1
|
Baral B, Nayak AK, Tulsiyan KD, Subudhi U. Molecular self-assembly of stable and small branched DNA nanostructures: Higher than a helical turn is enough for hybridization. Int J Biol Macromol 2024; 282:137491. [PMID: 39528187 DOI: 10.1016/j.ijbiomac.2024.137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The Watson-Crick base pairing property of DNA is widely used for fabricating DNA nanostructures with well-defined geometry. Moreover, DNA nanostructures can be easily modified in terms of shape, size and function at the nanoscale level. Therefore, investigation on smaller and stable branched DNA (bDNA) is of critical significance for biomedical applications. In the present communication, we report smaller and stable branched DNA (bDNA) which is of critical significance for biomedical applications. In this study, a novel strategy has been used in identifying stable bDNA nanostructures with a minimum number of Watson-Crick base pairings. The importance of hybridizing regions and helical twists between multiple oligonucleotides has been explored using various biophysical techniques. The electrophoretic analysis demonstrated that hybridizing regions with ≥12 nt nucleotides can form stable bDNA structures. Substantial negative enthalpic contributions determine the significance of base stacking and the length of oligonucleotides in the hybridization process. Finally, thermal melting investigations confirmed the creation of bDNA nanostructures with ≥12 nt long hybridizing regions. In general, our findings indicate that bDNA oligonucleotides do not undergo hybridization if the number of base pairs is lesser for a single helical turn. Furthermore, the yield and stability of smaller bDNA nanostructures in physiological conditions are comparable with the earlier reported higher-order structures. Hence, smaller bDNAs are more stable which may be preferred over conventional bDNA nanostructures for advanced biomedical applications.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Nayak
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
| | - Umakanta Subudhi
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Pasangha CH, Kishore N. Unveiling the multifaceted interactions of antitumor drug mitoxantrone with ct-DNA through biophysical and in silico studies. Int J Biol Macromol 2024; 280:135813. [PMID: 39306167 DOI: 10.1016/j.ijbiomac.2024.135813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Mitoxantrone, an anthraquinone derivative, is a widely used anticancer drug with its well-known ability to engage in complex interactions with DNA. Although known for its intercalating ability, the enigma surrounding its binding modes with DNA persists. The existing corpus of literature primarily focuses on mitoxantrone-DNA interactions with short DNA sequences, thereby yielding insights into its interactive nature is limited to this specific sequence. This study aims to elucidate the diverse modes with which mitoxantrone interacts with calf thymus DNA using a combination of spectroscopy, calorimetry and in silico studies. The findings from spectroscopic, calorimetric and molecular dynamic results in correlation with existing literature, unveil a fascinating narrative: mitoxantrone intercalates at lower concentrations but promotes condensation at higher concentrations. Although intercalation with side chains positioned in the minor/major groove is the major binding mode in GC-rich sequences, molecular modelling studies hint at an alternative binding mode in AT-rich sequences where it exclusively displays pure electrostatic interaction. These findings underscore the pivotal role of both drug structure and base sequence in dictating binding mode and affinity. Such insights not only deepen the understanding of structure-activity relationships but also hold promise for guiding future drug design strategies.
