1
|
Wojczulanis-Jakubas K, Hoover B, Jakubas D, Fort J, Grémillet D, Gavrilo M, Zielińska S, Zagalska-Neubauer M. Diversity of major histocompatibility complex of II B gene and mate choice in a monogamous and long-lived seabird, the Little Auk (Alle alle). PLoS One 2024; 19:e0304275. [PMID: 38865310 PMCID: PMC11168636 DOI: 10.1371/journal.pone.0304275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a key role in the adaptive immune system of vertebrates, and is known to influence mate choice in many species. In birds, the MHC has been extensively examined but mainly in galliforms and passerines while other taxa that represent specific ecological and evolutionary life-histories, like seabirds, are underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC variation could be maintained through balancing selection and disassortative mating. We found high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles across 140 individuals from three populations. The alleles frequencies exhibited a similar skewed distribution in both sexes, with the four most commonly occurring alleles representing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection analysis suggest evidence of balancing selection and no direct evidence for MHC-dependent disassortative mating preferences in the Little Auk. The latter result might be attributed to the high overall polymorphism of the examined fragment, which itself may be maintained by the large population size of the species.
Collapse
Affiliation(s)
| | - Brian Hoover
- Farallon Institute, Petaluma, California, United States of America
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle University, 17000 La Rochelle, France
| | - David Grémillet
- Excellence Chair Nouvelle Aquitaine - CEBC UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois, France & FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | | | - Sylwia Zielińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
2
|
Eltschkner S, Mellinger S, Buus S, Nielsen M, Paulsson KM, Lindkvist-Petersson K, Westerdahl H. The structure of songbird MHC class I reveals antigen binding that is flexible at the N-terminus and static at the C-terminus. Front Immunol 2023; 14:1209059. [PMID: 37483599 PMCID: PMC10360169 DOI: 10.3389/fimmu.2023.1209059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Long-distance migratory animals such as birds and bats have evolved to withstand selection imposed by pathogens across the globe, and pathogen richness is known to be particularly high in tropical regions. Immune genes, so-called Major Histocompatibility Complex (MHC) genes, are highly duplicated in songbirds compared to other vertebrates, and this high MHC diversity has been hypothesised to result in a unique adaptive immunity. To understand the rationale behind the evolution of the high MHC genetic diversity in songbirds, we determined the structural properties of an MHC class I protein, Acar3, from a long-distance migratory songbird, the great reed warbler Acrocephalus arundinaceus (in short: Acar). The structure of Acar3 was studied in complex with pathogen-derived antigens and shows an overall antigen presentation similar to human MHC class I. However, the peptides bound to Acar3 display an unusual conformation: Whereas the N-terminal ends of the peptides display enhanced flexibility, the conformation of their C-terminal halves is rather static. This uncommon peptide-binding mode in Acar3 is facilitated by a central Arg residue within the peptide-binding groove that fixes the backbone of the peptide at its central position, and potentially permits successful interactions between MHC class I and innate immune receptors. Our study highlights the importance of investigating the immune system of wild animals, such as birds and bats, to uncover unique immune mechanisms which may neither exist in humans nor in model organisms.
Collapse
Affiliation(s)
- Sandra Eltschkner
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Samantha Mellinger
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Soren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | - Morten Nielsen
- Immunoinformatics and Machine Learning, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kajsa M. Paulsson
- Antigen Presentation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Medical Structural Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- LINXS - Institute of Advanced Neutron and X-ray Science, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot. Sci Rep 2022; 12:7031. [PMID: 35488050 PMCID: PMC9054815 DOI: 10.1038/s41598-022-11018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra. An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.
