inspired by the complex biophysical processes of cell adhesion and detachment under blood flow in vivo, numerous novel microfluidic devices have been developed to manipulate, capture, and separate bio-particles for various applications, such as cell analysis and cell enumeration. However, the underlying physical mechanisms are yet unclear, which has limited the further development of microfluidic devices and point-of-care (POC) systems. Mathematical modeling is an enabling tool to study the physical mechanisms of biological processes for its relative simplicity, low cost, and high efficiency. Recent development in computation technology for multiphase flow simulation enables the theoretical study of the complex flow processes of cell adhesion and detachment in microfluidics. Various mathematical methods (e.g., front tracking method, level set method, volume of fluid (VOF) method, fluid–solid interaction method, and particulate modeling method) have been developed to investigate the effects of cell properties (i.e., cell membrane, cytoplasma, and nucleus), flow conditions, and microchannel structures on cell adhesion and detachment in microfluidic channels. In this paper, with focus on our own simulation results, we review these methods and compare their advantages and disadvantages for cell adhesion/detachment modeling. The mathematical approaches discussed here would allow us to study microfluidics for cell capture and separation, and to develop more effective POC devices for disease diagnostics.
Collapse
Affiliation(s)
- BOFENG BAI
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P.R. China
| | - ZHENGYUAN LUO
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P.R. China
| | - TIANJIAN LU
- Biomedical Engineering and Biomechanics Center, Xi'an Jiaotong University, P.R. China
| | - FENG XU
- Biomedical Engineering and Biomechanics Center, Xi'an Jiaotong University, P.R. China
- School of Life Science and Technology, Xi'an Jiaotong University, P.R. China
| |
Collapse
|
22
|
Lee AM, Berny-Lang MA, Liao S, Kanso E, Kuhn P, McCarty OJT, Newton PK. A low-dimensional deformation model for cancer cells in flow. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2012; 24:81903. [PMID: 23024578 PMCID: PMC3443115 DOI: 10.1063/1.4748811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
A low-dimensional parametric deformation model of a cancer cell under shear flow is developed. The model is built around an experiment in which MDA-MB-231 adherent cells are subjected to flow with increasing shear. The cell surface deformation is imaged using differential interference contrast microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an active shape model from which we obtain the principal components of deformation. These principal components are then used to obtain the parameters in an empirical constitutive equation determining the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface which can be deformed with three active parameters: H (height), σ(x) (x-width), and σ(y) (y-width). Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that active shape models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting.
Collapse
Affiliation(s)
- A M Lee
- Department of Aerospace & Mechanical Engineering and Department of Mathematics, University of Southern California, Los Angeles, California 90089-1191, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Huang Z, Li X, Martins-Green M, Liu Y. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Biomed Microdevices 2012; 14:873-83. [DOI: 10.1007/s10544-012-9667-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. LAB ON A CHIP 2012; 12:1753-67. [PMID: 22437479 DOI: 10.1039/c2lc21273k] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article reviews the recent developments in microfluidic technologies for in vitro cancer diagnosis. We summarize the working principles and experimental results of key microfluidic platforms for cancer cell detection, characterization, and separation based on cell-affinity micro-chromatography, magnetic activated micro-sorting, and cellular biophysics (e.g., cell size and mechanical and electrical properties). We examine the advantages and limitations of each technique and discuss future research opportunities for improving device throughput and purity, and for enabling on-chip analysis of captured cancer cells.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | | | | |
Collapse
|
25
|
Tanweer F, Louise Green V, David Stafford N, Greenman J. Application of microfluidic systems in management of head and neck squamous cell carcinoma. Head Neck 2012; 35:756-63. [DOI: 10.1002/hed.22906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/16/2011] [Accepted: 11/02/2011] [Indexed: 11/11/2022] Open
|
26
|
LUO ZY, XU F, LU TJ, BAI BF. DIRECT NUMERICAL SIMULATION OF DETACHMENT OF SINGLE CAPTURED LEUKOCYTE UNDER DIFFERENT FLOW CONDITIONS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibody-based cell isolation using microfluidics finds widespread applications in disease diagnostics and treatment monitoring at point of care (POC) for global health. However, the lack of knowledge on underlying mechanisms of cell capture greatly limits their developments. To address this, in this study, we developed a mathematical model using a direct numerical simulation for the detachment of single leukocyte captured on a functionalized surface in a rectangular microchannel under different flow conditions. The captured leukocyte was modeled as a simple liquid drop and its deformation was tracked using a level set method. The kinetic adhesion model was used to calculate the adhesion force and analyze the detachment of single captured leukocyte. The results demonstrate that the detachment of single captured leukocyte was dependent on both the magnitude of flow rate and flow acceleration, while the latter provides more significant effects. Pressure gradient was found to represent as another critical factor promoting leukocyte detachment besides shear stress. Cytoplasmic viscosity plays a much more important role in the deformation and detachment of captured leukocyte than cortex tension. Besides, better deformability (represented as lower cytoplasmic viscosity) noteworthy accelerates leukocyte detachment. The model presented here provides an enabling tool to clarify the interaction of target cells with functional surface and could help for developing more effective POC devices for global health.