Collapse
Affiliation(s)
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
3
|
Pakzad F, Eskandari K. Exploring the influence of metal cations on individual hydrogen bonds in Watson-Crick guanine-cytosine DNA base pair: An interacting quantum atoms analysis. J Comput Chem 2024; 45:2397-2408. [PMID: 38922952 DOI: 10.1002/jcc.27441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
This study delves into the nature of individual hydrogen bonds and the relationship between metal cations and hydrogen bonding in the Watson-Crick guanine-cytosine (GC) base pair and its alkali and alkaline earth cation-containing complexes (Mn+-GC). The findings reveal how metal cations affect the nature and strength of individual hydrogen bonds. The study employs interacting quantum atoms (IQA) analysis to comprehensively understand three individual hydrogen bonds within the GC base pair and its cationic derivatives. These analyses unveil the nature and strength of hydrogen bonds and serve as a valuable reference for exploring the impact of cations (and other factors) on each hydrogen bond. All the H ⋯ D interactions (H is hydrogen and D is oxygen or nitrogen) in the GC base pair are primarily electrostatic in nature, with the charge transfer component playing a substantial role. Introducing a metal cation perturbs all H ⋯ D interatomic interactions in the system, weakening the nearest hydrogen bond to the cation (indicated by a) and reinforcing the other (b and c) interactions. Notably, the interaction a, the strongest H ⋯ D interaction in the GC base pair, becomes the weakest in the Mn+-GC complexes. A broader perspective on the stability of GC and Mn+-GC complexes is provided through interacting quantum fragments (IQF) analysis. This approach considers all pairwise interactions between fragments and intra-fragment components, offering a complete view of the factors that stabilize and destabilize GC and Mn+-GC complexes. The IQF analysis underscores the importance of electron sharing, with the dominant contribution arising from the inter-fragment exchange-correlation term, in shaping and sustaining GC and Mn+-GC complexes. From this point of view, alkaline and alkaline earth cations have distinct effects, with alkaline cations generally weakening inter-fragment interactions and alkaline earth cations strengthening them. In addition, IQA and IQF calculations demonstrate that the hydration of cations led to small changes in the hydrogen bonding network. Finally, the IQA interatomic energies associated with the hydrogen bonds and also inter-fragment interaction energies provide robust indicators for characterizing hydrogen bonds and complex stability, showing a strong correlation with total interaction energies.
Collapse
Affiliation(s)
- F Pakzad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - K Eskandari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
5
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
6
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
7
|
Skene KR. Systems theory, thermodynamics and life: Integrated thinking across ecology, organization and biological evolution. Biosystems 2024; 236:105123. [PMID: 38244715 DOI: 10.1016/j.biosystems.2024.105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
In this paper we explore the relevance and integration of system theory and thermodynamics in terms of the Earth system. It is proposed that together, these fields explain the evolution, organization, functionality and directionality of life on Earth. We begin by summarizing historical and current thinking on the definition of life itself. We then investigate the evidence for a single unit of life. Given that any definition of life and its levels of organization are intertwined, we explore how the Earth system is structured and functions from an energetic perspective, by outlining relevant thermodynamic theory relating to molecular, metabolic, cellular, individual, population, species, ecosystem and biome organization. We next investigate the fundamental relationships between systems theory and thermodynamics in terms of the Earth system, examining the key characteristics of self-assembly, self-organization (including autonomy), emergence, non-linearity, feedback and sub-optimality. Finally, we examine the relevance of systems theory and thermodynamics with reference to two specific aspects: the tempo and directionality of evolution and the directional and predictable process of ecological succession. We discuss the importance of the entropic drive in understanding altruism, multicellularity, mutualistic and antagonistic relationships and how maximum entropy production theory may explain patterns thought to evidence the intermediate disturbance hypothesis.
Collapse
Affiliation(s)
- Keith R Skene
- Biosphere Research Institute, Angus, United Kingdom.
| |
Collapse
|
8
|
Siebert R, Ammerpohl O, Rossini M, Herb D, Rau S, Plenio MB, Jelezko F, Ankerhold J. A quantum physics layer of epigenetics: a hypothesis deduced from charge transfer and chirality-induced spin selectivity of DNA. Clin Epigenetics 2023; 15:145. [PMID: 37684676 PMCID: PMC10492394 DOI: 10.1186/s13148-023-01560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics. RESULTS We base our hypothesis on theoretical and experimental studies showing quantum phenomena to be active in double-stranded DNA, even under ambient conditions. These phenomena include coherent charge transfer along overlapping pi-orbitals of DNA bases and chirality-induced spin selectivity. Charge transfer via quantum tunneling mediated by overlapping orbitals results in charge delocalization along several neighboring bases, which can even be extended by classical (non-quantum) electron hopping. Such charge transfer is interrupted by flipping base(s) out of the double-strand e.g., by DNA modifying enzymes. Charge delocalization can directly alter DNA recognition by proteins or indirectly by DNA structural changes e.g., kinking. Regarding sequence dependency, charge localization, shown to favor guanines, could influence or even direct epigenetic changes, e.g., modification of cytosines in CpG dinucleotides. Chirality-induced spin selectivity filters electrons for their spin along DNA and, thus, is not only an indicator for quantum coherence but can potentially affect DNA binding properties. CONCLUSIONS Quantum effects in DNA are prone to triggering and manipulation by external means. By the hypothesis put forward here, we would like to foster research on "Quantum Epigenetics" at the interface of medicine, biology, biochemistry, and physics to investigate the potential epigenetic impact of quantum physical principles on (human) life.