Collapse
|
4
|
Minias P, Drzewińska-Chańko J, Włodarczyk R. Evolution of innate and adaptive immune genes in a non-model waterbird, the common tern. INFECTION GENETICS AND EVOLUTION 2021; 95:105069. [PMID: 34487864 DOI: 10.1016/j.meegid.2021.105069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) are the key pathogen-recognition genes of vertebrate immune system and they have a crucial role in the initiation of innate and adaptive immune response, respectively. Recent advancements in sequencing technology sparked research on highly duplicated MHC genes in non-model species, but TLR variation in natural vertebrate populations has remained little studied and comparisons of polymorphism across both TLRs and MHC are scarce. Here, we aimed to compare variation across innate (four TLR loci) and adaptive (MHC class I and class II) immune genes in a non-model avian species, the common tern Sterna hirundo. We detected relatively high allelic richness at TLR genes (9-48 alleles per locus), which was similar to or even higher than the estimated per locus allelic richness at the MHC (24-30 alleles at class I and 13-16 alleles at class II under uniform sample sizes). Despite this, the total number of MHC alleles across all duplicated loci (four class I and three class II) was much higher and MHC alleles showed greater sequence divergence than TLRs. Positive selection targeted relatively more sites at the MHC than TLRs, but the strength of selection (dN/dS ratios) at TLRs was higher when compared to MHC class I. There were also differences in the signature of positive selection and recombination (gene conversion) between MHC class I and II (stronger signature at class II), suggesting that mechanisms maintaining variation at the MHC may vary between both classes. Our study indicates that allelic richness of both innate and adaptive immune receptors may be maintained at relatively high levels in viable avian populations and we recommend a transition from the traditional gene-specific to multi-gene approach in studying molecular evolution of vertebrate immune system.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| | - Joanna Drzewińska-Chańko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
5
|
Zhang T, Jin W, Yang S, Li Y, Zhang M, Shi M, Guo X, Li D, Zhang B, Liu S, Hu D. Study of compositions of musks in different types secreted by forest musk deer (Moschus berezovskii). PLoS One 2021; 16:e0245677. [PMID: 33725016 PMCID: PMC7963063 DOI: 10.1371/journal.pone.0245677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Musk is a secretion of the forest musk deer (Moschus berezovskii). Normal musk is a brown solid secretion with a light fragrance. In this study, abnormal types of musk, namely, white and black musks, were discovered during the musk collection process. Researchers have long been concerned with the components of musk. Herein, GC-MS, headspace solid-phase microextraction (HS-SPME), and nonmetric multidimensional scaling (NMDS) were used to analyze the nonpolar organic components, volatile organic components, and sample similarities among different musks, respectively. Abundant steroid hormones and proteins were also found in the musk. The steroid hormone concentrations were detected using a radioimmunoassay (RIA). Proteins in the samples were hydrolyzed and the amino acids concentrations were detected. The steroid hormone and amino acid concentrations in white musk were significantly lower than in normal and black musks (p<0.05). The components were subjected to NMDS analysis to understand the differences in components among different types of musk, with the results suggesting that white musk was different from normal and black musks.
Collapse
Affiliation(s)
- Tianxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Weijiang Jin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shuang Yang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Yimeng Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Meishan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Minghui Shi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xiaobing Guo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Dawei Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shuqiang Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
- * E-mail: (SL); (DH)
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
- * E-mail: (SL); (DH)
| |
Collapse
|
6
|
Leclaire S, Strandh M, Dell'Ariccia G, Gabirot M, Westerdahl H, Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol Ecol 2019; 28:833-846. [PMID: 30582649 DOI: 10.1111/mec.14993] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour-producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent-producing body surfaces. Here, using high-throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC-based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical-producing microbiota in birds.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), Toulouse, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Gaia Dell'Ariccia
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Marianne Gabirot
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | | | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| |
Collapse
|
7
|
Minias P, Pikus E, Anderwald D. Allelic diversity and selection at the MHC class I and class II in a bottlenecked bird of prey, the White-tailed Eagle. BMC Evol Biol 2019; 19:2. [PMID: 30611206 PMCID: PMC6321662 DOI: 10.1186/s12862-018-1338-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Background Genes of the Major Histocompatibility Complex (MHC) are essential for adaptive immune response in vertebrates, as they encode receptors that recognize peptides derived from the processing of intracellular (MHC class I) and extracellular (MHC class II) pathogens. High MHC diversity in natural populations is primarily generated and maintained by pathogen-mediated diversifying and balancing selection. It is, however, debated whether selection at the MHC can counterbalance the effects of drift in bottlenecked populations. The aim of this study was to assess allelic diversity of MHC genes in a recently bottlenecked bird of prey, the White-tailed Eagle Haliaeetus albicilla, as well as to compare mechanisms that shaped the evolution of MHC class I and class II in this species. Results We showed that