1
|
Liu X, Ji JX, Pang AN, Li L, Nie P, Zhang LQ, Zeng KW, Chen SN. Molecular cloning and functional analyses of C-C motif chemokine ligand 3 (CCL3) in mandarin fish Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109614. [PMID: 38710342 DOI: 10.1016/j.fsi.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1β, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.
Collapse
Affiliation(s)
- Xiao Liu
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Xiang Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Qiang Zhang
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China
| | - Ke Wei Zeng
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
2
|
Advances in chemokines of teleost fish species. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Yang X, Wu Y, Zhang P, Chen G, Cao Z, Ao J, Sun Y, Zhou Y. CC chemokine 1 protein from Cromileptes altivelis (CaCC1) promotes antimicrobial immune defense. FISH & SHELLFISH IMMUNOLOGY 2022; 123:102-112. [PMID: 35240293 DOI: 10.1016/j.fsi.2022.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Chemokines are a family of small signaling proteins that are secreted by various cells. In addition to their roles in immune surveillance, localization of antigen, and lymphocyte trafficking for the maintenance of homeostasis, chemokines also function in induce immune cell migration under pathological conditions. In the present study, a novel CC chemokine gene (CaCC1) from humpback grouper (Cromileptes altivelis) was cloned and characterized. CaCC1 comprised a 435 bp open reading frame encoding 144 amino acid residues. The putative molecular weight of CaCC1 protein was 15 kDa CaCC1 contains four characteristic cysteines that are conserved in other known CC chemokines. CaCC1 also shares 11.64%-90.28% identity with other teleost and mammal CC chemokines. Phylogenetic analysis revealed that CaCC1 is most closely related to Epinephelus coioides EcCC1, both of which are in a fish-specific CC chemokine clade. CaCC1 was constitutively expressed in all examined C. altivelis tissues, with high expression levels in skin, heart, liver, and intestine. Vibrio harveyi stimulation up-regulated CaCC1 expression levels in liver, spleen, and head-kidney. Functional analyses revealed that the recombinant protein (rCaCC1) could induce the migration of head-kidney lymphocytes from C. altivelis. Moreover, rCaCC1 significantly enhanced phagocytosis in head-kidney macrophages from C. altivelis. In addition, rCaCC1 exhibited antimicrobial activities against Staphylococcus aureus, Edwardsiella tarda, and V. harveyi. In vivo, CaCC1 overexpression improved bacterial clearance in V. harveyi infected fish. Conversely, CaCC1 knockdown resulted in a significant decrease of bacterial clearance. These results demonstrate the important roles that CaCC1 plays in homeostasis and in inflammatory response to bacterial infection.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Guisen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
4
|
Kim JY, Park JS, Jung TS, Kim HJ, Kwon SR. Molecular cloning and characterization of chemokine C-C motif ligand 34 (CCL34) genes from olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:42-51. [PMID: 34146672 DOI: 10.1016/j.fsi.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Chemokines are a superfamily of chemotactic cytokines that regulate the migration and immune responses of leukocytes. Depending on the arrangement of the first two cysteine residues, chemokines are divided into four groups: CXC (α), CC (β), C (γ), and CX3C (δ). Chemokine C-C motif ligand 34 (CCL34) is a member of the CC chemokine family and is known as a fish-specific CC chemokine. In this experiment, we analyzed the molecular cloning and characterization of the PoCCL34 gene in olive flounder (Paralichthys olivaceus), including CCL34a.3 (PoCCL34a.3) and CCL34b.3 (PoCCL34b.3). The amino acid sequence of PoCCL34 has four highly conserved cysteine residues and it has a C-C motif. Phylogenetic analysis revealed that PoCCL34 was phylogenetically clustered in the fish CCL34 subcluster. Recombinant PoCCL34 induced chemotaxis of head kidney leukocytes in a dose-dependent manner. Head kidney leukocytes stimulated with PoCCL34 also exhibited significant respiratory burst activity and increased expression of pro-inflammatory cytokines (IL-1β, IL-6, and CXCL8), but the overall expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15) did not increase. Olive flounder injected with recombinant PoCCL34 demonstrated increased expression of pro-inflammatory cytokines (IL-1β and IL-6) in the head kidney. However, there was no increase in the expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15). Additionally, recombinant PoCCL34 induced high lysozyme activity in the serum of the flounder. These results indicate that although PoCCL34 is not involved in the antiviral response, it may play a significant role in the overall immune response of the flounder, particularly in mediating the inflammatory response.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, South Korea.
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea; Genome-based BioIT Convergence Institute, Asan, 31460, South Korea.
| |
Collapse
|
5
|
Wang J, Meng Z, Wang G, Fu Q, Zhang M. A CCL25 chemokine functions as a chemoattractant and an immunomodulator in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2020; 100:161-170. [PMID: 32135342 DOI: 10.1016/j.fsi.2020.02.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Chemokines are small cytokines that are classified into four groups, one of which is called CC chemokines. In the present study, the full-length cDNA of a CCL25 chemokine was identified from black rockfish, Sebastes schlegelii (named as SsCCL25) by EST (expressed sequence tag) analysis. The cDNA of SsCCL25 consisted of a 5-terminal untranslated region (UTR) of 74 bp, a 3-UTR of 882 bp with a poly (A) tail, and an open reading frame (ORF) of 303 bp encoding a polypeptide of 100 amino acids with the putative molecular mass of 11.5 kDa. There was a SCY domain in the deduced amino acid sequence of SsCCL25. The phylogenetic relationships and syntenic analyses provided evidences for the identities of SsCCL25 with CCL25 group. The mRNA transcripts of SsCCL25 were expressed in all detected tissues and dominantly in liver, muscle and gill. Moreover, after Vibrio anguillarum stimulation, the mRNA expression levels of SsCCL25 were significantly up-regulated at 24 h (p < 0.05) in the liver and during 4-8 h (p < 0.05) in the spleen. Recombinant SsCCL25 protein induced chemotaxis of both control and LPS-stimulated peripheral blood leukocytes (PBL) and enhanced their resistance to bacterial infection in a dose-dependent manner. Furthermore, rSsCCL25 showed significant inhibitory effect on V. anguillarum and Edwardsiella tarda growth. All these results collectively indicated that SsCCL25 might contribute to the defense against microbe infection and function as a chemoattractant in black rockfish.
