1
|
Arjin C, Hnokaew P, Tasuksai P, Thongkham M, Pringproa K, Arunorat J, Yano T, Seel-audom M, Rachtanapun P, Sringarm K, Chuammitri P. Transcriptome Analysis of Porcine Immune Cells Stimulated by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Caesalpinia sappan Extract. Int J Mol Sci 2024; 25:12285. [PMID: 39596350 PMCID: PMC11595159 DOI: 10.3390/ijms252212285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The current level of knowledge on transcriptome responses triggered by Caesalpinia sappan (CS) extract in porcine peripheral blood mononuclear cells (PBMCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection is limited. Therefore, in the present study, we aimed to detect significant genes and pathways involved in CS extract supplementation responsiveness of PBMCs after PRRSV infection. RNA sequencing was conducted on PBMCs, which were isolated from six weaned piglets. The resultant transcriptional responses were examined by mRNA sequencing. Differential expression analysis identified 263 and 274 differentially expressed genes (DEGs) between the PRRSV and CTRL groups, and the PRRSV+CS and CTRL groups, respectively. Among these, ZNF646 and KAT5 emerged as the most promising candidate genes, potentially influencing the interaction between PRRSV-infected PBMCs and CS extract supplementation through the regulation of gene networks and cellular homeostasis during stress. Two pathways were detected to be associated with CS extract supplementation responsiveness: the cellular response to stress pathway and the NF-kB signaling pathway. Consequently, our study reveals a novel mechanism underlying cellular stress response and the NF-κB signaling pathway in PRRSV-infected PBMCs, and identifies a potential application of CS extract for activating the NF-κB signaling pathway. In conclusion, by supplementing CS extract in PBMC cells infected with PRRSV, we found that CS extract modulates PRRSV infection by inducing cellular stress, which is regulated by the NF-κB signaling pathway. This induced stress creates an adverse environment for PRRSV survival. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. Importantly, our results demonstrate that CS extract has the potential to be a candidate for modulating PRRSV infection.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Patipan Hnokaew
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Tasuksai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Kidsadagon Pringproa
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Jirapat Arunorat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Terdsak Yano
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| |
Collapse
|
2
|
You X, Liu M, Liu Q, Li H, Qu Y, Gao X, Huang C, Luo G, Cao G, Xu D. miRNA let-7 family regulated by NEAT1 and ARID3A/NF-κB inhibits PRRSV-2 replication in vitro and in vivo. PLoS Pathog 2022; 18:e1010820. [PMID: 36215225 PMCID: PMC9550049 DOI: 10.1371/journal.ppat.1010820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry worldwide. To investigate the role of miRNAs in the infection and susceptibility of PRRS virus (PRRSV), twenty-four miRNA libraries were constructed and sequenced from PRRSV-infected and mock-infected Porcine alveolar macrophages (PAMs) of Meishan, Landrace, Pietrain and Qingping pigs at 9 hours post infection (hpi), 36 hpi, and 60 hpi. The let-7 family miRNAs were significantly differentially expressed between PRRSV-infected and mock-infected PAMs from 4 pig breeds. The let-7 family miRNAs could significantly inhibit PRRSV-2 replication by directly targeting the 3’UTR of the PRRSV-2 genome and porcine IL6, which plays an important role in PRRSV replication and lung injury. NEAT1 acts as a competing endogenous lncRNA (ceRNA) to upregulate IL6 by attaching let-7 in PAMs. EMSA and ChIP results confirmed that ARID3A could bind to the promoter region of pri-let-7a/let-7f/let-7d gene cluster and inhibit the expression of the let-7 family. Moreover, the NF-κB signaling pathway inhibits the expression of the let-7 family by affecting the nuclear import of ARID3A. The pEGFP-N1-let-7 significantly reduced viral infections and pathological changes in PRRSV-infected piglets. Taken together, NEAT1/ARID3A/let-7/IL6 play significant roles in PRRSV-2 infection and may be promising therapeutic targets for PRRS. There are significant differences in susceptibility/resistance to PRRSV among different pig breeds. Especially the local pig breeds in China had strong resistance to PRRSV. However, due to the complexity of the interaction mechanism between pigs and PRRSV, the genetic mechanism leading to PRRSV susceptibility/resistance in different pig breeds is still unclear. MiRNAs play a vital regulatory role in immune response and development of PRRS. In this study, we found that the expression of miRNA let-7 family members were significantly different in PRRSV-infected/mock-infected PAMs from Pietrain, Qingping, Meishan, and Landrace pigs. Our findings illustrated that NEAT1/ARID3A/let-7/IL6 had a significant role in PRRSV-2 infection. What’s more, let-7 family could significantly reduce PRRSV infection and pathological changes in vitro and in vivo. This discovery provided a new idea for breeding PRRSV resistant pigs by revealing the molecular mechanism of PRRSV susceptibility in different pig breeds. Altogether, let-7 family have significant roles in PRRSV infection and may be promising therapeutic targets for PRRS.
