1
|
Ma M, Zhao R, Li X, Jing M, Song R, Fan J. Biological Properties of Arginine-rich Peptides and their Application in Cargo Delivery to Cancer. Curr Drug Deliv 2025; 22:387-400. [PMID: 37073158 DOI: 10.2174/1567201820666230417083350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 04/20/2023]
Abstract
Cell-penetrating peptides (CPPs) comprise short peptides of fewer than 30 amino acids, which are rich in arginine (Arg) or lysine (Lys). CPPs have attracted interest in the delivery of various cargos, such as drugs, nucleic acids, and other macromolecules over the last 30 years. Among all types of CPPs, arginine-rich CPPs exhibit higher transmembrane efficiency due to bidentate bonding between their guanidinium groups and negatively charged cellular components. Besides, endosome escape can be induced by arginine-rich CPPs to protect cargo from lysosome-dependent degradation. Here we summarize the function, design principles, and penetrating mechanisms of arginine-rich CPPs, and outline their biomedical applications in drug delivery and biosensing in tumors.
Collapse
Affiliation(s)
- Minghai Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruizhao Zhao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Clinical Medical School, Xi'an Medical University, Xi'an, 710061, China
| | - Xing Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rundong Song
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Hao M, Zhang L, Chen P. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides. Int J Mol Sci 2022; 23:ijms23169038. [PMID: 36012300 PMCID: PMC9409441 DOI: 10.3390/ijms23169038] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| |
Collapse
|
3
|
Li J, Kalyanram P, Rozati S, Monje-Galvan V, Gupta A. Interaction of Cyanine-D112 with Binary Lipid Mixtures: Molecular Dynamics Simulation and Differential Scanning Calorimetry Study. ACS OMEGA 2022; 7:9765-9774. [PMID: 35350357 PMCID: PMC8945139 DOI: 10.1021/acsomega.1c07378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
This comprehensive molecular dynamics (MD) simulation and experimental study investigates the lipid bilayer interactions of dye D112 for potential photodynamic therapy (PDT) applications. PDT involves formation of a reactive oxidant species in the presence of a light sensitive molecule and light, interrupting cellular functions. D112 was developed as a photographic emulsifier, and we hypothesized that its combined cationic and lipophilic nature can render a superior photosensitizing property-crucial in various light therapies. The focus of this study is to elucidate the binding and insertion mechanisms of D112 with mixed lipid bilayers of anionic dipalmitoyl-phosphatidylserine (DPPS) and zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) lipids to resemble cancer cell membranes. Our studies confirm initial electrostatic binding between the positively charged moieties of D112 and negatively charged lipid headgroups. Additionally, MD simulations combined with differential scanning calorimetry (DSC) studies confirm that D112-lipid interactions are governed by enthalpy-driven nonclassical hydrophobic effects in the membrane interior. It was further noted that despite the electrostatic preference of D112 toward the anionic lipids, D112 molecules colocalized on DPPC-rich domains after insertion. Atomistic level MD studies point toward two possible insertion mechanisms for D112: harpoon and flip. Further insights from the simulation showcase the interactions of low and high aggregates of D112 with the bilayer as the concentration of D112 increases in solution. The size of aggregates modulates the orientation and degree of insertion, providing important information for future studies on membrane permeation mechanisms.