Collapse
Affiliation(s)
- Jingjing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhaoqi Meng
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guanghua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Sun B, Lei Y, Cao Z, Zhou Y, Sun Y, Wu Y, Wang S, Guo W, Liu C. TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 86:525-535. [PMID: 30521967 DOI: 10.1016/j.fsi.2018.11.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
CC chemokines are a large subfamily of chemokines that play an important role in the innate immune system. To date, several CC chemokines have been identified in fish species; however, the activities and functions of these putative chemokines remain ambiguous in teleosts, especially in the golden pompano, Trachinotus ovatus. Here, we characterized CC chemokine ligand 4 from T. ovatus (TroCCL4) and studied its functions. TroCCL4 contains a 294 bp open reading frame that encodes a putative peptide comprising 97 amino acids. TroCCL4 shares a high amino acid sequence similarity of 31.11%-78.35% with other CC chemokines sequences in humans and teleosts and has four cysteine residues that are conserved among other CC chemokines. TroCCL4 is also related to the macrophage inflammatory protein (MIP) group of CC chemokines. TroCCL4 expression was most abundant in immune organs and significantly upregulated in a time-dependent manner following Edwardsiella tarda infection. Recombinant TroCCL4 (rTroCCL4) induced the migration of peripheral blood leukocytes and the cellular proliferation of head kidney lymphocytes. In addition, rTroCCL4 inhibited the growth of Escherichia coli and E. tarda, indicating an antimicrobial function. Furthermore, the results of in vivo analysis showed that TroCCL4 overexpression in T. ovatus significantly enhanced macrophage activation; upregulated the gene expression of interleukin 1-β (IL-1β), interleukin 15 (IL15), interferon-induced Mx protein (Mx), tumor necrosis factor α (TNFα), complement C3, and major histocompatibility complex (MHC) class Iα and class IIα; and protected against bacterial infection in fish tissues. In contrast, knockdown of TroCCL4 expression resulted in increased bacterial dissemination and colonization in fish tissues. Taken together, our results provide evidence indicating that TroCCL4 has the ability to stimulate leukocytes and macrophages and enhance host immunity to defend against bacterial infection.
Collapse
Affiliation(s)
- Baiming Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| |
Collapse
|
7
|
Maekawa S, Wang PC, Chen SC. Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front Immunol 2019; 10:153. [PMID: 30804945 PMCID: PMC6370674 DOI: 10.3389/fimmu.2019.00153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Transcriptome analysis is a powerful tool that enables a deep understanding of complicated physiological pathways, including immune responses. RNA sequencing (RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also been used to study non-model animals, including aquaculture species for which reference genomes are not available. Rapid developments in these techniques have not only accelerated investigations into the process of pathogenic infection and defense strategies in fish, but also used to identify immunity-related genes in fish. These findings will contribute to fish immunotherapy for the prevention and treatment of bacterial infections through the design of more specific and effective immune stimulants, adjuvants, and vaccines. Until now, there has been little information regarding the universality and diversity of immune reactions against pathogenic infection in fish. Therefore, one of the aims of this paper is to introduce the RNA-Seq technique for examination of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of immune responses against bacteria, based on our previous findings in largemouth bass (Micropterus salmoides) against Nocardia seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39 differentially expressed genes (DEGs) were present in all species. However, the number of specific DEGs in each species was relatively higher than that of common DEGs; 493 DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae, 909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in different fish species were also representative of specific immune-related pathways. The results of this study will enhance our understanding of the immune responses of fish, and will aid in the development of effective vaccines, therapies, and disease-resistant strains.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
8
|
Kim KH, Kim WJ, Park CJ, Park JW, Noh GE, Lee S, Lee YM, Kim HC. Analysis of Manifestation of CC and CXC Chemokine Genes in Olive Flounders ( Paralichthys olivaceus) Artificially Infected with VHSV during the Early Developmental Stage. Dev Reprod 2018; 22:341-350. [PMID: 30680333 PMCID: PMC6344357 DOI: 10.12717/dr.2018.22.4.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
Chemokines is a small protein that plays a major role in inflammatory reactions
and viral infections as a chemotactic factor of cytokines involved in innate
immunity. Most of the chemokines belong to the chemokine groups CC and CXC. To
investigate the immune system of the olive flounder (Paralichthys
olivaceus), an expression pattern specifically induced in the early
developmental stages of analysis is examined using qRT-PCR. We also examined
tissue-specific expression of both CC and CXC chemokine in healthy olive
flounder samples. CC and CXC chemokine shows increased expression after
immune-related organs are formed compared to expression during early
development. CC chemokine was more highly expressed in the fin, but CXC
chemokine showed higher expression in the gills, spleen, intestines, and
stomach. Spatial and temporal expression analysis of CC and CXC chemokine were
performed following viral hemorrhagic septicemia virus (VHSV) infection. CC
chemokine showed high expression in the gills, which are respiratory organs,
whereas CXC chemokine was more highly expressed in the kidneys, an