Collapse
Affiliation(s)
- Xiangbin You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Henan University of Science and Technology, Luoyang, China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huijuan Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yilin Qu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiao Gao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Huang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
3
|
Dong Q, Lunney JK, Lim KS, Nguyen Y, Hess AS, Beiki H, Rowland RRR, Walker K, Reecy JM, Tuggle CK, Dekkers JCM. Gene expression in tonsils in swine following infection with porcine reproductive and respiratory syndrome virus. BMC Vet Res 2021; 17:88. [PMID: 33618723 PMCID: PMC7901068 DOI: 10.1186/s12917-021-02785-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome (PRRS) is a threat to pig production worldwide. Our objective was to understand mechanisms of persistence of PRRS virus (PRRSV) in tonsil. Transcriptome data from tonsil samples collected at 42 days post infection (dpi) were generated by RNA-seq and NanoString on 51 pigs that were selected to contrast the two PRRSV isolates used, NVSL and KS06, high and low tonsil viral level at 42 dpi, and the favorable and unfavorable genotypes at a genetic marker (WUR) for the putative PRRSV resistance gene GBP5. Results The number of differentially expressed genes (DEGs) differed markedly between models with and without accounting for cell-type enrichments (CE) in the samples that were predicted from the RNA-seq data. This indicates that differences in cell composition in tissues that consist of multiple cell types, such as tonsil, can have a large impact on observed differences in gene expression. Based on both the NanoString and the RNA-seq data, KS06-infected pigs showed greater activation, or less inhibition, of immune response in tonsils at 42 dpi than NVSL-infected pigs, with and without accounting for CE. This suggests that the NVSL virus may be better than the KS06 virus at evading host immune response and persists in tonsils by weakening, or preventing, host immune responses. Pigs with high viral levels showed larger CE of immune cells than low viral level pigs, potentially to trigger stronger immune responses. Presence of high tonsil virus was associated with a stronger immune response, especially innate immune response through interferon signaling, but these differences were not significant when accounting for CE. Genotype at WUR was associated with different effects on immune response in tonsils of pigs during the persistence stage, depending on viral isolate and tonsil viral level. Conclusions Results of this study provide insights into the effects of PRRSV isolate, tonsil viral level, and WUR genotype on host immune response and into potential mechanisms of PRRSV persistence in tonsils that could be targeted to improve strategies to reduce viral rebreaks. Finally, to understand transcriptome responses in tissues that consist of multiple cell types, it is important to consider differences in cell composition. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02785-1.
Collapse
Affiliation(s)
- Qian Dong
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | | | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | - Yet Nguyen
- Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Andrew S Hess
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | - Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | - Raymond R R Rowland
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | | | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
4
|
Go N, Belloc C, Bidot C, Touzeau S. Why, when and how should exposure be considered at the within-host scale? A modelling contribution to PRRSv infection. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:179-206. [PMID: 29790952 DOI: 10.1093/imammb/dqy005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Understanding the impact of pathogen exposure on the within-host dynamics and its outcome in terms of infectiousness is a key issue to better understand and control the infection spread. Most experimental and modelling studies tackling this issue looked at the impact of the exposure dose on the infection probability and pathogen load, very few on the within-host immune response. Our aim was to explore the impact on the within-host response not only of the exposure dose, but also of its duration and peak, for contrasted virulence levels. We used an integrative modelling approach of the within-host dynamics at the between-cell level. We focused on the porcine reproductive and respiratory syndrome virus, a major concern for the swine industry. We quantified the impact of exposure and virulence on the viral dynamics and immune response by global sensitivity analyses and descriptive statistics. We found that the area under the viral curve, an indicator of the infection severity, was fully determined by the exposure intensity. The infection duration increased with the strain virulence and, for a given strain, exhibited a positive linear correlation with the exposure intensity logarithm and the exposure duration. Taking into account the exposure intensity is hence necessary. Besides, representing the exposure due to contacts by a single punctual dose would tend to underestimate the infection duration. As the infection severity and duration both contribute to the pig infectiousness, a prolonged exposure of the adequate intensity would be recommended in an immuno-epidemiological context.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, LUNAM Université, Nantes, France.,MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Caroline Bidot
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Suzanne Touzeau
- ISA, INRA, CNRS, Université Côte d'Azur, France.,BIOCORE, Inria, INRA, CNRS, UPMC Université, Université Côte d'Azur, France
| |
Collapse
|
5
|
Islam MA, Neuhoff C, Aqter Rony S, Große-Brinkhaus C, Uddin MJ, Hölker M, Tesfaye D, Tholen E, Schellander K, Pröll-Cornelissen MJ. PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLoS One 2019; 14:e0222513. [PMID: 31536525 PMCID: PMC6752781 DOI: 10.1371/journal.pone.0222513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Sharmin Aqter Rony
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christine Große-Brinkhaus
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- School of Veterinary Science, The University of Queensland, Gatton campus, Brisbane, QLD, Australia
| | - Michael Hölker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Maren Julia Pröll-Cornelissen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- * E-mail:
| |
Collapse
|
6
|
Cortey M, Arocena G, Ait-Ali T, Vidal A, Li Y, Martín-Valls G, Wilson AD, Archibald AL, Mateu E, Darwich L. Analysis of the genetic diversity and mRNA expression level in porcine reproductive and respiratory syndrome virus vaccinated pigs that developed short or long viremias after challenge. Vet Res 2018; 49:19. [PMID: 29448955 PMCID: PMC5815215 DOI: 10.1186/s13567-018-0514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/08/2018] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host’s cellular and humoral immune response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to compare several genes that encode for molecules involved in the immune response between two groups of vaccinated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequencing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT-PCR of the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.
| | - Gaston Arocena
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anna Vidal
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Yanli Li
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Allan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Laila Darwich
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| |
Collapse
|
7
|
Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One 2017; 12:e0187735. [PMID: 29140992 PMCID: PMC5687707 DOI: 10.1371/journal.pone.0187735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs.
