1
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Meyer S, Handke D, Mueller A, Biehl K, Kreuz M, Bukur J, Koehl U, Lazaridou MF, Berneburg M, Steven A, Massa C, Seliger B. Distinct Molecular Mechanisms of Altered HLA Class II Expression in Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153907. [PMID: 34359808 PMCID: PMC8345549 DOI: 10.3390/cancers13153907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) class II molecules are constitutively expressed in some melanoma, but the underlying molecular mechanisms have not yet been characterized. METHODS The expression of HLA class II antigen processing machinery (APM) components was determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry. Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to tumor grading, T-cell infiltration and patients' survival. RESULTS The heterogeneous HLA class II expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma (IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ; phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug tested. High levels of HLA class II APM component expression were associated with an increased intra-tumoral CD4+ T-cell density and increased patients' survival. CONCLUSIONS The heterogeneous basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by distinct molecular mechanisms and has clinical relevance.
Collapse
Affiliation(s)
- Stefanie Meyer
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Mark Berneburg
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
3
|
Reva BA, Omelchenko T, Nair SS, Tewari AK. Immune Escape in Prostate Cancer: Known and Predicted Mechanisms and Targets. Urol Clin North Am 2021; 47:e9-e16. [PMID: 33446324 DOI: 10.1016/j.ucl.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complex immune evasion mechanisms and lack of biomarkers predicting responsiveness to immune checkpoint blockade therapies compromise immunotherapy's therapeutic efficacy for patients with prostate cancer. The authors review established and nominated immune evasion mechanisms in prostate cancer and discuss how the precise treatment strategies can be developed to improve efficacy of immunotherapy.
Collapse
Affiliation(s)
- Boris A Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujit S Nair
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| | - Ashutosh K Tewari
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| |
Collapse
|
4
|
Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol 2019; 16:549-562. [PMID: 30967646 PMCID: PMC7185899 DOI: 10.1038/s41571-019-0204-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted therapy and immunotherapy have greatly improved the prognosis of patients with metastatic melanoma, but resistance to these therapeutic modalities limits the percentage of patients with long-lasting responses. Accumulating evidence indicates that a persisting subpopulation of melanoma cells contributes to resistance to targeted therapy or immunotherapy, even in patients who initially have a therapeutic response; however, the root mechanism of resistance remains elusive. To address this problem, we propose a new model, in which dynamic fluctuations of protein expression at the single-cell level and longitudinal reshaping of the cellular state at the cell-population level explain the whole process of therapeutic resistance development. Conceptually, we focused on two different pivotal signalling pathways (mediated by microphthalmia-associated transcription factor (MITF) and IFNγ) to construct the evolving trajectories of melanoma and described each of the cell states. Accordingly, the development of therapeutic resistance could be divided into three main phases: early survival of cell populations, reversal of senescence, and the establishment of new homeostatic states and development of irreversible resistance. On the basis of existing data, we propose future directions in both translational research and the design of therapeutic strategies that incorporate this emerging understanding of resistance.
Collapse
Affiliation(s)
- Xue Bai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - David E Fisher
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Abstract
HLA class II molecules play a pivotal role in antigen presentation to T lymphocytes. This chapter analyzed the expression of these molecules in different human tumors and their role in cancer progression. The possible connection between tumor HLA class II expression and the pathogenesis of autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
7
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|
8
|
Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, Vilgelm AE, Feld E, Johnson AS, Greenplate AR, Sanders ME, Lovly CM, Frederick DT, Kelley MC, Richmond A, Irish JM, Shyr Y, Sullivan RJ, Puzanov I, Sosman JA, Balko JM. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 2016; 7:10582. [PMID: 26822383 PMCID: PMC4740184 DOI: 10.1038/ncomms10582] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Anti-PD-1 therapy yields objective clinical responses in 30-40% of advanced melanoma patients. Since most patients do not respond, predictive biomarkers to guide treatment selection are needed. We hypothesize that MHC-I/II expression is required for tumour antigen presentation and may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using pathway analysis, we show that MHC-II(+) cell lines demonstrate signatures of 'PD-1 signalling', 'allograft rejection' and 'T-cell receptor signalling', among others. In two independent cohorts of anti-PD-1-treated melanoma patients, MHC-II positivity on tumour cells is associated with therapeutic response, progression-free and overall survival, as well as CD4(+) and CD8(+) tumour infiltrate. MHC-II(+) tumours can be identified by melanoma-specific immunohistochemistry using commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection.