Collapse
Affiliation(s)
- Jinhui Li
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Poornima Kalyanram
- Department
of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Seyedalireza Rozati
- Department
of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Viviana Monje-Galvan
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Anju Gupta
- Department
of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Kalyanram P, Puri A, Gupta A. Thermotropic effects of PEGylated lipids on the stability of HPPH-encapsulated lipid nanoparticles (LNP). JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2021; 147:6337-6348. [PMID: 34220293 PMCID: PMC8235917 DOI: 10.1007/s10973-021-10929-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
In this work, we demonstrate the enhanced thermal and steric stability of lipid-based formulations in the presence of encapsulated HPPH that have demonstrated potential cancer applications in previously presented in vivo studies. Differential scanning calorimeter (DSC) was used to study the phase transitions, and domain formations, and to qualify the thermodynamic properties associated with change in lipid bilayer behavior due to the presence of PEGylated at varying concentrations and sizes, and the encapsulated HPPH molecules. Thermal instability was quantified by dramatic changes in calculated enthalpy, and the shape of the melting peak or calculated half width of melting peak. This systematic study focused on understanding the effects of varying molecular mass and concentrations of PEG polymers in the photopolymerizable lipid DC8, 9PC lipid bilayer matrix for four weeks at room temperature of 25 °C. The major findings include increased thermal stability of the lipid bilayer due to the presence of PEG-2 K and the HPPH that resulted from the van der Waals forces between various molecular species, and the change in bilayer curvature confirmed via mathematical correlations. It is demonstrated that the encapsulation of therapeutics in lipid formulations can alter their overall thermal behavior, and therefore, it is imperative to consider calorimetric effects while designing lipid-based vaccines. The presented research methodologies and findings presented can predict the stability of lipid-based vaccines that are under development such as COVID-19 during their storage, transport, and distribution.
Collapse
Affiliation(s)
- Poornima Kalyanram
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 USA
| | - Anu Puri
- RNA Biology Laboratory, National Cancer Institute At Frederick, Frederick, MD 21702 USA
| | - Anju Gupta
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 USA
| |
Collapse
|
5
|
Fayad C, Audi H, Khnayzer RS, Daher CF. The anti-cancer effect of series of strained photoactivatable Ru(II) polypyridyl complexes on non-small-cell lung cancer and triple negative breast cancer cells. J Biol Inorg Chem 2021; 26:43-55. [PMID: 33221954 DOI: 10.1007/s00775-020-01835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Ruthenium complexes have been recently reported as potential chemotherapeutic agents that offer tumor selectivity and low tumor resistance. This study investigates the photochemistry and the effect of four strained photoactivatable polypyridyl ruthenium(II) complexes on non-small-cell lung cancer (A549) and triple negative breast cancer (MDA-MB-231) cells. All four ruthenium(II) complexes, [Ru(bpy)2dmbpy]Cl2 (C1) where (bpy = 2,2'-bipyridine and dmbpy = 6,6'-dimethyl-2,2'-bipyridine), [Ru(phen)2dmbpy]Cl2 (C2) where (phen = 1,10-phenanthroline), [Ru(dpphen)2dmbpy]Cl2 (C3) (where dpphen = 4,7-diphenyl-1,10-phenanthroline) and [Ru(BPS)2dmbpy]Na2 (C4) where (BPS = bathophenanthroline disulfonate) eject the dmbpy ligand upon activation by blue light. Determination of the octanol-water partition coefficient (log P) revealed that C3 was the only lipophilic complex (log P = 0.42). LC-MS/MS studies showed that C3 presented the highest cellular uptake. The cytotoxic effect of the complexes was evaluated with and without blue light activation using WST-1 kit. Data indicated that C3 exhibited the highest cytotoxicity after 72 h (MDA-MB-231, IC50 = 0.73 µM; A549, IC50 = 1.26 µM) of treatment. The phototoxicity indices of C3 were 6.56 and 4.64 for MDA-MB-230 and A549, respectively. Upon light activation, C3 caused significant ROS production and induced apoptosis in MDA-MB-231 cells as shown by flow cytometry. It also significantly increased Bax/Bcl2 ratio and PERK levels without affecting caspase-3 expression. C3 exhibited poor dark toxicity (IC50 = 74 μM) on rat mesenchymal stem cells (MSCs). In conclusion, the physical property of the complexes dictated by the variable ancillary ligands influenced cellular uptake and cytotoxicity. C3 may be considered a promising selective photoactivatable chemotherapeutic agent that induces ROS production and apoptosis.