Collapse
|
8
|
PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig. PLoS One 2017; 12:e0171828. [PMID: 28278192 PMCID: PMC5344314 DOI: 10.1371/journal.pone.0171828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.
Collapse
|
9
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2016; 2:27. [PMID: 28405453 PMCID: PMC5382513 DOI: 10.1186/s40813-016-0045-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
PRRS is one of the most challenging diseases for world-wide pig production. Attempts for a sustainable control of this scourge by vaccination have not yet fully satisfied. With an increasing knowledge and methodology in disease resistance, a new world-wide endeavour has been started to support the combat of animal diseases, based on the existence of valuable gene variants with regard to any host-pathogen interaction. Several groups have produced a wealth of evidence for natural variability in resistance/susceptibility to PRRS in our commercial breeding lines. However, up to now, exploiting existing variation has failed because of the difficulty to detect the carriers of favourable and unfavourable alleles, especially with regard to such complex polygenic traits like resistance to PRRS. New hope comes from new genomic tools like next generation sequencing which have become extremely fast and low priced. Thus, research is booming world-wide and the jigsaw puzzle is filling up – slowly but steadily. On the other hand, knowledge from virological and biomedical basic research has opened the way for an “intervening way”, i.e. the modification of identified key genes that occupy key positions in PRRS pathogenesis, like CD163. CD163 was identified as the striking receptor in PRRSV entry and its knockout from the genome by gene editing has led to the production of pigs that were completely resistant to PRRSV – a milestone in modern pig breeding. However, at this early step, concerns remain about the acceptance of societies for gene edited products and regulation still awaits upgrading to the new technology. Further questions arise with regard to upcoming patents from an ethical and legal point of view. Eventually, the importance of CD163 for homeostasis, defence and immunity demands for more insight before its complete or partial silencing can be answered. Whatever path will be followed, even a partial abolishment of PRRSV replication will lead to a significant improvement of the disastrous herd situation, with a significant impact on welfare, performance, antimicrobial consumption and consumer protection. Genetics will be part of a future solution.
Collapse
|
11
|
Doeschl-Wilson A, Wilson A, Nielsen J, Nauwynck H, Archibald A, Ait-Ali T. Combining laboratory and mathematical models to infer mechanisms underlying kinetic changes in macrophage susceptibility to an RNA virus. BMC SYSTEMS BIOLOGY 2016; 10:101. [PMID: 27770812 PMCID: PMC5075420 DOI: 10.1186/s12918-016-0345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/04/2023]
Abstract
Background Macrophages are essential to innate immunity against many pathogens, but some pathogens also target macrophages as routes to infection. The Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an RNA virus that infects porcine alveolar macrophages (PAMs) causing devastating impact on global pig production. Identifying the cellular mechanisms that mediate PAM susceptibility to the virus is crucial for developing effective interventions. Previous evidence suggests that the scavenger receptor CD163 is essential for productive infection of PAMs with PRRSV. Here we use an integrative in-vitro–in-silico modelling approach to determine whether and how PAM susceptibility to PRRSV changes over time, to assess the role of CD163 expression on such changes, and to infer other potential causative mechanisms altering cell susceptibility. Results Our in-vitro experiment showed that PAM susceptibility to PRRSV changed considerably over incubation time. Moreover, an increasing proportion of PAMs apparently lacking CD163 were found susceptible to PRRSV at the later incubation stages, thus conflicting with current understanding that CD163 is essential for productive infection of PAMs with PRRSV. We developed process based dynamic mathematical models and fitted these to the data to assess alternative hypotheses regarding potential underlying mechanisms for the observed susceptibility and biomarker trends. The models informed by our data support the hypothesis that although CD163 may have enhanced cell susceptibility, it was not essential for productive infection in our study. Instead the models promote the existence of a reversible cellular state, such as macrophage polarization, mediated in a density dependent manner by autocrine factors, to be responsible for the observed kinetics in cell susceptibility. Conclusions Our dynamic model–inference approach provides strong support that PAM susceptibility to the PRRS virus is transient, reversible and can be mediated by compounds produced by the target cells themselves, and that these can render PAMs lacking the CD163 receptor susceptible to PRRSV. The results have implications for the development of therapeutics aiming to boost target cell resistance and prompt future investigation of dynamic changes in macrophage susceptibility to PRRSV and other viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0345-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Doeschl-Wilson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK.