immune-related organ. These results suggest that CC and CXC chemokine play an
important role in the immune response of the olive flounder, and may be used as
basic data for the immunological activity and gene analysis of it as well as
other fish.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Gyeong Eon Noh
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Seunghyung Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geojesi 53334, Korea
| |
Collapse
|
9
|
Oh M, Bathige SDNK, Kim Y, Lee S, Yang H, Kim MJ, Lee J. A CXCL ortholog from Hippocampus abdominalis: Molecular features and functional delineation as a pro-inflammatory chemokine. FISH & SHELLFISH IMMUNOLOGY 2017; 67:218-227. [PMID: 28546023 DOI: 10.1016/j.fsi.2017.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Chemokines are a family of chemotactic cytokines that regulate leukocyte migration. They are classified into four groups namely, CXC, CC, C and CX3C, based on the formation of a disulfide bridge. Among these, CXC chemokines have been identified as the largest group of chemokines in humans. In this study, we identified and functionally characterized a homolog of CXC chemokine from the big-belly seahorse, Hippocampus abdominalis, and designated it as ShCXCL. The cDNA of ShCXCL composed of a 342-bp open reading frame encoding 113 amino acids (aa). The CXC family-specific small cytokine domain (SCY) was identified from the mature peptide region, which comprised of a conserved CXC motif. As ShCXCL lacks an ELR (Glutamic acid-Leucine-Arginine) motif, it belongs to ELR- subfamily. The recombinant ShCXCL protein strongly induced the nitric oxide (NO) production in macrophage cells (RAW 264.7 cell line) and showed the chemotactic effect on flounder peripheral blood leukocytes. Tissue profiling showed a ubiquitous expression pattern in all examined tissues, with a high abundance in spleen. The up-regulated mRNA expression pattern of ShCXCL was observed in blood and kidney tissues after immune stimulation by live bacteria, such as Streptococcus iniae and Edwardsiella tarda, and mitogens, such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly I:C), suggesting its important role in host immune defense against microbial infection.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Yucheol Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
10
|
Sathyamoorthi A, Bhatt P, Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Arockiaraj J. Gene expression and in silico analysis of snakehead murrel interleukin 8 and antimicrobial activity of C-terminal derived peptide WS12. Vet Immunol Immunopathol 2017; 190:1-9. [PMID: 28778316 DOI: 10.1016/j.vetimm.2017.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Chemokines have been known for their wide range of functions including chemoattractant property in humans and other vertebrate organisms. They act as a bridge between innate and adaptive immune system. In the present study, we have identified a CXC chemokine from the cDNA library of C. striatus; on the basis of orthology study, it was found highly identical to interleukin 8 (IL8). The bioinformatics analysis of the chemokine revealed the presence of a typical γ-core domain and a CXC motif at the N-terminal region of the molecule. Based on the amphipathic nature at the C terminal helical region of CstIL8 and their antimicrobial propensity observed during bioinformatics analysis, a short peptide namely WS12 comprising 12 amino acid residues was predicted and synthesized to determine its antimicrobial activity. The peptide WS12 was active against Bacillus cereus, a Gram positive bacterium. Scanning electron microscopy (SEM) results showed bleb-like formation on the surface of the bacteria after the treatment of WS12. Additionally, WS12 did not exhibit any cytotoxic activity against the fish leukocytes. Further, the gene expression studies also revealed that CstIL8 was expressed significantly in liver of Channa striatus (Cst) at basal level. The immune challenge studies with pathogens and immune-stimulants revealed an increase in the mRNA levels at different time points post-challenge. Hence, it is possible to conclude that WS12 was a potent antimicrobial agent and it was significantly expressed during the pathogen stress.
Collapse
Affiliation(s)
- Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, Chennai 603 203, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Xu J, Zhao J, Li Y, Zou Y, Lu B, Chen Y, Ma Y, Xu H. Evaluation of differentially expressed immune-related genes in intestine of Pelodiscus sinensis after intragastric challenge with lipopolysaccharide based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 56:417-426. [PMID: 27475104 DOI: 10.1016/j.fsi.2016.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Pelodiscus sinensis is the most common turtle species that has been raised in East and Southeast Asia. However, there are still limited studies about the immune defense mechanisms in its small intestine until now. In the present research, histological analysis and transcriptome analysis was performed on the small intestine of P. sinensis after intragastric challenge with LPS to explore its mechanisms of immune responses to pathogens. The result showed the number of intraepithelial lymphocytes (IELs) and goblet cells (GCs) in its intestine increased significantly at 48 h post-challenge with LPS by intragastrical route, indicating clearly the intestinal immune response was induced. Compared with the control, a total of 748 differentially expressed genes (DEGs) were identified, including 361 up-regulated genes and 387 down-regulated genes. Based on the Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG), 48 immune-related DEGs were identified, which were classified into 82 GO terms and 14 pathways. Finally, 18 DEGs, which were randomly selected, were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide valuable information for further analysis of the immune defense mechanisms against pathogens in the small intestine of P. sinensis.