Collapse
Affiliation(s)
- Christelle Fayad
- Natural Sciences Department, Lebanese American University, Byblos, Lebanon
| | - Hassib Audi
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon.
| | - Costantine F Daher
- Natural Sciences Department, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
6
|
Hawryłkiewicz A, Ptaszyńska N. Gemcitabine Peptide-Based Conjugates and Their Application in Targeted Tumor Therapy. Molecules 2021; 26:E364. [PMID: 33445797 PMCID: PMC7828243 DOI: 10.3390/molecules26020364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
A major obstacle in tumor treatment is associated with the poor penetration of a therapeutic agent into the tumor tissue and with their adverse influence on healthy cells, which limits the dose of drug that can be safely administered to cancer patients. Gemcitabine is an anticancer drug used to treat a wide range of solid tumors and is a first-line treatment for pancreatic cancer. The effect of gemcitabine is significantly weakened by its rapid plasma degradation. In addition, the systemic toxicity and drug resistance significantly reduce its chemotherapeutic efficacy. Up to now, many approaches have been made to improve the therapeutic index of gemcitabine. One of the recently developed approaches to improve conventional chemotherapy is based on the direct targeting of chemotherapeutics to cancer cells using the drug-peptide conjugates. In this work, we summarize recently published gemcitabine peptide-based conjugates and their efficacy in anticancer therapy.
Collapse
Affiliation(s)
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| |
Collapse
|
7
|
Wu H, Luo Y, Xu D, Ke X, Ci T. Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. Int J Biol Macromol 2020; 164:2583-2597. [DOI: 10.1016/j.ijbiomac.2020.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
8
|
Song J, Huang S, Zhang Z, Jia B, Xie H, Kai M, Zhang W. SPA: a peptide antagonist that acts as a cell-penetrating peptide for drug delivery. Drug Deliv 2020; 27:91-99. [PMID: 31870182 PMCID: PMC6968712 DOI: 10.1080/10717544.2019.1706669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although cell-penetrating peptides (CPPs) has been proven to be efficient transporter for drug delivery, ideal peptide vectors for tumor therapy are still being urgently sought. Peptide antagonists have attracted substantial attention as targeting molecules because of their high tumor accumulation and antitumor activity compared with agonists. SPA, a derivative of substance P, is a potent antagonist that exhibits antitumor activity. Based on the amino acid composition of SPA, we speculate that it can translocate across cell membranes as CPPs do. In this study, our results demonstrated that SPA could enter cells similarly to a CPP. As a vector, SPA could efficiently deliver camptothecin and plasmids into cells. In addition, our results showed that SPA exhibited low toxicity to normal cells and high enzymatic stability. Taken together, our results validated the ability of SPA for efficient drug delivery. More importantly, our study opens a new avenue for designing ideal CPPs based on peptide antagonists.
Collapse
Affiliation(s)
- Jingjing Song
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sujie Huang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhengzheng Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Huan Xie
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ming Kai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Kalyanram P, Ma H, Marshall S, Goudreau C, Cartaya A, Zimmermann T, Stadler I, Nangia S, Gupta A. Interaction of amphiphilic coumarin with DPPC/DPPS lipid bilayer: effects of concentration and alkyl tail length. Phys Chem Chem Phys 2020; 22:15197-15207. [PMID: 32420558 DOI: 10.1039/d0cp00696c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this work, interactions between amphiphilic amino methyl coumarin and dipalmitoyl-sn-glycero-3-phosphocholine/dipalmitoyl-sn-glycero-3-phosphoserine (DPPC/DPPS) lipid bilayer were investigated. A combination of experimental techniques (zeta potential, fluorescence spectroscopy, and differential scanning calorimetry) along with molecular dynamics simulations was employed to examine the influence of alkyl tail length and concentration of the amphiphilic coumarin on the lipid bilayer. Alkyl tails comprising 5(C5), 9(C9), and 12(C12) carbon atoms were conjugated to amino methyl coumarin via a single-step process. The binding and insertion mechanisms of the amphiphilic coumarins were studied in increasing concentrations for short-tailed (C5) and long-tailed (C12) coumarins. The simulation results show that C5 coumarin molecules penetrate the lipid bilayer, but owing to the short alkyl tail, they interact primarily with the lipid head groups resulting in lipid bilayer thinning; however, at high concentrations, the C5 coumarins undergo continuous insertion-ejection from the outer leaflet of the lipid bilayer. In contrast, C12 coumarins interact favorably with the hydrophobic lipid tails and lack the ejection-reinsertion behavior. Instead, the C12 coumarin molecules undergo flip-flops between the outer and inner leaflets of the lipid bilayer. At high concentrations, the high-frequency flip-flops lead to lipid destabilization, causing the lipid bilayer to rupture. The simulation results are in excellent agreement with the toxicity of amphiphilic coumarin activity in cancer cells. The efficacy of amphiphilic coumarins in liposomal lipid bilayers demonstrates the promise of these molecules as a tool in the treatment of cancer.