Collapse
Affiliation(s)
- Z. Y. LUO
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Biomedical Engineering and Biomechanics Center, SV Laboratory, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - F. XU
- Biomedical Engineering and Biomechanics Center, SV Laboratory, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- HST-Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - T. J. LU
- Biomedical Engineering and Biomechanics Center, SV Laboratory, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - B. F. BAI
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Biomedical Engineering and Biomechanics Center, SV Laboratory, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
27
|
Hattersley SM, Sylvester DC, Dyer CE, Stafford ND, Haswell SJ, Greenman J. A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs. Ann Biomed Eng 2011; 40:1277-88. [PMID: 21997391 DOI: 10.1007/s10439-011-0428-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/01/2011] [Indexed: 12/29/2022]
Abstract
Tumors are heterogeneous masses of cells characterized pathologically by their size and spread. Their chaotic biology makes treatment of malignancies hard to generalize. We present a robust and reproducible glass microfluidic system, for the maintenance and "interrogation" of head and neck squamous cell carcinoma (HNSCC) tumor biopsies, which enables continuous media perfusion and waste removal, recreating in vivo laminar flow and diffusion-driven conditions. Primary HNSCC or metastatic lymph samples were subsequently treated with 5-fluorouracil and cisplatin, alone and in combination, and were monitored for viability and apoptotic biomarker release 'off-chip' over 7 days. The concentration of lactate dehydrogenase was initially high but rapidly dropped to minimally detectable levels in all tumor samples; conversely, effluent concentration of WST-1 (cell proliferation) increased over 7 days: both factors demonstrating cell viability. Addition of cell lysis reagent resulted in increased cell death and reduction in cell proliferation. An apoptotic biomarker, cytochrome c, was analyzed and all the treated samples showed higher levels than the control, with the combination therapy showing the greatest effect. Hematoxylin- and Eosin-stained sections from the biopsy, before and after maintenance, demonstrated the preservation of tissue architecture. This device offers a novel method of studying the tumor environment, and offers a pre-clinical model for creating personalized treatment regimens.
Collapse
Affiliation(s)
- Samantha M Hattersley
- Centre for Biomedical Research, Postgraduate Medical Institute, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK
| | | | | | | | | | | |
Collapse
|
28
|
Li L, Nie Y, Shi X, Wu H, Ye D, Chen H. Partial transfection of cells using laminar flows in microchannels. BIOMICROFLUIDICS 2011; 5:36503-365038. [PMID: 22662050 PMCID: PMC3364838 DOI: 10.1063/1.3643827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/07/2011] [Indexed: 06/01/2023]
Abstract
This manuscript describes a convenient method for partial transfection using a Y-shaped microchannel polydimethylsiloxane (PDMS)-glass chip and on-chip cationic lipid-mediated transfection. Enhanced green fluorescent protein genes (pEGFP-N2) were introduced into the COS-7 cells cultured in half of the channel, while red fluorescent protein genes (pDsRed-N1) were introduced into the cells cultured in another half of the channel. This on-chip partial transfection technique provides an avenue for the spatial control of transfection. It is possible to use this technique to perform parallel transfection on chips in order to study cell behaviors under two or more gene transfections in the same culture.
Collapse
|
29
|
Millet LJ, Stewart ME, Nuzzo RG, Gillette MU. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. LAB ON A CHIP 2010; 10:1525-35. [PMID: 20390196 PMCID: PMC2930779 DOI: 10.1039/c001552k] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. ; Tel: +1-217-244-1355
| | - Matthew E. Stewart
- Department of Chemistry and the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ralph G. Nuzzo
- Department of Chemistry and the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. ; Tel: +1-217-244-1355
| |
Collapse
|
30
|
Lombardi ML, Lammerding J. Altered Mechanical Properties of the Nucleus in Disease. Methods Cell Biol 2010; 98:121-41. [DOI: 10.1016/s0091-679x(10)98006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|