| | - Alison Wilson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Jens Nielsen
- Department of Mircrobiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunity, Ghent University, Ghent, Belgium
| | - Alan Archibald
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Tahar Ait-Ali
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
12
|
Ait-Ali T, Díaz I, Soldevila F, Cano E, Li Y, Wilson AD, Giotti B, Archibald AL, Mateu E, Darwich L. Distinct functional enrichment of transcriptional signatures in pigs with high and low IFN-gamma responses after vaccination with a porcine reproductive and respiratory syndrome virus (PRRSV). Vet Res 2016; 47:104. [PMID: 27765052 PMCID: PMC5073823 DOI: 10.1186/s13567-016-0392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023] Open
Abstract
Little is known about the host factor in the response to PRRSV vaccination. For this purpose, piglets were immunized with a commercial PRRSV-live vaccine and classified as high responders (HR) or low responders (LR) as regards to the frequencies of virus-specific IFN-γ-secreting cells. Six weeks post vaccination, PBMCs isolated from three individuals with the most extreme responses in each HR and LR groups and 3 unvaccinated controls, were either stimulated with phytohaemagglutinin, challenged with the vaccine or mock treated for 24 h, prior conducting transcriptional studies, gene ontology and pathway analyses. The LR group had very low neutralizing antibody levels and showed a higher number of down-regulated transcripts compared with the HR group (FDR < 0.2, P < 0.001). Down-regulated genes encoded chemoattractants, proinflammatory cytokines and the interferon-inducible GBP family, and showed enrichment in wounding (FDR < 3.6E-13), inflammation (FDR < 8E-12), defence (FDR < 8.7E-09) and immunity (FDR < 7.6E-08), suggesting immune response impairment. In the HR group, down-regulated genes were involved in protein transport (FDR < 4.77E-03), locomotory behavior (FDR < 5.47E-3), regulation of protein localization (FDR < 1.02E-02), and regulation of TNF superfamily member 15 and miR181. In contrast, the HR group presented up-regulated transcripts associated with wounding (FDR < 4.95). Moreover, IFN-γ was predicted to be an inhibited upstream regulator since IFN-γ pathways were associated with higher number of down-regulated genes in the LR (n = 40) than the HR (n = 10). Divergent responses to PRRSV-vaccination may be the result of the genetic background of the host.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Ferran Soldevila
- Virology Department, Animal and Plant Health and Agency, Addlestone, KT15 3NB, UK.,Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Esmeralda Cano
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Yanli Li
- Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Bruno Giotti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain.,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain. .,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain.
| |
Collapse
|
13
|
Islam MA, Große-Brinkhaus C, Pröll MJ, Uddin MJ, Rony SA, Tesfaye D, Tholen E, Hölker M, Schellander K, Neuhoff C. Deciphering transcriptome profiles of peripheral blood mononuclear cells in response to PRRSV vaccination in pigs. BMC Genomics 2016; 17:641. [PMID: 27528396 PMCID: PMC4986384 DOI: 10.1186/s12864-016-2849-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important viral diseases affecting swine industry worldwide. Despite routine farm vaccination, effective control strategies for PRRS remained elusive which underscores the need for in-depth studies to gain insight into the host immune response to vaccines. The current study aimed to investigate transcriptional responses to PRRS Virus (PRRSV) vaccine in the peripheral blood mononuclear cells (PBMCs) within 3 days following vaccination in German Landrace pigs. RESULTS Transcriptome profiling of PBMCs from PRRSV vaccinated and age-matched unvaccinated pigs at right before (0 h), and at 6, 24 and 72 h after PRRSV vaccination was performed using the Affymetrix gene chip porcine gene 1.0 st array. Comparison of PBMCs transcriptome profiles between vaccinated and unvaccinated pigs revealed a distinct host innate immune transcriptional response to PRRSV vaccine. There was a significant temporal variation in transcriptional responses of PRRSV vaccine in PBMCs accounting 542, 2,263 and 357 differentially expressed genes (DEGs) at 6, 24 and 72 h post vaccination, respectively compared to the time point before vaccination (controls). Gene ontology analysis revealed the involvement of these DEGs in various biological process including innate immune response, signal transduction, positive regulation of MAP kinase activity, TRIF-dependent toll-like receptor signaling pathway, T cell differentiation and apoptosis. Immune response specific pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, signal transduction, JAK-STAT pathway and regulation, TRAF6 mediated induction of NF-kB and MAPK, the NLRP3 inflammasome, endocytosis and interferon signaling were under regulation during the early stage of PRRSV vaccination. Network enrichment analysis revealed APP, TRAF6, PIN1, FOS, CTNNB1, TNFAIP3, TIP1, CDKN1, SIRT1, ESR1 and HDAC5 as the highly interconnected hubs of the functional network of PRRSV vaccine induced transcriptome changes in PBMCs. CONCLUSIONS This study showed that a massive gene expression change occurred in PBMCs following PRRSV vaccination in German Landrace pigs. Within first 3 days of vaccine exposure, the highest transcript abundance was observed at 24 h after vaccination compared to that of control. Results of this study suggest that APP, TRAF6, PIN1, FOS, CDKN1A and TNFAIP3 could be considered as potential candidate genes for PRRSV vaccine responsiveness.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Christine Große-Brinkhaus
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Maren Julia Pröll
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sharmin Aqter Rony
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hölker
- Teaching and Research Station on Frankenfrost, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Schroyen M, Steibel JP, Koltes JE, Choi I, Raney NE, Eisley C, Fritz-Waters E, Reecy JM, Dekkers JCM, Rowland RRR, Lunney JK, Ernst CW, Tuggle CK. Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection. BMC Genomics 2015; 16:516. [PMID: 26159815 PMCID: PMC4496889 DOI: 10.1186/s12864-015-1741-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022] Open
Abstract