Collapse
Affiliation(s)
- Poornima Kalyanram
- College of Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pirisinu M, Blasco P, Tian X, Sen Y, Bode AM, Liu K, Dong Z. Analysis of hydrophobic and hydrophilic moments of short penetrating peptides for enhancing mitochondrial localization: prediction and validation. FASEB J 2019; 33:7970-7984. [DOI: 10.1096/fj.201802748rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Pirisinu
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Pilar Blasco
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Xueli Tian
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
| | - Yang Sen
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
| | - Ann M. Bode
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Kangdong Liu
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
- The Affiliated Cancer HospitalZhengzhou University Zhengzhou China
- Collaborative Innovation CenterCancer Chemoprevention of Henan Zhengzhou China
| | - Zigang Dong
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
- The Affiliated Cancer HospitalZhengzhou University Zhengzhou China
- Collaborative Innovation CenterCancer Chemoprevention of Henan Zhengzhou China
| |
Collapse
|
11
|
Zairov RR, Solovieva AO, Shamsutdinova NA, Podyachev SN, Shestopalov MA, Pozmogova TN, Miroshnichenko SM, Mustafina AR, Karasik AA. Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:166-173. [PMID: 30573238 DOI: 10.1016/j.msec.2018.10.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/26/2018] [Accepted: 10/25/2018] [Indexed: 01/28/2023]
Abstract
The present work reports ultra-small polyelectrolyte-coated water insoluble Tb(III) complex species with bright Tb(III)-centered luminescence resulted from efficient ligand-to-metal energy transfer as efficient labels for Hep-2 cells. The flow cytometry data revealed the enhanced cellular uptake of negatively charged nanoparticles coated by the polystyrenesulfonate (PSS)-monolayer versus the positively charged nanoparticles. The latter are obtained by layer-by-layer deposition of polyethyleneimine (PEI) onto PSS-coated ones. Confocal and TEM images of Hep-2 cells exposed by the colloids confirm favorable cell internalization of the PSS- compared to PEI-PSS-coated colloids illustrating unusual charge-effect. Dynamic light scattering data indicate significant effect of the biological background exemplified by serum bovine albumin and phosphatidylcholine-based bilayers on the exterior charge and aggregation behavior of the colloids. The obtained results reveal the PSS-coated nanoparticles based on water insoluble Tb(III) complex as promising cell labels.
Collapse
Affiliation(s)
- Rustem R Zairov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation.