Collapse
Affiliation(s)
- Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany.
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Mirko Rossini
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| | - Dennis Herb
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Martin B Plenio
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute of Theoretical Physics, Ulm University, 89081, Ulm, Germany
| | - Fedor Jelezko
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Quantum Optics, Ulm University, 89081, Ulm, Germany
| | - Joachim Ankerhold
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| |
Collapse
|
9
|
Liu H, Xu X, Tam VWY, Mao P. What is the "DNA" of healthy buildings? A critical review and future directions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2023; 183:113460. [PMID: 37359216 PMCID: PMC10280327 DOI: 10.1016/j.rser.2023.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Since the outbreak of COVID-19, buildings that provide improved performance have aroused extensive discussion. Nowadays, the connotation of healthy building is becoming complex, performance metrics for healthy buildings vary significantly from different regions in the world and there may be information asymmetry among stakeholders. Consequently, building health performance cannot be effectively achieved. However, previous studies have launched extensive reviews on green building, and there remains a lack of comprehensive and systematic reviews on healthy buildings. To address the above issues, therefore, this research aims to (1) conduct a thorough review of healthy building research and reveal its nature; and (2) identify the current research gaps and propose possible future research directions. Content analysis using NVivo were applied to review 238 relevant publications. A DNA framework of healthy buildings, which clarifies the characteristics, triggers, guides and actions, was then constructed for better understanding of the nature of them. Subsequently, the application of DNA framework and the directions of future research were discussed. Six future research directions were finally recommended, including life-cycle thinking, standard systems improvement, policies & regulations, awareness increase, healthy building examination, and multidisciplinary integration. This research differs from previous ones because it painted a panorama of previous healthy building research. Findings of this research contribute to reveal knowledge map of healthy buildings, guide researchers to fill existing knowledge gaps, provide a standardized platform for healthy building stakeholders, and promote high-quality development of healthy buildings.
Collapse
Affiliation(s)
- Hui Liu
- School of Civil Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, PR China
| | - Xiaoxiao Xu
- School of Civil Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, PR China
| | - Vivian W Y Tam
- School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Mao
- School of Civil Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, PR China
| |
Collapse
|
10
|
Bannister AJ, Schneider R, Varga-Weisz P. Editorial: Colyn Crane-Robinson (1935-2023). Nucleic Acids Res 2023; 51:7709-7713. [PMID: 37493596 PMCID: PMC10450191 DOI: 10.1093/nar/gkad625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
| | - Patrick Varga-Weisz
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Tagami S. Why we are made of proteins and nucleic acids: Structural biology views on extraterrestrial life. Biophys Physicobiol 2023; 20:e200026. [PMID: 38496239 PMCID: PMC10941967 DOI: 10.2142/biophysico.bppb-v20.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 03/19/2024] Open
Abstract
Is it a miracle that life exists on the Earth, or is it a common phenomenon in the universe? If extraterrestrial organisms exist, what are they like? To answer these questions, we must understand what kinds of molecules could evolve into life, or in other words, what properties are generally required to perform biological functions and store genetic information. This review summarizes recent findings on simple ancestral proteins, outlines the basic knowledge in textbooks, and discusses the generally required properties for biological molecules from structural biology viewpoints (e.g., restriction of shapes, and types of intra- and intermolecular interactions), leading to the conclusion that proteins and nucleic acids are at least one of the simplest (and perhaps very common) forms of catalytic and genetic biopolymers in the universe. This review article is an extended version of the Japanese article, On the Origin of Life: Coevolution between RNA and Peptide, published in SEIBUTSU BUTSURI Vol. 61, p. 232-235 (2021).