Background The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid strategy to reduce its economic impact on the swine industry. To find underlying molecular differences in PRRS susceptible versus more resistant pigs, 100 animals with extremely different growth rates and viremia levels after PRRSv infection were selected from a total of 600 infected pigs. A microarray experiment was conducted on whole blood RNA samples taken at 0, 4 and 7 days post infection (dpi) from these pigs. From these data, we examined associations of gene expression with weight gain and viral load phenotypes. The single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) on the porcine 60 K SNP chip was shown to be associated with viral load and weight gain after PRRSv infection, and so the effect of the WUR10000125 (WUR) genotype on expression in whole blood was also examined. Results Limited information was obtained through linear modeling of blood gene differential expression (DE) that contrasted pigs with extreme phenotypes, for growth or viral load or between animals with different WUR genotype. However, using network-based approaches, molecular pathway differences between extreme phenotypic classes could be identified. Several gene clusters of interest were found when Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 4dpi contrasted with 0dpi data. The expression pattern of one such cluster of genes correlated with weight gain and WUR genotype, contained numerous immune response genes such as cytokines, chemokines, interferon type I stimulated genes, apoptotic genes and genes regulating complement activation. In addition, Partial Correlation and Information Theory (PCIT) identified differentially hubbed (DH) genes between the phenotypically divergent groups. GO enrichment revealed that the target genes of these DH genes are enriched in adaptive immune pathways. Conclusion There are molecular differences in blood RNA patterns between pigs with extreme phenotypes or with a different WUR genotype in early responses to PRRSv infection, though they can be quite subtle and more difficult to discover with conventional DE expression analyses. Co-expression analyses such as WGCNA and PCIT can be used to reveal network differences between such extreme response groups. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1741-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - Juan P Steibel
- Department of Animal Science, Michigan State University, East Lansing, MI, USA. .,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - Igseo Choi
- APDL, BARC, ARS, USDA, Beltsville, MD, USA.
| | - Nancy E Raney
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| | | | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - Robert R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
15
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
16
|
Amadori M, Razzuoli E. Immune Control of PRRS: Lessons to be Learned and Possible Ways Forward. Front Vet Sci 2014; 1:2. [PMID: 26664910 PMCID: PMC4668844 DOI: 10.3389/fvets.2014.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/19/2014] [Indexed: 12/29/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an elusive model of host/virus relationship in which disease is determined by virus pathogenicity, pig breed susceptibility and phenotype, microbial infectious pressure, and environmental conditions. The disease can be controlled by farm management programs, which can be supported by vaccination or conditioning of animals to circulating PRRS virus (PRRSV) strains. Yet, PRRS still represents a cause of heavy losses for the pig industry worldwide. Immunological control strategies are often compounded by poor and late development of adaptive immunity in both vaccinated and infected animals. Also, there is evidence that results of field trials can be worse than those of experimental studies in isolation facilities. Neutralizing antibody (NA) was shown to prevent PRRSV infection. Instead, the role of NA and adaptive immunity on the whole in virus clearance after established PRRSV infections is still contentious. Pigs eventually eliminate PRRSV infection, which may be correlated with an “educated,” innate immune response, which may also develop following vaccination. In addition to vaccination, an immunomodulation strategy for PRRS can be reasonably advocated in pig “problem” farms, where a substantial control of disease prevalence and disease-related losses is badly needed. This is not at odds with vaccination, which should be preferably restricted to PRRSV-free animals bound for PRRSV-infected farm units. Oral, low-dose, interferon-α treatments proved effective on farm for the control of respiratory and reproductive disease outbreaks, whereas the results were less clear in isolation facilities. Having in mind the crucial interaction between PRRSV and bacterial lipopolysaccharides for occurrence of respiratory disease, the strong control actions of low-dose type I interferons on the inflammatory response observed in vitro and in vivo probably underlie the rapid clinical responses observed in field trials.
Collapse
Affiliation(s)
- Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna , Brescia , Italy
| | - Elisabetta Razzuoli
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna , Brescia , Italy
| |
Collapse
|
17
|
Weesendorp E, Rebel JMJ, Popma-De Graaf DJ, Fijten HPD, Stockhofe-Zurwieden N. Lung pathogenicity of European genotype 3 strain porcine reproductive and respiratory syndrome virus (PRRSV) differs from that of subtype 1 strains. Vet Microbiol 2014; 174:127-38. [PMID: 25301281 PMCID: PMC7117439 DOI: 10.1016/j.vetmic.2014.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
We studied pathological responses after infection with EU PRRSV subtype 3 or 1. EU subtype 3 PRRSV is more pneumovirulent that subtype 1. EU subtype 3 induced a stronger early inflammatory response than subtype 1. EU subtype 3 was cleared faster from tissues than subtype 1.
Porcine reproductive and respiratory syndrome (PRRS) is difficult to control due to a high mutation rate of the PRRS virus (PRRSV) and the emergence of virulent strains. The objective of this study was to analyse early and late pathological responses in the respiratory tract after infection with the European PRRSV subtype 3 strain Lena in comparison to two European PRRSV subtype 1 strains: Belgium A and Lelystad-Ter Huurne (LV). For each virus strain, groups of twelve pigs were inoculated, and four pigs per group were euthanized at days 3, 7 and 35 post-infection (p.i.) for consecutive examination. Infection with strain Lena resulted in a more severe disease than with the subtype 1 strains, an inflammatory response within the first week of infection with expression of IL-1α in the lung and lymph node, and an influx of neutrophils and monocytes in bronchoalveolar lavage fluid (BALF). Infection with strain Belgium A or LV resulted in mild or no pathology within the first week of infection, but inflammatory cell influx in the lung interstititium was increased at the end of the experiment at day 35 p.i. At five weeks p.i., all strains induced a higher percentage of cytotoxic T cells and higher levels of IFN-γ producing cells in BALF. This might have contributed to clearance of virus. In general, subtype 3 strain Lena induced a stronger early inflammatory response which led to more severe clinical disease and pathology. On the other hand, this may have supported an enhanced or faster clearance of virus in tissues, compared to subtype 1 strains.