Collapse
Affiliation(s)
- Jiehao Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jing Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yiqun Li
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yiyi Zou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Binjie Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Youzhi Ma
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
12
|
Nakharuthai C, Areechon N, Srisapoome P. Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:207-228. [PMID: 26853931 DOI: 10.1016/j.dci.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Two full-length cDNAs encoding CC chemokine genes in Nile tilapia (Oreochromis niloticus) (On-CC1 and On-CC2) were cloned and characterized. On-CC1 and On-CC2 showed signature cysteine motifs consisting of four cysteines. The expression levels of On-CC1 and On-CC2 were analyzed by RT-PCR, which showed that low expression of these two genes was only observed in the peripheral blood leukocytes (PBLs) and spleen of normal fish. Expression levels of these two molecules were quantified in 13 tissues of fish infected with virulent strains of Streptococcus agalactiae and Flavobacterium columnare. Most tissues, especially PBLs, the spleen and the liver, expressed significantly higher mRNA levels than the controls, particularly at 12 and 24 h after infection (P < 0.05). The current study strongly indicates that CC chemokine genes in Nile tilapia are crucially involved in the early immune responses to pathogens. Functional analyses clearly demonstrated that 10 and 100 μg/ml of recombinant rOn-CC1 and rOn-CC2 proteins efficiently enhanced the phagocytic activity (in vitro) of Nile tilapia phagocytes. Finally, Southern blot analysis and searching in Ensembl databases demonstrated that two different functional CC chemokine genes and other pseudogene fragments were discovered in the Nile tilapia genome.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Nontawith Areechon
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
13
|
Wang L, Zhang YZ, Xu WT, Jia XD, Chen SL. Molecular cloning, structure and expressional profiles of two novel single-exon genes (PoCCR6A and PoCCR6B) in the Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 52:179-188. [PMID: 26997201 DOI: 10.1016/j.fsi.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
CCR6 is an important binding receptor of CCL20 and beta-defensins, and has multiple functions in the innate and acquired immune responses. In this study, we cloned the PoCCR6A and PoCCR6B genes of the Japanese flounder and studied the gene structure and expression patterns of these two genes in bacterial infection. The full-length PoCCR6A cDNA is 1415 bp and the open reading frame (ORF) is 1113 bp, encoding a 370-amino-acid peptide. The full-length PoCCR6B cDNA is 2193 bp and the ORF is 1029 bp, encoding a 363-amino-acid peptide. The structures of PoCCR6A and PoCCR6B indicate that they are single-exon genes. The predicted proteins encoded by PoCCR6A and PoCCR6B have the typical G-protein-coupled receptor (GPCR) family signature of seven transmembrane domains and several conserved structural features. A tissue distribution analysis showed that PoCCR6A is predominately expressed in the intestine, gill, and blood, and PoCCR6B in the gill, spleen, and liver. The expression patterns of the two chemokine receptors were analyzed during bacterial infection. In spleen and kidney, the expression of PoCCR6A was significantly upregulated at 24 h after infection, whereas the expression of PoCCR6B was steady at these time points. While in intestine, both of them were upregulated at 6 h-12 h after infection, and in gill the expression levels of them were upregulated at 24 h. The patterns of expression suggested that PoCCR6A and PoCCR6B play an important role in the immune response of the Japanese flounder, especially in the mucosal tissues.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Yong-zhen Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Wen-teng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Xiao-dong Jia
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Song-lin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| |
Collapse
|
14
|
Hao LX, Li MF. Molecular characterization and expression analysis of nine CC chemokines in half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:717-724. [PMID: 26470888 DOI: 10.1016/j.fsi.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a large, diverse group of small cytokines that can be classified into several families, including the CC chemokine family, which plays a pivotal role in host defense by inducing leukocyte chemotaxis under physiological and inflammatory conditions. Here we studied 9 CC chemokines from half-smooth tongue sole (Cynoglossus semilaevis). Phylogenetic analysis divided these chemokines into four groups. The tissue specific expression patterns of the 9 chemokines under normal physiological conditions varied much, with most chemokines highly expressed in immune organs, while some other chemokines showing high expression levels in non-immune organs. In addition, the 9 chemokines exhibited similar or distinctly different expression profiles in response to the challenge of virus and intracellular and extracellular bacterial pathogens. These results indicate that in tongue sole, CC chemokines may be involved in different immune responses as homeostatic or inflammatory chemokines.
Collapse
Affiliation(s)
- Lian-xu Hao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Bird S, Tafalla C. Teleost Chemokines and Their Receptors. BIOLOGY 2015; 4:756-84. [PMID: 26569324 PMCID: PMC4690017 DOI: 10.3390/biology4040756] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Daniorerio), rainbow trout (Oncorhynchusmykiss) and catfish (Ictaluruspunctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.
Collapse
Affiliation(s)
- Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Waikato 3240, New Zealand.
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, Madrid 28130, Spain.
| |
Collapse
|
16
|
Wang MQ, Chi H, Li MF. A CCL21 chemokine of tongue sole (Cynoglossus semilaevis) promotes host resistance against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:461-469. [PMID: 26416599 DOI: 10.1016/j.fsi.2015.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a large family of chemotactic cytokines. Based on the arrangement of the first two cysteine residues, chemokines are divided into four groups, one of which is the CC chemokine group. In this study, we characterized a CC chemokine, CsCCL21, from half-smooth tongue sole (Cynoglossus semilaevis), and analyzed its activity. CsCCL21 contains two conserved N-terminal cysteine residues in a NCCL motif and is phylogenetically related to the CCL19/21/25 subgroup of CC chemokines. CsCCL21 was constitutively expressed in nine tissues and significantly upregulated by bacterial and viral infection. The recombinant CsCCL21 (rCsCCL21) induced migration of peripheral blood leukocytes. When the two conserved cysteine residues in the NCCL motif were mutated, the chemotactic activity of rCsCCL21 was abolished. rCsCCL21 enhanced the resistance of tongue sole against bacterial infection, but the mutant protein with NCCL mutation lacked this antibacterial effect. Taken together, these results suggest that CsCCL21 is a functional CC chemokine with the ability to recruit leukocytes and is involved in antibacterial immunity in a manner that requires the conserved NCCL motif.
Collapse
Affiliation(s)
- Ming-qing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Arockiaraj J, Bhatt P, Harikrishnan R, Arasu MV, Al-Dhabi NA. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:817-827. [PMID: 26057460 DOI: 10.1016/j.fsi.2015.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/21/2023]
Abstract
In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P < 0.05) highest CsCC-Chem19 mRNA expression was observed in blood and it was up-regulated upon fungus and bacterial infection. Utilizing the coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Zou GG, Nozaki R, Kondo H, Hirono I. Cloning and expression analysis of three novel CC chemokine genes from Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:507-13. [PMID: 25123833 DOI: 10.1016/j.fsi.2014.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 08/03/2014] [Indexed: 05/21/2023]
Abstract
Chemokines are small cytokines secreted by various cell types. They not only function in cell activation, differentiation and trafficking, but they also have influences on many biological processes. In this study, three novel CC chemokine genes Paol-SCYA105, 106 and 107 in Japanese flounder (Paralichthys olivaceus) were cloned and characterized. Paol-SCYA105 was mainly detected in gill, kidney and spleen, Paol-SCYA106 was detected in all tissues examined and Paol-SCYA107 was mainly detected in the spleen and kidney. Paol-SCYA105 and Paol-SCYA106 gene expressions peaked in kidney at day 3 after viral hemorrhagic septicemia virus infection and decreased at day 6, but Paol-SCYA106 still remained at a high level at day 6. Paol-SCYA107 gene expression was significantly up-regulated in kidney at day 6 after viral hemorrhagic septicemia virus infection. In response to infection by Gram-negative Edwardsiella tarda and Gram-positive Streptococcus iniae in kidney, only Paol-SCYA106 gene expression significantly increased. Together, these results indicate that these three novel CC chemokines are involved in the immune response against pathogen infections.