| | - Anastasiya O Solovieva
- Scientific Institute of Clinical and Experimental Lymphology - Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation
| | - Nataliya A Shamsutdinova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Sergey N Podyachev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Michael A Shestopalov
- Scientific Institute of Clinical and Experimental Lymphology - Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation; Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentieva ave., 630090 Novosibirsk, Russian Federation
| | - Tatiana N Pozmogova
- Scientific Institute of Clinical and Experimental Lymphology - Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation
| | - Svetlana M Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology - Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Scientific Institute of Biochemistry, 2 Timakova str., 630060 Novosibirsk, Russian Federation
| | - Asiya R Mustafina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Andrey A Karasik
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| |
Collapse
|
12
|
Zhou J, Du X, Berciu C, Del Signore SJ, Chen X, Yamagata N, Rodal AA, Nicastro D, Xu B. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Mol Ther 2018; 26:648-658. [PMID: 29396265 PMCID: PMC5835119 DOI: 10.1016/j.ymthe.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Cristina Berciu
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Steven J Del Signore
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Avital A Rodal
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Daniela Nicastro
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA; Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
13
|
Zakeri-Milani P, Mussa Farkhani S, Shirani A, Mohammadi S, Shahbazi Mojarrad J, Akbari J, Valizadeh H. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI JOURNAL 2017; 16:650-662. [PMID: 28694765 PMCID: PMC5491906 DOI: 10.17179/excli2017-249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Gemcitabine (Gem) is used as a single agent or in combination with other anticancer agents to treat many types of solid tumors. However, it has many limitations such as a short plasma half-life, dose-limiting toxicities and drug resistance. Cell-penetrating peptides (CPPs) are short peptides which may deliver a large variety of cargo molecules into the cancerous cells. The current study was designed to evaluate the antiproliferative activity of gemcitabine chemically conjugated to CPPs. The peptides were synthesized using solid phase synthesis procedure. The uptake efficiency of CPPs into cells was examined by flow cytometry and fluorescent microscopy. The synthesized peptides were chemically conjugated to Gem and the in vitro cytotoxicity of conjugates was tested by MTT assay on A594 cell line. According to the obtained results, cellular uptake was increased with increasing the concentration of CPPs. On the other hand the coupling of Gem with peptides containing block sequence of arginine (R5W3R4) and some alternating sequences (i.e. [RW]6 and [RW]3) exhibited improved antitumor activity of the drug. The findings in this study support the advantages of using cell-penetrating peptides for improving intracellular delivery of Gem into tumor as well as its activity.
Collapse
Affiliation(s)
- Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Mussa Farkhani
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shirani
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mohammadi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Gao Z, Varela JA, Groc L, Lounis B, Cognet L. Toward the suppression of cellular toxicity from single-walled carbon nanotubes. Biomater Sci 2017; 4:230-44. [PMID: 26678092 DOI: 10.1039/c5bm00134j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the multidisciplinary fields of nanobiology and nanomedicine, single-walled carbon nanotubes (SWCNTs) have shown great promise due to their unique morphological, physical and chemical properties. However, understanding and suppressing their cellular toxicity is a mandatory step before promoting their biomedical applications. In light of the flourishing recent literature, we provide here an extensive review on SWCNT cellular toxicity and an attempt to identify the key parameters to be considered in order to obtain SWCNT samples with minimal or no cellular toxicity.
Collapse
Affiliation(s)
- Zhenghong Gao
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| | - Juan A Varela
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France and CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France and CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Brahim Lounis
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| | - Laurent Cognet
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| |
Collapse
|
15
|
van Onzen AHAM, Albertazzi L, Schenning APHJ, Milroy LG, Brunsveld L. Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chem Commun (Camb) 2017; 53:1626-1629. [PMID: 28097276 DOI: 10.1039/c6cc08793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of small molecule nanoparticles (SMNPs) composed of self-assembling intrinsically fluorescent π-conjugated oligomers was studied in cells as a function of side-chain hydrophobicity. While the hydrophobic SMNPs remained intact upon cellular uptake, the more hydrophilic SMNPs disassembled and dispersed throughout the cytosol.