significant levels of MHC diversity were retained in the core Central European (Polish) population of White-tailed Eagles. Ten MHC class I and 17 MHC class II alleles were recovered in total and individual birds showed high average MHC diversity (3.80 and 6.48 MHC class I and class II alleles per individual, respectively). Distribution of alleles within individuals provided evidence for the presence of at least three class I and five class II loci the White-tailed Eagle, which suggests recent duplication events. MHC class II showed greater sequence polymorphism than MHC class I and there was much stronger signature of diversifying selection acting on MHC class II than class I. Phylogenetic analysis provided evidence for trans-species similarity of class II, but not class I, sequences, which is likely consistent with stronger balancing selection at MHC class II. Conclusions Relatively high MHC diversity retained in the White-tailed Eagles from northern Poland reinforces high conservation value of local eagle populations. At the same time, our study is the first to demonstrate contrasting patterns of allelic diversity and selection at MHC class I and class II in an accipitrid species, supporting the hypothesis that different mechanisms can shape evolutionary trajectories of MHC class I and class II genes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1338-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Dariusz Anderwald
- Eagle Conservation Committee, Niepodległości 53/55, 10-044, Olsztyn, Poland
| |
Collapse
|
8
|
Hacking J, Bradford T, Pierce K, Gardner M. De novo genotyping of the major histocompatibility complex in an Australian dragon lizard, Ctenophorus decresii. T ROY SOC SOUTH AUST 2018. [DOI: 10.1080/03721426.2018.1542259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jessica Hacking
- College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Tessa Bradford
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Kelly Pierce
- College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Michael Gardner
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| |
Collapse
|
9
|
Minias P, Pikus E, Whittingham LA, Dunn PO. A global analysis of selection at the avian MHC. Evolution 2018; 72:1278-1293. [PMID: 29665025 DOI: 10.1111/evo.13490] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Recent advancements in sequencing technology have resulted in rapid progress in the study of the major histocompatibility complex (MHC) in non-model avian species. Here, we analyze a global dataset of avian MHC class I and class II sequences (ca. 11,000 sequences from over 250 species) to gain insight into the processes that govern macroevolution of MHC genes in birds. Analysis of substitution rates revealed striking differences in the patterns of diversifying selection between passerine and non-passerine birds. Non-passerines showed stronger selection at MHC class II, which is primarily involved in recognition of extracellular pathogens, while passerines showed stronger selection at MHC class I, which is involved in recognition of intracellular pathogens. Positions of positively selected amino-acid residues showed marked discrepancies with peptide-binding residues (PBRs) of human MHC molecules, suggesting that using a human classification of PBRs to assess selection patterns at the avian MHC may be unjustified. Finally, our analysis provided evidence that indel mutations can make a substantial contribution to adaptive variation at the avian MHC.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| |
Collapse
|
10
|
Rekdal SL, Anmarkrud JA, Johnsen A, Lifjeld JT. Genotyping strategy matters when analyzing hypervariable major histocompatibility complex-Experience from a passerine bird. Ecol Evol 2018; 8:1680-1692. [PMID: 29435243 PMCID: PMC5792522 DOI: 10.1002/ece3.3757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat (Luscinia svecica). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single- and a dual-indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%-82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele-specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform-specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method-specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high-throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.
Collapse
|
11
|
Lack of evidence for selection favouring MHC haplotypes that combine high functional diversity. Heredity (Edinb) 2018; 120:396-406. [PMID: 29362475 DOI: 10.1038/s41437-017-0047-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023] Open
Abstract
High rates of gene duplication and the highest levels of functional allelic diversity in vertebrate genomes are the main hallmarks of the major histocompatibility complex (MHC), a multigene family with a primordial role in pathogen recognition. The usual tight linkage among MHC gene duplicates may provide an opportunity for the evolution of haplotypes that associate functionally divergent alleles and thus grant the transmission of optimal levels of diversity to coming generations. Even though such associations may be a crucial component of disease resistance, this hypothesis has been given little attention in wild populations. Here, we leveraged pedigree data from a barn owl (Tyto alba) population to characterize MHC haplotype structure across two MHC class I (MHC-I) and two MHC class IIB (MHC-IIB) duplicates, in order to test the hypothesis that haplotypes' genetic diversity is higher than expected from randomly associated alleles. After showing that MHC loci are tightly linked within classes, we found limited evidence for shifts towards MHC haplotypes combining high diversity. Neither amino acid nor functional within-haplotype diversity were significantly higher than in random sets of haplotypes, regardless of MHC class. Our results therefore provide no evidence for selection towards high-diversity MHC haplotypes in barn owls. Rather, high rates of concerted evolution may constrain the evolution of high-diversity haplotypes at MHC-I, while, in contrast, for MHC-IIB, fixed differences among loci may provide barn owls with already optimized functional diversity. This suggests that at the MHC-I and MHC-IIB respectively, different evolutionary dynamics may govern the evolution of within-haplotype diversity.