Collapse
Affiliation(s)
- Gang-gang Zou
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo 108-8477, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo 108-8477, Japan.
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo 108-8477, Japan
| |
Collapse
|
19
|
Bhatt P, Kumaresan V, Palanisamy R, Chaurasia MK, Gnanam AJ, Pasupuleti M, Arockiaraj J. Immunological role of C4 CC chemokine-1 from snakehead murrel Channa striatus. Mol Immunol 2014; 57:292-301. [PMID: 24231766 DOI: 10.1016/j.molimm.2013.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
In this study, we have reported a cDNA sequence of C4 CC chemokine identified from snakehead murrel (also known as striped murrel) Channa striatus (named as CsCC-Chem-1) normalized cDNA library constructed by Genome Sequencing FLX™ Technology (GS-FLX™). CsCC-Chem-1 is 641 base pairs (bp) long that contain 438 bp open reading frame (ORF). The ORF encodes a polypeptide of 146 amino acids with a molecular mass of 15 kDa. The polypeptide contains a small cytokine domain at 30-88. The domain carries the CC motif at Cys(33)-Cys(34). In addition, CsCC-Chem-1 consists of another two cysteine residues at C(59) and C(73), which, together with C(33) and C(34), make CsCC-Chem-1 as a C4-CC chemokine. CsCC-Chem-1 also contains a 'TCCT' motif at 32-35 as CC signature motif; this new motif may represent new characteristic features, which may lead to some unknown function that needs to be further focused on. Phylogenitically, CsCC-Chem-1 clustered together with CC-Chem-1 from rock bream Oplegnathus fasciatus and European sea bass Dicentrarchus labrax. Significantly (P<0.05) highest gene expression was noticed in spleen and is up-regulated upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and virus (poly I:C) infection at various time points. The gene expression results indicate the influence of CsCC-Chem-1 in the immune system of murrel. Overall, the gene expression study showed that the CsCC-Chem-1 is a capable gene to increase the cellular response against various microbial infections. Further, we cloned the coding sequence of CsCC-Chem-1 in pMAL vector and purified the recombinant protein to study the functional properties. The cell proliferation activity of recombinant CsCC-Chem-1 protein showed a significant metabolic activity in a concentration dependent manner. Moreover, the chemotaxis assay showed the capability of recombinant CsCC-Chem-1 protein which can induce the migration of spleen leukocytes in C. striatus. However, this remains to be verified further at molecular and proteomic level.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Hsu YJ, Hou CY, Lin SJ, Kuo WC, Lin HT, Lin JHY. The biofunction of orange-spotted grouper (Epinephelus coioides) CC chemokine ligand 4 (CCL4) in innate and adaptive immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1891-1898. [PMID: 24120504 DOI: 10.1016/j.fsi.2013.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
CC chemokine (motif) ligand 4 (CCL4) is indispensable to the chemoattraction of macrophages, natural killer cells, and lymphocytes in mammals; however, it has only been cloned in a limited number of fish species and information related to its biofunction remains ambiguous with regard to teleosts. To explore the role of teleost CCL4, we first evaluated the mRNA expression of the Epinephelus coioides CCL4 (gCCL4) gene in various organs under LPS and poly (I:C) stimulated; secondary, we evaluated the immune-related genes expression of fish under the recombinant gCCL4 protein stimulated. Our results revealed an increase in the mRNA of gCCL4 in immune organs immediately following stimulation by poly (I:C); however, in LPS stimulated fish, the expression did not increase until nearly 24 h after induction. In biofunction assays, recombinant gCCL4 was found to induce chemotactic activity in the peripheral blood leukocytes of groupers and up-regulate the gene expressions of grouper TNFA1 (TNF-α1), TNFA2 (TNF-α2), IFNG (IFN-γ), MX, TBX21 (T-bet), CD8 (α and β chain). These findings indicate that grouper CCL4 attracts leukocytes, induces an inflammatory response, and drives lymphocyte differentiation into the Th1 pathway.