Collapse
Affiliation(s)
- Douglas B. Johnson
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,
| | - Monica V. Estrada
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Roberto Salgado
- Department of Pathology, Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Boulevard de Waterloo 121, Brussels 1000, Belgium
| | - Violeta Sanchez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Deon B. Doxie
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Anna E. Vilgelm
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Emily Feld
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Adam S. Johnson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Allison R. Greenplate
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Melinda E. Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Dennie T. Frederick
- Department of Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts, USA
| | - Mark C. Kelley
- Department of Surgical Oncology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Jonathan M. Irish
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Ryan J. Sullivan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Igor Puzanov
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Jeffrey A. Sosman
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,
| |
Collapse
|
9
|
Chen H, Li Y, Lin X, Cui D, Cui C, Li H, Xiao L. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol Res 2015; 48:59. [PMID: 26506955 PMCID: PMC4624597 DOI: 10.1186/s40659-015-0051-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore, the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allograft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4(+) T cells-mediated allograft rejection. Hence, we focus on optimizing hESCs for clinic application through gene modification. RESULTS Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA (-/-) hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA (-/-) hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA (-/-) hESCs were powerless in IFN-γ inducible expression of HLA II. CONCLUSION We generated HLA II defected hESCs via deleting CIITA, a master regulator of constitutive and IFN-γ inducible expression of HLA II genes. CIITA (-/-) hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA (-/-) hESCs-derived cells could be used in cell therapy (e.g., T cells and DCs) and escape the attack of receptors' CD4(+) T cells, which are the main effector cells of cellular immunity in allograft.
Collapse
Affiliation(s)
- Haide Chen
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
| | - Yang Li
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
| | - Xijuan Lin
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
| | - Di Cui
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
| | - Chun Cui
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Hui Li
- Xiangtan Center Hospital, Hunan, 411100, People's Republic of China.
| | - Lei Xiao
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
10
|
Sun Y, Lu Y, Li T, Xie L, Deng Y, Li S, Qin X. Interferon Gamma +874T/A Polymorphism Increases the Risk of Hepatitis Virus-Related Diseases: Evidence from a Meta-Analysis. PLoS One 2015; 10:e0121168. [PMID: 25939029 PMCID: PMC4418602 DOI: 10.1371/journal.pone.0121168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/28/2015] [Indexed: 02/06/2023] Open
Abstract
Background Interferon gamma (IFN-γ) is a key regulatory cytokine, which plays an important role in antiviral defense of an infected host. However, the association between the IFN-γ +874T/A gene polymorphism and hepatitis virus-related diseases is heterogeneous. Methods Based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement, a comprehensive literature search of eligible studies in Embase, Pubmed, and the Cochrane Library was undertaken through November 2014. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were used to measure the strength of the models. Results Seventeen case-control articles, including 24 studies with 5503 individuals, met the inclusion criteria. The results indicated a statistically significant association between the IFN-γ +874T/A polymorphism and hepatitis virus—related diseases in a recessive gene model (AA vs. TT+TA: OR=1.350, 95% CI=1.101-1.657, P=0.004, I2%=54.3, and PQ=0.001 for heterogeneity), especially in Asians (OR=1.407, 95% CI=1.035-1.911, P=0.029, I2%=61.9, and PQ=0.005 for heterogeneity) and hepatitis B virus (HBV)–related disease (OR=1.486, 95% CI=1.195–1.849, P=0.000, I2%=40.4, and PQ=0.053 for heterogeneity). Conclusions The evidence suggests that the IFN-γ +874T/A polymorphism increases the risk of hepatitis virus—related diseases, especially in Asians and HBV—related diseases. Further studies on this topic in different ethnicities, especially genome-wide association studies, should be conducted to strengthen our results.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Taijie Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Xie
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yan Deng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Aarntzen EH, De Vries IJM, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, Schreibelt G, Mus R, De Wilt JH, Haanen JB, Schadendorf D, Croockewit A, Blokx WA, Van Rossum MM, Kwok WW, Adema GJ, Punt CJ, Figdor CG. Targeting CD4+ T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell–Based Vaccination. Cancer Res 2012; 73:19-29. [DOI: 10.1158/0008-5472.can-12-1127] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Aarntzen EHJG, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JHW, van Rossum MM, Blokx WAM, Jacobs JFM, Duiveman-de Boer T, Schuurhuis DH, Mus R, Thielemans K, de Vries IJM, Figdor CG, Punt CJA, Adema GJ. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012; 18:5460-70. [PMID: 22896657 DOI: 10.1158/1078-0432.ccr-11-3368] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Electroporation of dendritic cells (DC) with mRNA encoding tumor-associated antigens (TAA) has multiple advantages compared to peptide loading. We investigated the immunologic and clinical responses to vaccination with mRNA-electroporated DC in stage III and IV melanoma patients. EXPERIMENTAL DESIGN Twenty-six stage III HLA*02:01 melanoma patients scheduled for radical lymph node dissection (stage III) and 19 melanoma patients with irresectable locoregional or distant metastatic disease (referred to as stage IV) were included. Monocyte-derived DC, electroporated with mRNA encoding gp100 and tyrosinase, were pulsed with keyhole limpet hemocyanin and administered intranodally. TAA-specific T-cell responses were monitored in blood and skin-test infiltrating lymphocyte (SKIL) cultures. RESULTS Comparable numbers of vaccine-induced CD8(+) and/or CD4(+) TAA-specific T-cell responses were detected in SKIL cultures; 17/26 stage III patients and 11/19 stage IV patients. Strikingly, in this population, TAA-specific CD8(+) T cells that recognize multiple epitopes and produce elevated levels of IFNγ upon antigenic challenge in vitro, were significantly more often observed in stage III patients; 15/17 versus 3/11 stage IV patients, P = 0.0033. In stage IV patients, one mixed and one partial response were documented. The presence or absence of IFNγ-producing TAA-specific CD8(+) T cells in stage IV patients was associated with marked difference in median overall survival of 24.1 months versus 11.0 months, respectively. CONCLUSION Vaccination with mRNA-electroporated DC induces a broad repertoire of IFNγ producing TAA-specific CD8(+) and CD4(+) T-cell responses, particularly in stage III melanoma patients.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 2011; 271:392-400. [PMID: 21903207 DOI: 10.1016/j.cellimm.2011.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/31/2022]
Abstract
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.
Collapse
|
14
|
Corso C, Pisapia L, Citro A, Cicatiello V, Barba P, Cigliano L, Abrescia P, Maffei A, Manco G, Del Pozzo G. EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Res 2011; 39:7263-75. [PMID: 21624892 PMCID: PMC3167597 DOI: 10.1093/nar/gkr278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3'UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of 'RNA operon' may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3'UTR with same proteins.