Collapse
Affiliation(s)
- Eefke Weesendorp
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | - Johanna M J Rebel
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Ditta J Popma-De Graaf
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Helmi P D Fijten
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Norbert Stockhofe-Zurwieden
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
18
|
Go N, Bidot C, Belloc C, Touzeau S. Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? PLoS One 2014; 9:e107818. [PMID: 25233096 PMCID: PMC4169448 DOI: 10.1371/journal.pone.0107818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/09/2014] [Indexed: 12/23/2022] Open
Abstract
The immune mechanisms which determine the infection duration induced by pathogens targeting pulmonary macrophages are poorly known. To explore the impact of such pathogens, it is indispensable to integrate the various immune mechanisms and to take into account the variability in pathogen virulence and host susceptibility. In this context, mathematical models complement experimentation and are powerful tools to represent and explore the complex mechanisms involved in the infection and immune dynamics. We developed an original mathematical model in which we detailed the interactions between the macrophages and the pathogen, the orientation of the adaptive response and the cytokine regulations. We applied our model to the Porcine Respiratory and Reproductive Syndrome virus (PRRSv), a major concern for the swine industry. We extracted value ranges for the model parameters from modelling and experimental studies on respiratory pathogens. We identified the most influential parameters through a sensitivity analysis. We defined a parameter set, the reference scenario, resulting in a realistic and representative immune response to PRRSv infection. We then defined scenarios corresponding to graduated levels of strain virulence and host susceptibility around the reference scenario. We observed that high levels of antiviral cytokines and a dominant cellular response were associated with either short, the usual assumption, or long infection durations, depending on the immune mechanisms involved. To identify these mechanisms, we need to combine the levels of antiviral cytokines, including , and . The latter is a good indicator of the infected macrophage level, both combined provide the adaptive response orientation. Available PRRSv vaccines lack efficiency. By integrating the main interactions between the complex immune mechanisms, this modelling framework could be used to help designing more efficient vaccination strategies.
Collapse
Affiliation(s)
- Natacha Go
- UR341 MIA, INRA, Jouy-en-Josas, France
- LUNAM Université, Oniris, INRA UMR 1300 BioEpAR, Nantes, France
- * E-mail:
| | | | | | - Suzanne Touzeau
- UMR1355 ISA, INRA, Université Nice Sophia Antipolis, CNRS, Sophia Antipolis, France
- BIOCORE, Inria, Sophia Antipolis, France
| |
Collapse
|
19
|
Smith SH, Wilson AD, Van Ettinger I, MacIntyre N, Archibald AL, Ait-Ali T. Down-regulation of mechanisms involved in cell transport and maintenance of mucosal integrity in pigs infected with Lawsonia intracellularis. Vet Res 2014; 45:55. [PMID: 24885874 PMCID: PMC4031155 DOI: 10.1186/1297-9716-45-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Lawsonia intracellularis is an obligate intracellular bacterium, responsible for the disease complex known as proliferative enteropathy (PE). L. intracellularis is associated with intestinal crypt epithelial cell proliferation but the mechanisms responsible are yet to be defined. Microarray analysis was used to investigate the host-pathogen interaction in experimentally infected pigs to identify pathways that may be involved. Ileal samples originating from twenty-eight weaner pigs experimentally challenged with a pure culture of L. intracellularis (strain LR189/5/83) were subjected to microarray analysis. Microarray transcriptional signatures were validated using immunohistochemistry and quantitative real time PCR of selected genes at various time points post challenge. At peak of infection (14 days post challenge) 86% of altered transcripts were down regulated, particularly those involved in maintenance of mucosal integrity and regulation of cell transport. Among the up-regulated transcripts, CD163 and CDK1 were novel findings and considered to be important, due to their respective roles in innate immunity and cellular proliferation. Overall, targeted cellular mechanisms included those that are important in epithelial restitution, migration and protection; maintenance of stable inter-epithelial cell relationships; cell transport of nutrients and electrolytes; innate immunity; and cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Tahar Ait-Ali
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK.
| |
Collapse
|
20
|
Lu ZH, Brown A, Wilson AD, Calvert JG, Balasch M, Fuentes-Utrilla P, Loecherbach J, Turner F, Talbot R, Archibald AL, Ait-Ali T. Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing. Virol J 2014; 11:42. [PMID: 24588855 PMCID: PMC3945042 DOI: 10.1186/1743-422x-11-42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. FINDINGS We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. CONCLUSION Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK.