Collapse
Affiliation(s)
- Yi-Jiou Hsu
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Chen C, Hu YH, Xiao ZZ, Sun L. SmCCL19, a CC chemokine of turbot Scophthalmus maximus, induces leukocyte trafficking and promotes anti-viral and anti-bacterial defense. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1677-82. [PMID: 24012750 DOI: 10.1016/j.fsi.2013.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 05/21/2023]
Abstract
Chemokines are classified into several different subfamilies, of which CC chemokines constitute the largest subfamily in teleost. The prominent structural characteristic of CC chemokines is the presence of an Asp-Cys-Cys-Leu (DCCL) motif. To date, cDNA sequences of several CC chemokines have been identified in turbot (Scophthalmus maximus), however, the activity and function of these putative chemokines remain unknown. In this study, we examined the biological effect of the turbot CC chemokine SmCCL19, which has been previously reported as KC70 and shown to be regulated in expression by bacterial infection. To facilitate functional analysis, recombinant SmCCL19 (rSmCCL19) and a mutant form of SmCCL19, SmCCL19M, that bears serine substitutions at the two cysteine residues of the DCCL motif were purified from Escherichia coli. Chemotactic analysis showed that rSmCCL19 induced migration of head kidney leukocytes in a dose-dependent manner, whereas rSmCCL19M caused no apparent cellular migration. To examine the in vivo effect of rSmCCL19, turbot were administered with rSmCCL19 or rSmCCL19M before being inoculated with viral and bacterial pathogens. Subsequent tissue infection analysis showed that the viral and bacterial loads in rSmCCL19-adminsitered fish were significantly reduced, whereas the pathogen loads in rSmCCL19M-adminsitered fish were largely comparable to those in the control fish. Consistent with these observations, significant inductions of immune relevant genes were observed in rSmCCL19-adminsitered fish but not in rSmCCL19M-adminsitered fish. Taken together, these results indicate that SmCCL19 recruits leukocytes and augments host immune defense in a manner that depends on the conserved DCCL motif.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
22
|
Kim JW, Kim EG, Kim DH, Shim SH, Park CI. Molecular characterisation and biological activity of a novel CXC chemokine gene in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1103-1111. [PMID: 23376472 DOI: 10.1016/j.fsi.2013.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 06/01/2023]
Abstract
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues. In mammals, these cytokines can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in the sequence, and include the CXC(α), CC(β), C(γ), and CX3C(δ) classes. We identified CXC chemokine cDNA, designated RbCXC, isolated using expressed sequence tag analysis of a lipopolysaccharide (LPS)-stimulated rock bream liver cDNA library. The full-length RbCXC cDNA (742 bp) contained an open reading frame of 342 bp encoding 114 amino acids. Results from phylogenetic analysis showed that RbCXC was strictly separated into a distinct clade compared to other known CXC chemokine subgroups. RbCXC was significantly expressed in the trunk kidney, liver, spleen, gill, peripheral blood leukocytes (PBLs), and head kidney. Rock bream PBLs were stimulated with several mitogens, including LPS and polyinosinic-polycytidylic acid (poly I:C), which significantly induced the expression of RbCXC mRNA. RbCXC mRNA expression was examined in several tissues under conditions of bacterial and viral challenge. Experimental challenges revealed that all examined tissues from fish infected with Edwardsiella tarda and red sea bream iridovirus showed significant increases in RbCXC expression compared to the control. In the case of Streptococcus iniae infection, RbCXC mRNA expression was markedly upregulated in the kidney, spleen, and liver. In addition, a maltose binding protein fusion recombinant RbCXC (~53 kDa) was produced in an Escherichia coli expression system and purified. Subsequently, the addition of purified recombinant RbCXC (rRbCXC) to kidney leukocytes was examined to investigate the impact of proliferative and chemotactic activity. The rRbCXC induced significant kidney leukocyte proliferation and attraction at concentrations ranging from 10 to 300 μg/mL, suggesting that it can be utilised as an immune stimulant and/or molecular adjuvant to enhance the immunological effects of vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chemokines, CXC/chemistry
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Enterobacteriaceae/physiology
- Expressed Sequence Tags
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Fish Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Gene Library
- Injections, Intraperitoneal/veterinary
- Iridoviridae/immunology
- Iridoviridae/physiology
- Lipopolysaccharides/immunology
- Molecular Sequence Data
- Open Reading Frames
- Organ Specificity
- Perciformes/genetics
- Perciformes/immunology
- Perciformes/metabolism
- Phylogeny
- Poly I-C/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sequence Alignment
- Streptococcus/physiology
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, Tongyong, Gyeongnam 650-160, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Kim JW, Kim EG, Kim DH, Shim SH, Park CI. Molecular identification and expression analysis of the CC chemokine gene in rock bream (Oplegnathus fasciatus) and the biological activity of the recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2013; 34:892-901. [PMID: 23357024 DOI: 10.1016/j.fsi.2012.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
We identified the CC chemokine cDNA designated as RbCC1 (CC chemokine 1 in rock bream, Oplegnathus fasciatus), which was isolated using expressed sequence tag (EST) analysis of a lipopolysaccharide (LPS)-stimulated rock bream liver cDNA library. The full-length RbCC1 cDNA (850 bp) contained an open reading frame (ORF) of 366 bp encoding 122 amino acids. Results from our phylogenetic analysis demonstrated that the RbCC1 was closest relationship to the orange-spotted grouper and Mi-iyu croaker CC chemokines located within the fish CC chemokine group. RbCC1 was significantly expressed in the intestine, spleen, liver, and PBLs (peripheral blood leukocytes). Rock bream PBLs were stimulated with several mitogens, LPS and Con A/PMA which significantly induced the expression of RbCC1 mRNA in the PBLs. The RbCC1 mRNA expression in several tissues under conditions of bacterial and viral challenge was examined. The experimental challenge revealed that the kidney and spleen of fish infected with Streptococcus iniae showed the most significant increases in RbCC1 expression compared to the control. In the case of RSIV infection, the RbCC1 mRNA expression was markedly up-regulated in the liver. In this study, recombinant RbCC1 (approximately 53 kDa) was produced using an Escherichia coli expression system followed by purification. Subsequently, the addition of purified rRbCC1 was examined to investigate the impact on the proliferative and chemotactic activity on kidney leukocytes from rock bream. The results demonstrated that the rRbCC1 induces significant biological activity on kidney leukocyte proliferation and attraction at concentrations in the range of 10-300 μg/mL and suggests that rRbCC1 could be utilized as an immune-stimulant and/or molecular adjuvant to enhance the immune effects of vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chemokines, CC/chemistry
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Cloning, Molecular
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Expressed Sequence Tags
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Fish Proteins/metabolism
- Gene Expression Profiling/veterinary
- Gene Expression Regulation
- Gene Library
- Injections, Intraperitoneal/veterinary
- Iridoviridae/immunology
- Lipopolysaccharides/immunology
- Molecular Sequence Data
- Open Reading Frames
- Organ Specificity
- Perciformes/genetics
- Perciformes/immunology
- Perciformes/metabolism
- Perciformes/microbiology
- Phylogeny
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction/veterinary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sequence Alignment/veterinary
- Streptococcus/immunology
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455 Tongyong, Gyeongnam 650-160, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Cheng Y, Sun Y, Shi G, Wang R, Xu T. Molecular cloning, characterization and expression analysis of a CC chemokine gene from miiuy croaker (Miichthys miiuy). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1697-1708. [PMID: 22736236 DOI: 10.1007/s10695-012-9665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Chemokines are a family of structurally related chemotactic cytokines that regulate the migration of leukocytes, under both physiological and inflammatory conditions. A partial cDNA of CC chemokine gene designed as Mimi-CC3 was isolated from miiuy croaker (Miichthys miiuy) spleen cDNA library. Unknown 3' part of the cDNA was amplified by 3'-RACE. The complete cDNA of Mimi-CC3 contains an 89-nt 5'-UTR, a 303-nt open reading frame and a 441-nt 3'-UTR. Three exons and two introns were identified in Mimi-CC3. The deduced Mimi-CC3 protein sequences contain a 22 amino acids signal peptide and a 78 amino acids mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CC chemokines. It shares low amino acid sequence identities with most other fish and mammalian CC chemokines (less than 54.1 %), but shares very high identities with large yellow croaker CC chemokine (94.6 %). Phylogenetic analysis showed that Mimi-CC3 gene may have an orthologous relationship with mammalian/amphibian CCL25 gene. Tissue expression distributed analysis showed that Mimi-CC3 gene was constitutively expressed in all nine tissues examined, although at different levels. Upon stimulated with Vibrio anguillarum, the time-course analysis using a real-time PCR showed that Mimi-CC3 transcript in kidney and liver was obviously up-regulated and reached the peak levels, followed by a recovery. Mimi-CC3 expression in kidney was more strongly increased than in liver. However, down-regulation was observed in spleen. These results indicated that Mimi-CC3 plays important roles in miiuy croaker immune response as well as in homeostatic mechanisms.