Collapse
Affiliation(s)
- Carmela Corso
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Alessandra Citro
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Valeria Cicatiello
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Pasquale Barba
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luisa Cigliano
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Paolo Abrescia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Antonella Maffei
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giuseppe Manco
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
15
|
Respa A, Bukur J, Ferrone S, Pawelec G, Zhao Y, Wang E, Marincola FM, Seliger B. Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin Cancer Res 2011; 17:2668-78. [PMID: 21248298 DOI: 10.1158/1078-0432.ccr-10-2114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Abnormalities in the constitutive and IFN-γ-inducible HLA class I surface antigen expression of tumor cells is often associated with an impaired expression of components of the antigen processing machinery (APM). Hence, we analyzed whether there exists a link between the IFN-γ signaling pathway, constitutive HLA class I APM component expression, and IFN-γ resistance. EXPERIMENTAL DESIGN The basal and IFN-γ-inducible expression profiles of HLA class I APM and IFN-γ signal transduction cascade components were assessed in melanoma cells by real-time PCR (RT-PCR), Western blot analysis and/or flow cytometry, the integrity of the Janus activated kinase (JAK) 2 locus by comparative genomic hybridization. JAK2 was transiently overexpressed in JAK2(-) cells. The effect of IFN-γ on the cell growth was assessed by XTT [2,3-bis(2-methoxy-4-nitro-S-sulfophenynl)-H-tetrazolium-5-carboxanilide inner salt] assay. RESULTS The analysis of 8 melanoma cell lines linked the IFN-γ unresponsiveness of Colo 857 cells determined by lack of inducibility of HLA class I surface expression on IFN-γ treatment to a deletion of JAK2 on chromosome 9, whereas other IFN-γ signaling pathway components were not affected. In addition, the constitutive HLA class I APM component expression levels were significantly reduced in JAK2(-) cells. Furthermore, JAK2-deficient cells were also resistant to the antiproliferative effect of IFN-γ. Transfection of wild-type JAK2 into JAK2(-) Colo 857 not only increased the basal APM expression but also restored their IFN-γ sensitivity. CONCLUSIONS Impaired JAK2 expression in melanoma cells leads to reduced basal expression of MHC class I APM components and impairs their IFN-γ inducibility, suggesting that malfunctional IFN-γ signaling might cause HLA class I abnormalities.
Collapse
Affiliation(s)
- Annedore Respa
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meissner M, König V, Hrgovic I, Valesky E, Kaufmann R. Human leucocyte antigen class I and class II antigen expression in malignant fibrous histiocytoma, fibrosarcoma and dermatofibrosarcoma protuberans is significantly downregulated. J Eur Acad Dermatol Venereol 2010; 24:1326-32. [DOI: 10.1111/j.1468-3083.2010.03644.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Degenhardt Y, Huang J, Greshock J, Horiates G, Nathanson K, Yang X, Herlyn M, Weber B. Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosomes Cancer 2010; 49:144-54. [PMID: 19862823 DOI: 10.1002/gcc.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abnormal expression of major histocompatibility complex (MHC) molecules in melanoma has been reported previously. However, the MHC molecule expression patterns in different growth phases of melanoma and the underlying mechanisms are not well understood. Here, we demonstrate that in vertical growth phase (VGP) melanomas, MHC genes are subject to increased rates of DNA copy number gains, accompanied by increased expression, in comparison to normal melanocytes. In contrast, MHC expression in metastatic melanomas drastically decreased compared to VGP melanomas, despite still prevalent DNA copy number gains. Subsequent investigations found that the master transactivator of MHC genes, CIITA, was also significantly downregulated in metastatic melanomas when compared to VGP melanomas. This could be one of the mechanisms accounting for the discrepancy between DNA copy number and expression level in metastatic melanomas, a potentially separate mechanism of gene regulation. These results infer a dynamic role of MHC function in melanoma progression. We propose potential mechanisms for the overexpression of MHC molecules in earlier stages of melanoma as well as for its downregulation in metastatic melanomas.
Collapse
Affiliation(s)
- Yan Degenhardt
- Cancer Metabolism DPU, Oncology, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shaw BE, Mayor NP, Russell NH, Apperley JF, Clark RE, Cornish J, Darbyshire P, Ethell ME, Goldman JM, Little AM, Mackinnon S, Marks DI, Pagliuca A, Thomson K, Marsh SGE, Madrigal JA. Diverging effects of HLA–DPB1 matching status on outcome following unrelated donor transplantation depending on disease stage and the degree of matching for other HLA alleles. Leukemia 2009; 24:58-65. [DOI: 10.1038/leu.2009.239] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F, Garcia-Lora A. HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother 2009; 58:1507-15. [PMID: 19340423 PMCID: PMC11030131 DOI: 10.1007/s00262-009-0701-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
Altered HLA class I and class II cell surface expression has been reported in many types of malignancy and represents one of the major mechanism by which tumour cells escape from T lymphocytes. In this report, we review the results obtained from the study of constitutive and IFN-gamma-induced expression of HLA class I and II molecules in 91 human melanoma cell lines from the European Searchable Tumour Cell Line Database, and compare them with published data on HLA expression in other types of cancer. Various types of alterations in HLA class I cell surface expression were found in a high percentage (67%) of the studied cell lines. These alterations range from total to selective HLA class I loss and are associated with beta2-microglobulin gene mutations, transcriptional downregulation of HLA class I genes and antigen processing machinery components, or with the loss of heterozygosity in chromosome 6. The most frequently observed phenotype is selective downregulation of HLA-B locus, reversible after treatment with IFN-gamma. The expression of constitutive- or IFN-gamma induced-surface expression of at least one HLA class II locus is positive in 71.5% of the analysed cell lines. Four different HLA class II expression phenotypes were defined, and a positive correlation between the expression of class I and II molecules is discussed. More detailed information on the HLA expression patterns and others immunological characteristics of these melanoma cell lines can be found on the following website http://www.ebi.ac.uk/ipd/estdab .