Collapse
Affiliation(s)
- Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Fedorova L, Mulyar OA, Lim J, Fedorov A. Nucleotide Composition of Ultra-Conserved Elements Shows Excess of GpC and Depletion of GG and CC Dinucleotides. Genes (Basel) 2022; 13:2053. [PMID: 36360290 PMCID: PMC9690913 DOI: 10.3390/genes13112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
The public UCNEbase database, comprising 4273 human ultra-conserved noncoding elements (UCNEs), was thoroughly investigated with the aim to find any nucleotide signals or motifs that have made these DNA sequences practically unchanged over three hundred million years of evolution. Each UCNE comprises over 200 nucleotides and has at least 95% identity between humans and chickens. A total of 31,046 SNPs were found within the UCNE database. We demonstrated that every human has over 300 mutations within 4273 UCNEs. No association of UCNEs with non-coding RNAs, nor preference of a particular meiotic recombination rate within them were found. No sequence motifs associated with UCNEs nor their flanking regions have been found. However, we demonstrated that UCNEs have strong nucleotide and dinucleotide sequence abnormalities compared to genome averages. Specifically, UCNEs are depleted for CC and GG dinucleotides, while GC dinucleotides are in excess of 28%. Importantly, GC dinucleotides have extraordinarily strong stacking free-energy inside the DNA helix and unique resistance to dissociation. Based on the adjacent nucleotide stacking abnormalities within UCNEs, we conjecture that peculiarities in dinucleotide distribution within UCNEs may create unique 3D conformation and specificity to bind proteins. We also discuss the strange dynamics of multiple SNPs inside UCNEs and reasons why these sequences are extraordinarily conserved.
Collapse
Affiliation(s)
| | | | - Jan Lim
- CRI Genetics LLC, Santa Monica, CA 90404, USA
| | - Alexei Fedorov
- CRI Genetics LLC, Santa Monica, CA 90404, USA
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
13
|
Crane-Robinson C, Privalov P. Energetic basis of hydrogen bond formation in aqueous solution. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:515-517. [PMID: 35962202 PMCID: PMC9463299 DOI: 10.1007/s00249-022-01611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
Abstract
The thermodynamic forces driving the formation of H-bonds in macromolecules have long been the subject of speculation, theory and experiment. Comparison of the energetic parameters of AT and GC base pairs in DNA duplexes has recently led to the realisation that formation of a ‘naked’ hydrogen bond, i.e. without other accompanying Van der Waals close contacts, is a non-enthalpic process driven by the entropy increase resulting from release of tightly bound water molecules from the component polar groups. This unexpected conclusion finds a parallel in the formation of ionic bonds, for example between the amino groups of DNA binding proteins and the oxygens of DNA phosphate groups that are also non-enthalpic and entropy driven. The thermodynamic correspondence between these two types of polar non-covalent bonding implies that the non-enthalpic nature of base pairing in DNA is not particular to that specific structural circumstance.
Collapse
Affiliation(s)
- Colyn Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| | - Peter Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
14
|
Role of Water in Defining the Structure and Properties of B-Form DNA. CRYSTALS 2022. [DOI: 10.3390/cryst12060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
DNA in the cell is rarely naked but normally protein-bound in nucleosomes. Of special interest is the DNA bound to other factors that control its key functions of transcription, replication, and repair. For these several transactions of DNA, the state of hydration plays an important role in its function, and therefore needs to be defined in as much detail as possible. High-resolution crystallography of short B-form duplexes shows that the mixed polar and apolar surface of the major groove binds water molecules over the broad polar floor of the groove in a sequence-dependent varied manner. In contrast, the narrower minor groove, particularly at AT-rich segments, binds water molecules to the polar groups of the bases in a regular double layer reminiscent of the structure of ice. This review is largely devoted to measurements made in solution, principally calorimetric, that are fully consistent with the location of water molecules seen in crystals, thereby emphasizing the substantial difference between the hydration patterns of the two grooves.