| |
Collapse
|
21
|
Kapetanovic R, Fairbairn L, Downing A, Beraldi D, Sester DP, Freeman TC, Tuggle CK, Archibald AL, Hume DA. The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide. BMC Genomics 2013; 14:581. [PMID: 23984833 PMCID: PMC3766131 DOI: 10.1186/1471-2164-14-581] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The draft genome of the domestic pig (Sus scrofa) has recently been published permitting refined analysis of the transcriptome. Pig breeds have been reported to differ in their resistance to infectious disease. In this study we examine whether there are corresponding differences in gene expression in innate immune cells RESULTS We demonstrate that macrophages can be harvested from three different compartments of the pig (lungs, blood and bone-marrow), cryopreserved and subsequently recovered and differentiated in CSF-1. We have performed surface marker analysis and gene expression profiling on macrophages from these compartments, comparing twenty-five animals from five different breeds and their response to lipopolysaccharide. The results provide a clear distinction between alveolar macrophages (AM) and monocyte-derived (MDM) and bone-marrow-derived macrophages (BMDM). In particular, the lung macrophages express the growth factor, FLT1 and its ligand, VEGFA at high levels, suggesting a distinct pathway of growth regulation. Relatively few genes showed breed-specific differential expression, notably CXCR2 and CD302 in alveolar macrophages. In contrast, there was substantial inter-individual variation between pigs within breeds, mostly affecting genes annotated as being involved in immune responses. CONCLUSIONS Pig macrophages more closely resemble human, than mouse, in their set of macrophage-expressed and LPS-inducible genes. Future research will address whether inter-individual variation in macrophage gene expression is heritable, and might form the basis for selective breeding for disease resistance.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, United Kingdom
| | - Lynsey Fairbairn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81679, Munich, Germany
| | - Alison Downing
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, United Kingdom
| | - Dario Beraldi
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - David P Sester
- Innate Immunity Laboratory, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, United Kingdom
| | | | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, United Kingdom
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, United Kingdom
| |
Collapse
|
22
|
Dawson HD, Loveland JE, Pascal G, Gilbert JGR, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D, Hunt T, Hardy M, Hu Z, Zhao SH, Anselmo A, Shinkai H, Chen C, Badaoui B, Berman D, Amid C, Kay M, Lloyd D, Snow C, Morozumi T, Cheng RPY, Bystrom M, Kapetanovic R, Schwartz JC, Kataria R, Astley M, Fritz E, Steward C, Thomas M, Wilming L, Toki D, Archibald AL, Bed’Hom B, Beraldi D, Huang TH, Ait-Ali T, Blecha F, Botti S, Freeman TC, Giuffra E, Hume DA, Lunney JK, Murtaugh MP, Reecy JM, Harrow JL, Rogel-Gaillard C, Tuggle CK. Structural and functional annotation of the porcine immunome. BMC Genomics 2013; 14:332. [PMID: 23676093 PMCID: PMC3658956 DOI: 10.1186/1471-2164-14-332] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/03/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.
Collapse
Affiliation(s)
- Harry D Dawson
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Jane E Loveland
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Géraldine Pascal
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - James GR Gilbert
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Hirohide Uenishi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Katherine M Mann
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jie Zhang
- Laboratory of Animal Genetics, Breeding, and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Denise Carvalho-Silva
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK,Current affiliation: EMBL Outstation-Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambs CB10 1SD, UK
| | - Toby Hunt
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Matthew Hardy
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Zhiliang Hu
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Shu-Hong Zhao
- Laboratory of Animal Genetics, Breeding, and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Anna Anselmo
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Hiroki Shinkai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Celine Chen
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Bouabid Badaoui
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Daniel Berman
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Clara Amid
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK,Current affiliation: EMBL Outstation-Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambs CB10 1SD, UK
| | - Mike Kay
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - David Lloyd
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Catherine Snow
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Takeya Morozumi
- Institute of Japan Association for Technology in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
| | - Ryan Pei-Yen Cheng
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan Bystrom
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - John C Schwartz
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - Ranjit Kataria
- National Bureau of Animal Genetic Resources, P.B. 129, GT Road By-Pass, Karnal 132001, (Haryana), India
| | - Matthew Astley
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Eric Fritz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Charles Steward
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Mark Thomas
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Laurens Wilming
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Daisuke Toki
- Institute of Japan Association for Technology in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Bertrand Bed’Hom
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | - Dario Beraldi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sara Botti
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Elisabetta Giuffra
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy,INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Joan K Lunney
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jennifer L Harrow
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Claire Rogel-Gaillard
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | | |
Collapse
|
23
|
Arceo ME, Ernst CW, Lunney JK, Choi I, Raney NE, Huang T, Tuggle CK, Rowland RRR, Steibel JP. Characterizing differential individual response to porcine reproductive and respiratory syndrome virus infection through statistical and functional analysis of gene expression. Front Genet 2013; 3:321. [PMID: 23335940 PMCID: PMC3546301 DOI: 10.3389/fgene.2012.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/23/2012] [Indexed: 12/20/2022] Open
Abstract
We evaluated differences in gene expression in pigs from the Porcine Reproductive and Respiratory Syndrome (PRRS) Host Genetics Consortium initiative showing a range of responses to PRRS virus infection. Pigs were allocated into four phenotypic groups according to their serum viral level and weight gain. RNA obtained from blood at 0, 4, 7, 11, 14, 28, and 42 days post-infection (DPI) was hybridized to the 70-mer 20K Pigoligoarray. We used a blocked reference design for the microarray experiment. This allowed us to account for individual biological variation in gene expression, and to assess baseline effects before infection (0 DPI). Additionally, this design has the flexibility of incorporating future data for differential expression analysis. We focused on evaluating transcripts showing significant interaction of weight gain and serum viral level. We identified 491 significant comparisons [false discovery rate (FDR) = 10%] across all DPI and phenotypic groups. We corroborated the overall trend in direction and level of expression (measured as fold change) at 4 DPI using qPCR (r = 0.91, p ≤ 0.0007). At 4 and 7 DPI, network and functional analyses were performed to assess if immune related gene sets were enriched for genes differentially expressed (DE) across four phenotypic groups. We identified cell death function as being significantly associated (FDR ≤ 5%) with several networks enriched for DE transcripts. We found the genes interferon-alpha 1(IFNA1), major histocompatibility complex, class II, DQ alpha 1 (SLA-DQA1), and major histocompatibility complex, class II, DR alpha (SLA-DRA) to be DE (p ≤ 0.05) between phenotypic groups. Finally, we performed a power analysis to estimate sample size and sampling time-points for future experiments. We concluded the best scenario for investigation of early response to PRRSV infection consists of sampling at 0, 4, and 7 DPI using about 30 pigs per phenotypic group.