Collapse
Affiliation(s)
- Rosa Mendez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Natalia Aptsiauri
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Del Campo
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Isabel Maleno
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Teresa Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel Garcia-Lora
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
20
|
Berghuis D, de Hooge ASK, Santos SJ, Horst D, Wiertz EJ, van Eggermond MC, van den Elsen PJ, Taminiau AHM, Ottaviano L, Schaefer KL, Dirksen U, Hooijberg E, Mulder A, Melief CJM, Egeler RM, Schilham MW, Jordanova ES, Hogendoorn PCW, Lankester AC. Reduced human leukocyte antigen expression in advanced-stage Ewing sarcoma: implications for immune recognition. J Pathol 2009; 218:222-31. [PMID: 19274709 DOI: 10.1002/path.2537] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ewing sarcoma (EWS) is a tumour most commonly arising in bone, although on occasion in soft tissue, with a poor prognosis in patients with refractory or relapsed disease, despite multimodal therapy. Immunotherapeutic strategies based on tumour-reactive T and/or natural killer cells may improve the treatment of advanced-stage EWS. Since cellular immune recognition critically depends on human leukocyte antigen (HLA) expression, knowledge about HLA expression in EWS is crucial in the design of cellular immunotherapeutic strategies. Constitutive and IFNgamma-induced HLA class I expression was analysed in EWS cell lines (n = 6) by flow cytometry, using antibodies against both monomorphic and allele-specific antigens. Expression of antigen processing pathway components and beta-2 microglobulin (beta2m) was assessed by western blot. Expression of class II transactivator (CIITA), and its contribution to HLA class II expression, was evaluated by qRT-PCR, transduction assays, and flow cytometry. beta2m/HLA class I and class II expression was validated in EWS tumours (n = 67) by immunofluorescence. Complete or partial absence of HLA class I expression was observed in 79% of EWS tumours. Lung metastases consistently lacked HLA class I and sequential tumours demonstrated a tendency towards decreased expression upon disease progression. Together with absent or low constitutive expression levels of specific HLA class I loci and alleles, and differential induction of identical alleles by IFNgamma in different cell lines, these results may reflect the existence of an immune escape mechanism. Inducible expression of TAP-1/-2, tapasin, LMP-2/-7, and the beta2m/HLA class I complex by IFNgamma suggests that regulatory mechanisms are mainly responsible for heterogeneity in constitutive class I expression. EWSs lack IFNgamma-inducible HLA class II, due to lack of functional CIITA. The majority of EWS tumours, particularly if advanced-stage, exhibit complete or partial absence of both classes of HLA. This knowledge will be instrumental in the design of cellular immunotherapeutic strategies for advanced-stage EWS.