Collapse
|
15
|
Zuber J, Schroeder SJ, Sun H, Turner DH, Mathews DH. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects. Nucleic Acids Res 2022; 50:5251-5262. [PMID: 35524574 PMCID: PMC9122537 DOI: 10.1093/nar/gkac261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
Nearest neighbor parameters for estimating the folding stability of RNA secondary structures are in widespread use. For helices, current parameters penalize terminal AU base pairs relative to terminal GC base pairs. We curated an expanded database of helix stabilities determined by optical melting experiments. Analysis of the updated database shows that terminal penalties depend on the sequence identity of the adjacent penultimate base pair. New nearest neighbor parameters that include this additional sequence dependence accurately predict the measured values of 271 helices in an updated database with a correlation coefficient of 0.982. This refined understanding of helix ends facilitates fitting terms for base pair stacks with GU pairs. Prior parameter sets treated 5′GGUC3′ paired to 3′CUGG5′ separately from other 5′GU3′/3′UG5′ stacks. The improved understanding of helix end stability, however, makes the separate treatment unnecessary. Introduction of the additional terms was tested with three optical melting experiments. The average absolute difference between measured and predicted free energy changes at 37°C for these three duplexes containing terminal adjacent AU and GU pairs improved from 1.38 to 0.27 kcal/mol. This confirms the need for the additional sequence dependence in the model.
Collapse
Affiliation(s)
- Jeffrey Zuber
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Hongying Sun
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Douglas H Turner
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Biostatistics & Computational Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Modulation of Aptamer-Ligand-Binding by Complementary Oligonucleotides: A G-Quadruplex Anti-Ochratoxin A Aptamer Case Study. Int J Mol Sci 2022; 23:ijms23094876. [PMID: 35563267 PMCID: PMC9103105 DOI: 10.3390/ijms23094876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5'-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3') and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer-ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer-ssDNA complex. The ssDNAs' having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer-OTA interactions. The ssDNAs' having less than 18 hydrogen bonds did not affect the aptamer-OTA affinity. The location of ssDNA's complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer-ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA's complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn't affecting the G-qaudruplex's integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.
Collapse
|
17
|
Morzy D, Joshi H, Sandler SE, Aksimentiev A, Keyser UF. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure. NANO LETTERS 2021; 21:9789-9796. [PMID: 34767378 DOI: 10.1021/acs.nanolett.1c03791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.
Collapse
Affiliation(s)
- Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
18
|
Altun A, Garcia-Ratés M, Neese F, Bistoni G. Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chem Sci 2021; 12:12785-12793. [PMID: 34703565 PMCID: PMC8494058 DOI: 10.1039/d1sc03868k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Herein, we provide new insights into the intermolecular interactions responsible for the intrinsic stability of the duplex structure of a large portion of human B-DNA by using advanced quantum mechanical methods. Our results indicate that (i) the effect of non-neighboring bases on the inter-strand interaction is negligibly small, (ii) London dispersion effects are essential for the stability of the duplex structure, (iii) the largest contribution to the stability of the duplex structure is the Watson-Crick base pairing - consistent with previous computational investigations, (iv) the effect of stacking between adjacent bases is relatively small but still essential for the duplex structure stability and (v) there are no cooperativity effects between intra-strand stacking and inter-strand base pairing interactions. These results are consistent with atomic force microscope measurements and provide the first theoretical validation of nearest neighbor approaches for predicting thermodynamic data of arbitrary DNA sequences.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Miquel Garcia-Ratés
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
19
|
Thermodynamic basis of the α-helix and DNA duplex. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:787-792. [PMID: 33893863 PMCID: PMC8260414 DOI: 10.1007/s00249-021-01520-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/20/2021] [Indexed: 11/30/2022]
Abstract
Analysis of calorimetric and crystallographic information shows that the α-helix is maintained not only by the hydrogen bonds between its polar peptide groups, as originally supposed, but also by van der Waals interactions between tightly packed apolar groups in the interior of the helix. These apolar contacts are responsible for about 60% of the forces stabilizing the folded conformation of the α-helix and their exposure to water on unfolding results in the observed heat capacity increment, i.e. the temperature dependence of the melting enthalpy. The folding process is also favoured by an entropy increase resulting from the release of water from the peptide groups. A similar situation holds for the DNA double helix: calorimetry shows that the hydrogen bonding between conjugate base pairs provides a purely entropic contribution of about 40% to the Gibbs energy while the enthalpic van der Waals interactions between the tightly packed apolar parts of the base pairs provide the remaining 60%. Despite very different structures, the thermodynamic basis of α-helix and B-form duplex stability are strikingly similar. The general conclusion follows that the stability of protein folds is primarily dependent on internal atomic close contacts rather than the hydrogen bonds they contain.