Collapse
Affiliation(s)
- Yuanzhi Cheng
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, People's Republic of China
| | - Yuena Sun
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, People's Republic of China.
| | - Ge Shi
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, People's Republic of China
| | - Rixin Wang
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, People's Republic of China
| | - Tianjun Xu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, People's Republic of China.
| |
Collapse
|
25
|
Alejo A, Tafalla C. Chemokines in teleost fish species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1215-22. [PMID: 21414348 DOI: 10.1016/j.dci.2011.03.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 03/06/2011] [Indexed: 05/21/2023]
Abstract
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130 Madrid, Spain
| | | |
Collapse
|
26
|
Li YX, Sun JS, Sun L. An inflammatory CC chemokine of Cynoglossus semilaevis is involved in immune defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:446-52. [PMID: 21723394 DOI: 10.1016/j.fsi.2011.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/13/2011] [Accepted: 06/19/2011] [Indexed: 05/21/2023]
Abstract
Chemokines are a family of small cytokines that regulate leukocyte migration. Based on the arrangement of the first two cysteine residues, chemokines are classified into four groups called CXC(α), CC(β), C, and CX(3)C. In this study, we identified a CC chemokine, CsCCK1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its biological activity. The deduced amino acid sequence of CsCCK1 contains 111 amino acid residues and is phylogenetically belonging to the CCL19/21/25 group of CC chemokines. CsCCK1 possesses a DCCL motif that is highly conserved among CC chemokines. Quantitative real time RT-PCR analysis showed that the expression of CsCCK1 was relatively abundant in immune organs under normal physiological conditions and was upregulated by experimental infection of a bacterial pathogen. Purified recombinant CsCCK1 (rCsCCK1) induced chemotaxis in peripheral blood leukocytes (PBL) of both tongue sole and turbot (Scophthalmus maximus) in a dose-dependent manner. Mutation of the CC residues in the DCCL motif by serine substitution completely abolished the biological activity of rCsCCK1. When rCsCCK1, but not the mutant protein, was added to the cell culture of PBL, it enhanced cellular resistance against intracellular bacterial infection. Taken together, these results indicate that CsCCK1 is a functional CC chemokine whose biological activity depends on the DCCL motif and that CsCCK1 plays a role in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Yong-xin Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | |
Collapse
|
27
|
Chen SL, Liu Y, Dong XL, Meng L. Cloning, characterization, and expression analysis of a CC chemokine gene from turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:147-155. [PMID: 20467856 DOI: 10.1007/s10695-008-9218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/30/2008] [Indexed: 05/29/2023]
Abstract
The chemokines are a superfamily of chemotactic cytokines playing an important role in leukocyte chemotaxis. Here, a turbot head kidney cDNA library was constructed in which KC70 was identified as a CC chemokine. Unknown 5' and 3' parts of the cDNA were amplified by 5' and 3' rapid amplification of cDNA ends (RACE). The complete cDNA of KC70 contains a 59-bp 5' UTR, a 336-bp ORF, and a 152-bp 3' UTR. Four exons and three introns were identified in KC70. Phylogenetic analysis showed that KC70 was similar to CCL19. In normal turbot KC70 was expressed in all tissues except brain and skin. Infection of turbot with pathogenic bacteria significantly increased expression of KC70 in the liver. Expression of KC70 in head kidney first increased and then decreased after bacterial challenge. No significant change was observed in the spleen after bacterial challenge. During embryonic development, KC70 was highly expressed after the gastrula stage. These results indicated KC70 plays important and multiple roles in turbot immune response.
Collapse
Affiliation(s)
- S L Chen
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Nanjing Road 106, Qingdao 266071, China.
| | | | | | | |
Collapse
|
28
|
Cuesta A, Dios S, Figueras A, Novoa B, Esteban M, Meseguer J, Tafalla C. Identification of six novel CC chemokines in gilthead seabream (Sparus aurata) implicated in the antiviral immune response. Mol Immunol 2010; 47:1235-43. [DOI: 10.1016/j.molimm.2009.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
|
29
|
Peatman E, Liu Z. Evolution of CC chemokines in teleost fish: a case study in gene duplication and implications for immune diversity. Immunogenetics 2007; 59:613-23. [PMID: 17541578 DOI: 10.1007/s00251-007-0228-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 01/26/2023]
Abstract
Chemokines are a superfamily of cytokines responsible for regulating cell migration under both inflammatory and physiological conditions. CC chemokines are the largest subfamily of chemokines, with 28 members in humans. A subject of intense study in mammalian species, the known functional roles of CC chemokines ligands in both developmental and disease conditions continue to expand. They are also an important family for the study of gene copy number variation and tandem duplication in mammalian species. However, little is known regarding the evolutionary origin and status of these ligands in primitive vertebrates such as teleost fish. In this paper, we review the evolution of the teleost fish CC chemokine gene family, noting evidence of widespread tandem gene duplications and examining the implications of this phenomenon on immune diversity. Through extensive phylogenetic analysis of the CC chemokine sets of four teleost species, zebrafish, catfish, rainbow trout, and Atlantic salmon, we identified seven large groups of CC chemokines. It appeared that several major groups of CC chemokines are highly related including the CCL19/21/25 group, the CCL20 group, CCL27/28 group, and the fish-specific group. In the three remaining groups that contained the largest number of members, the CCL17/22 group, the MIP group, and the MCP group, similarities among species members were obscured by rapid, tandem duplications that may contribute to immune diversity.