Collapse
Affiliation(s)
- Arthur H A M van Onzen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Lorenzo Albertazzi
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands. and Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| | - Albertus P H J Schenning
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
16
|
Upadhya A, Sangave PC. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. J Pept Sci 2016; 22:647-659. [DOI: 10.1002/psc.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/27/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management; SVKM's NMIMS University; V.L. Mehta Road, Vile Parle (West) Mumbai 400056 Maharashtra India
| | - Preeti C. Sangave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management; SVKM's NMIMS University; V.L. Mehta Road, Vile Parle (West) Mumbai 400056 Maharashtra India
| |
Collapse
|
17
|
Ye T, Jiang X, Li J, Yang R, Mao Y, Li K, Li L, Chen F, Yao J, Wu Y, Yang X, Wang S, Pan W. Low molecular weight heparin mediating targeting of lymph node metastasis based on nanoliposome and enzyme–substrate interaction. Carbohydr Polym 2015; 122:26-38. [DOI: 10.1016/j.carbpol.2014.12.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/17/2014] [Accepted: 12/28/2014] [Indexed: 01/26/2023]
|
18
|
Di Pisa M, Chassaing G, Swiecicki JM. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. J Pept Sci 2015; 21:356-69. [PMID: 25787823 DOI: 10.1002/psc.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
Abstract
Cell-penetrating peptides (CPPs) are short sequences often rich in cationic residues with the remarkable ability to cross cell membranes. In the past 20 years, CPPs have gained wide interest and have found numerous applications in the delivery of bioactive cargoes to the cytosol and even the nucleus of living cells. The covalent or non-covalent addition of hydrocarbon moieties to cationic CPPs alters the hydrophobicity/hydrophilicity balance in their sequence. Such perturbation dramatically influences their interaction with the cell membrane, might induce self-assembling properties and modifies their intracellular trafficking. In particular, the introduction of lipophilic moieties changes the subcellular distribution of CPPs and might result in a dramatically increase of the internalization yield of the co-transported cargoes. Herein, we offer an overview of different aspects of the recent findings concerning the properties of CPPs covalently or non-covalently associated to hydrocarbons. We will focus on the impact of the hydrocarbon moieties on the delivery of various cargoes, either covalently or non-covalently bound to the modified CPPs. We will also provide some key elements to rationalize the influence of the hydrocarbons moieties on the cellular uptake. Furthermore, the recent in vitro and in vivo successful applications of acylated CPPs will be summarized to provide a broad view of the versatility of these modified CPPs as small-molecules and oligonucleotides vectors.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; Ecole Normale Supérieure (ENS), UMR 7203, Laboratoire des Biomolécules, Département de Chimie, 24 Rue Lhomond, Paris, F-75005, France
| | | | | |
Collapse
|
19
|
Tsoneva Y, Jonker HRA, Wagner M, Tadjer A, Lelle M, Peneva K, Ivanova A. Molecular Structure and Pronounced Conformational Flexibility of Doxorubicin in Free and Conjugated State within a Drug–Peptide Compound. J Phys Chem B 2015; 119:3001-13. [DOI: 10.1021/jp509320q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yana Tsoneva
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Hendrik R. A. Jonker
- Goethe University Frankfurt, Institute for Organic
Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Alia Tadjer
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Marco Lelle
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anela Ivanova
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
20
|
He XC, Lin M, Li F, Sha BY, Xu F, Qu ZG, Wang L. Advances in studies of nanoparticle–biomembrane interactions. Nanomedicine (Lond) 2015; 10:121-41. [DOI: 10.2217/nnm.14.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field. This article reviews the state-of-the-art techniques in studies of NP–biomembrane interactions with a focus on each technology's advantages and disadvantages. The aim is to better understand the mechanism of NP–biomembrane interactions and provide significant guidance for various fields, such as nanomedicine and diagnosis.
Collapse
Affiliation(s)
- Xiao Cong He
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Fei Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Department of Chemistry, School of Sciences, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Bao Yong Sha
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Zhi Guo Qu
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
21
|
Lee SC, Lin CC, Wang CH, Wu PL, Huang HW, Chang CI, Wu WG. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface. J Biol Chem 2014; 289:20170-81. [PMID: 24898246 DOI: 10.1074/jbc.m114.557157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.