Collapse
|
20
|
Abstract
Understanding the nature of the forces driving the folding of proteins, nucleic
acids and the formation of their complexes absolutely requires thermodynamic
data, in addition to structural information. In practical terms, this means the
use of super-sensitive scanning and titration calorimeters for experimental
determination of the heats (enthalpies) characterising these processes. Peter
Privalov was both an experimental thermodynamicist and a calorimeter
designer/manufacturer who followed and propagated this credo. The sum total of
his many publications, every one of which addresses a fundamental question, is
his lasting epitaph.
Collapse
Affiliation(s)
- C. Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
21
|
Mondal M, Yang L, Cai Z, Patra P, Gao YQ. A perspective on the molecular simulation of DNA from structural and functional aspects. Chem Sci 2021; 12:5390-5409. [PMID: 34168783 PMCID: PMC8179617 DOI: 10.1039/d0sc05329e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China.,Beijing Advanced Innovation Center for Genomics, Peking University 100871 Beijing China
| |
Collapse
|
22
|
Abstract
Supramolecular biopolymers (SBPs) are those polymeric units derived from macromolecules that can assemble with each other by noncovalent interactions. Macromolecular structures are commonly found in living systems such as proteins, DNA/RNA, and polysaccharides. Bioorganic chemistry allows the generation of sequence-specific supramolecular units like SBPs that can be tailored for novel applications in tissue engineering (TE). SBPs hold advantages over other conventional polymers previously used for TE; these materials can be easily functionalized; they are self-healing, biodegradable, stimuli-responsive, and nonimmunogenic. These characteristics are vital for the further development of current trends in TE, such as the use of pluripotent cells for organoid generation, cell-free scaffolds for tissue regeneration, patient-derived organ models, and controlled delivery systems of small molecules. In this review, we will analyse the 3 subtypes of SBPs: peptide-, nucleic acid-, and oligosaccharide-derived. Then, we will discuss the role that SBPs will be playing in TE as dynamic scaffolds, therapeutic scaffolds, and bioinks. Finally, we will describe possible outlooks of SBPs for TE.
Collapse
|
23
|
Mallory JD, Igoshin OA, Kolomeisky AB. Do We Understand the Mechanisms Used by Biological Systems to Correct Their Errors? J Phys Chem B 2020; 124:9289-9296. [PMID: 32857935 DOI: 10.1021/acs.jpcb.0c06180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most cellular processes involved in biological information processing display a surprisingly low error rate despite the stochasticity of the underlying biochemical reactions and the presence of competing chemical species. Such high fidelity is the result of nonequilibrium kinetic proofreading mechanisms, i.e., the existence of dissipative pathways for correcting the reactions that went in the wrong direction. While proofreading was often studied from the perspective of error minimization, a number of recent studies have demonstrated that the underlying mechanisms need to consider the interplay of other characteristic properties such as speed, energy dissipation, and noise reduction. Here, we present current views and new insights on the mechanisms of error-correction phenomena and various trade-off scenarios in the optimization of the functionality of biological systems. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Joel D Mallory
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering and of Biosciences, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|