Collapse
Affiliation(s)
- Dagmar Berghuis
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Interferons represent a protein family with pleiotropic functions including immunomodulatory, cytostatic, and cytotoxic activities. Based on these effects, interferons are involved in innate as well as adaptive immunity, thereby shaping the tumor host immune responses. These cytokines, alone or in combination, have been successfully implemented for the treatment of some malignancies. However, it has been recently demonstrated that tumor cells could be resistant to interferon treatment, which may be associated with an escape of tumor cells from immune surveillance. Therefore, the aim of this chapter is to summarize the frequency of impaired interferon signal transduction, their underlying molecular mechanisms, and their clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | | | | |
Collapse
|
22
|
Reichert S, Machulla HK, Klapproth J, Zimmermann U, Reichert Y, Gläser C, Schaller HG, Schulz S. Interferon-Gamma and Interleukin-12 Gene Polymorphisms and Their Relation to Aggressive and Chronic Periodontitis and Key Periodontal Pathogens. J Periodontol 2008; 79:1434-43. [DOI: 10.1902/jop.2008.070637] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Meissner M, Whiteside T, van Kuik-Romein P, Valesky E, van den Elsen P, Kaufmann R, Seliger B. Loss of interferon-γ inducibility of the MHC class II antigen processing pathway in head and neck cancer: evidence for post-transcriptional as well as epigenetic regulation. Br J Dermatol 2008; 158:930-40. [DOI: 10.1111/j.1365-2133.2008.08465.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Farhat K, Hassen E, Gabbouj S, Bouaouina N, Chouchane L. Interleukin-10 and interferon-gamma gene polymorphisms in patients with nasopharyngeal carcinoma. Int J Immunogenet 2008; 35:197-205. [PMID: 18312596 DOI: 10.1111/j.1744-313x.2008.00752.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a multifactorial disease. Cytokines driving the immune response seem to be disturbed in NPC patients. Since interleukin-10 (IL-10) is known to reduce the production of interferon-gamma (IFN-gamma), we supposed that genetic differences in IL-10 and IFN-gamma expression could be a mechanism by which NPC cells escape antitumour immune response. As the production of each cytokine is affected by the genetic background, we investigated the possible association between single nucleotide polymorphisms in genes of IL-10 and IFN-gamma with NPC. Different IL-10 -1082 G/A and IFN-gamma+874 Tau/Alpha genotypes were determined in 160 patients with nasopharyngeal carcinoma and 197 healthy controls. No association was found either for each SNP studied alone or for the combined analysis for both IL-10 and IFN-gamma polymorphisms among NPC patients in comparison with controls. Compared with individuals from high incidence countries, we noted huge significant differences in genotype distribution between individuals from low and intermediate NPC incidence countries. Polymorphisms of the IL-10 and IFN-gamma do not appear to be associated with NPC risk in the Tunisian population. Nevertheless, we strongly believe that the relationship between cytokines polymorphisms and NPC susceptibility deeply depends on the ethnicity.
Collapse
Affiliation(s)
- K Farhat
- Laboratory of Molecular Immuno-Oncology, Faculty of Medicine of Monastir, Monastir, Tunisia
| | | | | | | | | |
Collapse
|
25
|
Malanga D, Barba P, Harris PE, Maffei A, Del Pozzo G. The active translation of MHCII mRNA during dendritic cells maturation supplies new molecules to the cell surface pool. Cell Immunol 2007; 246:75-80. [PMID: 17662701 DOI: 10.1016/j.cellimm.2007.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
The transition of human dendritic cells (DCs) from the immature to the mature phenotype is characterized by an increased density of MHC class II (MHCII) molecules on the plasma membrane, a key requirement of their competence as professional antigen presenting cells (APCs). MHCII molecules on the cell surface derive from newly synthesized as well as from preexisting proteins. So far, all the studies done on DCs during maturation, to establish the relative contribution of newly synthesized MHCII molecules to the cell surface pool did not produced a clear, unified scenario. We report that, in human DCs stimulated ex vivo with LPS, the changes in the RNA accumulation specific for at least two MHCII genes (HLA-DRA and HLA-DQA1) due to transcriptional upregulation, is associated with the active translation at high rate of these transcripts. Our finding reveals that, across the 24h of the maturation process in human DCs, newly synthesized MHCII proteins are supplied to the APCs cell surface pool.
Collapse
Affiliation(s)
- Donatella Malanga
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples, Italy
| | | | | | | | | |
Collapse
|