Collapse
Affiliation(s)
- Maria E Arceo
- Department of Animal Science, Michigan State University East Lansing, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiang C, Xing F, Xing J, Jiang Y, Zhou E. Different expression patterns of PRRSV mediator genes in the lung tissues of PRRSV resistant and susceptible pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:127-131. [PMID: 22305867 DOI: 10.1016/j.dci.2012.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/14/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused severe economic loss in most swine-producing countries. The resistance to PRRS virus (PRRSV) infection varies among pig breeds and lines. In this study, we found that the Chinese Dapulian pigs (DPL) were more resistant to PRRSV than commercial Duroc×Landrace×Yorkshire (DLY) crossbred pigs in that lower rectal temperature and lower PRRSV copy number in the serum were detected in the former. Analysis of the mRNA expression of five PRRSV mediator genes (SIGLEC1, NMMHC-IIA, CD163, VIM and HSPG2) in the lung tissues indicated differences in expression between DLY and DPL pigs. In uninfected porcine lung tissues, the levels of SIGLEC1, NMMHC-IIA, CD163 and VIM genes were significantly higher in DLY than in DPL pigs (P<0.05); in PRRSV-infected pigs, the expression levels of NMMHC-IIA and CD163 mRNA were significantly higher in DPL pigs compared to uninfected ones (P<0.05), whereas these levels were not different in DLY pigs or between infected DPL and DLY pigs. Thus, the different expression of PRRSV mediator genes is likely related to pig resistance to PRRSV.
Collapse
Affiliation(s)
- Chenglan Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | |
Collapse
|
25
|
Weesendorp E, Morgan S, Stockhofe-Zurwieden N, Popma-De Graaf DJ, Graham SP, Rebel JMJ. Comparative analysis of immune responses following experimental infection of pigs with European porcine reproductive and respiratory syndrome virus strains of differing virulence. Vet Microbiol 2012; 163:1-12. [PMID: 23036445 PMCID: PMC7117209 DOI: 10.1016/j.vetmic.2012.09.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is difficult to control due to a high mutation rate and the emergence of virulent strains. The objective of this study was to analyze the immunological and pathological responses after infection with the European subtype 3 strain Lena in comparison to subtype 1 strains Belgium A and Lelystad-Ter Huurne (LV). Sixteen pigs were inoculated per strain, and sixteen pigs with PBS. At days 7 and 21 post-inoculation (p.i.), four pigs per group were immunized with an Aujeszky disease vaccine (ADV) to study the immune competence after PRRSV infection. Infection with the Lena strain resulted in fever and clinical signs. This was not observed in the Belgium A or LV-infected pigs. Infection with the Lena strain resulted in high virus titers in serum, low numbers of IFN-γ secreting cells, a change in leukocyte populations and a delayed antibody response to immunization with ADV. Levels of IL-1β, IFN-α, IL-10, IL-12, TNF-α and IFN-γ mRNA of the Lena-infected pigs were increased during the first week of infection. For pigs infected with the Belgium A or LV strain, the effects of infection on these parameters were less pronounced, although for the Belgium A-infected pigs, the level of the analyzed cytokines, except for TNF-α, and leukocyte populations were comparable to the Lena-infected pigs. These results suggest that while the outcome of infection for the three strains was comparable, with mostly clearance of viremia at day 33 p.i, differences in immune responses were observed, perhaps contributing to their virulence.
Collapse
Affiliation(s)
- Eefke Weesendorp
- Department of Infection Biology, Central Veterinary Institute, Part of Wageningen UR, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Post-transcriptional control of type I interferon induction by porcine reproductive and respiratory syndrome virus in its natural host cells. Viruses 2012; 4:725-33. [PMID: 22754646 PMCID: PMC3386621 DOI: 10.3390/v4050725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 12/28/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is not only a poor inducer of type I interferon but also inhibits the efficient induction of type I interferon by porcine transmissible gastroenteritis virus (TGEV) and synthetic dsRNA molecules, Poly I:C. However, the mechanistic basis by which PRRSV interferes with the induction of type I interferon in its natural host cells remains less well defined. The purposes of this review are to summarize the key findings in supporting the post-transcriptional control of type I interferon in its natural host cells and to propose the possible role of translational control in the regulation of type I interferon induction by PRRSV.
Collapse
|
27
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|