Collapse
Affiliation(s)
- Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | |
Collapse
|
30
|
Savan R, Sakai M. Genomics of fish cytokines. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:89-101. [DOI: 10.1016/j.cbd.2005.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/27/2022]
|
31
|
Bao B, Peatman E, Peng X, Baoprasertkul P, Wang G, Liu Z. Characterization of 23 CC chemokine genes and analysis of their expression in channel catfish (Ictalurus punctatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:783-96. [PMID: 16510183 DOI: 10.1016/j.dci.2005.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 05/06/2023]
Abstract
Chemokines are a large family of chemotactic cytokines playing crucial roles in the innate immune response. CC chemokines constitute the largest subfamily of chemokines, with 28 CC chemokines identified from mammalian species. However, the status of CC chemokines in teleosts is yet to be determined. We previously identified 26 catfish CC chemokine cDNAs from catfish. In this study, we isolated and sequenced 23 channel catfish CC chemokine genes amounting to a total of over 56 kb of genomic sequences. Genomic organization of the 23 CC chemokine genes was determined by comparing the generated genomic sequences with the previously identified cDNA sequences. Microsatellites were identified from 16 catfish CC chemokine genes allowing them to be utilized for genome mapping. Structural analysis indicated conservation of genomic organization of CC chemokine genes, which may facilitate the establishment of orthologies. Expression of all known catfish CC chemokine transcripts was assessed in nine important tissues. Of the 26 catfish CC chemokine genes, 14 were universally expressed, six were widely expressed in many tissues, while six were highly tissue-specific.
Collapse
Affiliation(s)
- Baolong Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
32
|
Peatman E, Bao B, Baoprasertkul P, Liu Z. In silico identification and expression analysis of 12 novel CC chemokines in catfish. Immunogenetics 2005; 57:409-19. [PMID: 16001127 DOI: 10.1007/s00251-005-0006-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Chemokines, a superfamily of chemotactic cytokines involved in recruitment, activation, and adhesion of a variety of leukocyte types to inflammatory foci, are a crucial component of the immune system of Sarcopterygiian vertebrates. Although all mammalian chemokines are believed to have been found, the status of these molecules in Actinopterygii was unknown until recently. The identification of chemokines in fish species has been complicated by low sequence conservation and confusion over expected numbers. Earlier discoveries of single fish chemokines coupled with rapidly expanding genetic resources in these species have recently provided a foundation for large-scale in silico discoveries of these important immune regulators. We report here the identification and expression analysis of 12 new CC chemokine sequences from catfish. When added to our previous report of 14 catfish CC chemokines, the number of CC chemokines in catfish now stands at 26, two more than known from humans. Establishing orthologous relationships among the majority of catfish CC chemokines, a newly available set of chicken CC chemokines, and their mammalian counterparts remain difficult, suggesting high levels of duplication and divergence within individual species.
Collapse
Affiliation(s)
- Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL, 36849, USA
| | | | | | | |
Collapse
|
33
|
Inoue Y, Saito T, Endo M, Haruta C, Nakai T, Moritomo T, Nakanishi T. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) CC chemokine cDNAs by use of suppression subtractive hybridization. Immunogenetics 2004; 56:722-34. [PMID: 15592825 DOI: 10.1007/s00251-004-0730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Suppression subtractive hybridization was carried out by using cDNAs of peripheral white blood cells (PWBCs) of banded dogfish (Triakis scyllia) after phorbol 12-myristate 13-acetate (PMA) stimulation. The Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 clones contained an open reading frame encoding 97, 99 and 97 amino acids, respectively. Comparison of the deduced amino acids showed that the banded dogfish MIP3alpha1 and MIP3alpha2 sequences shared 42.3% and 40.0% identity with human SCYA20, respectively, while the Trsc-SCYA107 sequence shared 50.6, 44.2 and 42.0% identity with the catshark (Scyliorhinus canicula) Scca-SCYA107, rainbow trout (Oncorhynchus mykiss) CK4A and CK4B, respectively. The genomic sequences of banded dogfish Trsc-SCYA107, MIP3alpha1 and MIP3alpha2 contain four exons and three introns, and MIP3alpha1 and MIP3alpha2 shared the same intron/exon organization with that of human. The MIP3alpha1 and MIP3alpha2 genes of lipopolysaccharide (LPS)-unstimulated banded dogfish were expressed in gill, kidney and liver, while Trsc-SCYA107 mRNA was detected in various tissues except for brain. However, the constitutive expression of MIP3alpha2 gene was much lower than the Trsc-SCYA107 and MIP3alpha1 genes. RT-PCR analysis of the Trsc-SCYA107 expression in tissues of LPS-stimulated fish showed enhanced expression at 24 h poststimulation in the gill, heart, leydig, spleen and testes, while the expression of MIP3alpha1 and MIP3alpha2 was not influenced by LPS-stimulation in vivo. Furthermore, a relative increase in the expression of the Trsc-SCYA107 and MIP3alpha2 genes in PWBCs was observed at 1-12 h poststimulation with PMA and LPS, with maximal expression observed at 3 h, while MIP3alpha1 expression was observed at 3-12 h poststimulation only with PMA.
Collapse
Affiliation(s)
- Yuuki Inoue
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|