Collapse
Affiliation(s)
- Shao-Chen Lee
- From the School of Medicine, FuJen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Chien-Chu Lin
- the Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan, the Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Hui Wang
- the Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Po-Long Wu
- the Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsuan-Wei Huang
- the Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-I Chang
- the Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-guey Wu
- the Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan,
| |
Collapse
|
22
|
Shirazi AN, Oh D, Tiwari RK, Sullivan B, Gupta A, Bothun GD, Parang K. Peptide amphiphile containing arginine and fatty acyl chains as molecular transporters. Mol Pharm 2013; 10:4717-4727. [PMID: 24215132 PMCID: PMC3873380 DOI: 10.1021/mp400539r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide amphiphiles (PAs) are promising tools for the intracellular delivery of numerous drugs. PAs are known to be biodegradable systems. Here, four PA derivatives containing arginine and lysine conjugated with fatty acyl groups with different chain lengths, namely, PA1: R-K(C14)-R, PA2: R-K(C16)-R, PA3: K(C14)-R-K(C14), and PA4: K(C16)-R-K(C16), where C16 = palmitic acid and C14 = myristic acid, were synthesized through Fmoc chemistry. Flow cytometry studies showed that, among all synthesized PAs, only K(C16)-R-K(C16), PA4 was able to enhance the cellular uptake of a fluorescence-labeled anti-HIV drug 2',3'-dideoxy-3'-thiacythidine (F'-3TC, F' = fluorescein) and a biologically important phosphopeptide (F'-PEpYLGLD) in human leukemia cells (CCRF-CEM) after 2 h incubation. For example, the cellular uptake of F'-3TC and F'-PEpYLGLD was enhanced approximately 7.1- and 12.6-fold in the presence of the PA4 compared to those of the drugs alone. Confocal microscopy of F'-3TC and F'-PEpYLGLD loaded PA4 in live cells showed significantly higher intracellular localization than the drug alone in human ovarian cells (SK-OV-3) after 2 h incubation. The high-performance liquid chromatography (HPLC) results showed that loading of Dox by the peptide amphiphile was 56% after 24 h. The loaded Dox was released (34%) within 48 h intracellularly. The circular dichrosim (CD) results exhibited that the secondary structure of the peptide was changed upon interactions with Dox. Mechanistic studies revealed that endocytosis is the major pathway of the internalization. These studies suggest that PAs containing the appropriate sequence of amino acids, chain length, charge, and hydrophobicity can be used as cellular delivery tools for transporting drugs and biomolecules.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| | - Brian Sullivan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Anju Gupta
- Department of Biology and Chemistry, Department of Engineering, College of Arts and Sciences, Texas A&M International University, Laredo, Texas 78041, United States
| | - Geoffrey D. Bothun
- Department of Chemical Engineering, College of Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| |
Collapse
|
23
|
Kuhn-Nentwig L, Sheynis T, Kolusheva S, Nentwig W, Jelinek R. N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide. Toxicon 2013; 75:177-86. [PMID: 23523532 DOI: 10.1016/j.toxicon.2013.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 01/13/2023]
Abstract
Cupiennins are small cationic α-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Clède S, Lambert F, Sandt C, Kascakova S, Unger M, Harté E, Plamont MA, Saint-Fort R, Deniset-Besseau A, Gueroui Z, Hirschmugl C, Lecomte S, Dazzi A, Vessières A, Policar C. Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques. Analyst 2013; 138:5627-38. [DOI: 10.1039/c3an00807j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Betts C, Saleh AF, Arzumanov AA, Hammond SM, Godfrey C, Coursindel T, Gait MJ, Wood MJ. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e38. [PMID: 23344180 PMCID: PMC3438601 DOI: 10.1038/mtna.2012.30] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs) conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO): Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg) of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD.
Collapse
Affiliation(s)
- Corinne Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mandal D, Nasrolahi Shirazi A, Parang K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem Int Ed Engl 2011; 50:9633-9637. [PMID: 21919161 DOI: 10.1002/anie.201102572] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/14/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Deendayal Mandal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
27
|
Mandal D, Nasrolahi Shirazi A, Parang K. Cell-Penetrating Homochiral Cyclic Peptides as Nuclear-Targeting Molecular Transporters. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|