Collapse
|
12
|
Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 2017; 69:463-478. [PMID: 28534224 PMCID: PMC5486808 DOI: 10.1007/s00251-017-0993-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
Collapse
Affiliation(s)
- Sara Pardal
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Anna Drews
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden.
| | - José A Alves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,South Iceland Research Centre, University of Iceland, Fjolheimer, IS-800, Selfoss, Iceland
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Helena Westerdahl
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden
| |
Collapse
|
13
|
Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F. Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proc Biol Sci 2017; 284:20162466. [PMID: 28077776 PMCID: PMC5247505 DOI: 10.1098/rspb.2016.2466] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 11/12/2022] Open
Abstract
Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Ecology building, 22362 Lund, Sweden
| | - Jérôme Mardon
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Lund University, Ecology building, 22362 Lund, Sweden
| | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
14
|
Egernia stokesii (gidgee skink) MHC I positively selected sites lack concordance with HLA peptide binding regions. Immunogenetics 2016; 69:49-61. [PMID: 27517292 DOI: 10.1007/s00251-016-0947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play an important role in vertebrate disease resistance, kin recognition and mate choice. Mammalian MHC is the most widely characterised of all vertebrates, and attention is often given to the peptide binding regions of the MHC because they are presumed to be under stronger selection than non-peptide binding regions. For vertebrates where the MHC is less well understood, researchers commonly use the amino acid positions of the peptide binding regions of the human leukocyte antigen (HLA) to infer the peptide binding regions within the MHC sequences of their taxon of interest. However, positively selected sites within MHC have been reported to lack correspondence with the HLA in fish, frogs, birds and reptiles including squamates. Despite squamate diversity, the MHC has been characterised in few snakes and lizards. The Egernia group of scincid lizards is appropriate for investigating mechanisms generating MHC variation, as their inclusion will add a new lineage (i.e. Scincidae) to studies of selection on the MHC. We aimed to identify positively selected sites within the MHC of Egernia stokesii and then determine if these sites corresponded with the peptide binding regions of the HLA. Six positively selected sites were identified within E. stokesii MHC I, only two were homologous with the HLA. E. stokesii positively selected sites corresponded more closely to non-lizard than other lizard taxa. The characterisation of the MHC of more intermediate taxa within the squamate order is necessary to understand the evolution of the MHC across all vertebrates.
Collapse
|
15
|
Dearborn DC, Gager AB, McArthur AG, Gilmour ME, Mandzhukova E, Mauck RA. Gene duplication and divergence produce divergent MHC genotypes without disassortative mating. Mol Ecol 2016; 25:4355-67. [PMID: 27376487 DOI: 10.1111/mec.13747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.
Collapse
Affiliation(s)
- Donald C Dearborn
- Department of Biology, Bates College, Lewiston, ME, 04240, USA.,School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Andrea B Gager
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Morgan E Gilmour
- Ocean Sciences Department, University of California, Santa Cruz, CA, 95064, USA
| | | | - Robert A Mauck
- Department of Biology, Kenyon College, Gambier, OH, 43022, USA
| |
Collapse
|
16
|
Gaigher A, Burri R, Gharib WH, Taberlet P, Roulin A, Fumagalli L. Family-assisted inference of the genetic architecture of major histocompatibility complex variation. Mol Ecol Resour 2016; 16:1353-1364. [DOI: 10.1111/1755-0998.12537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Affiliation(s)
- A. Gaigher
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| | - R. Burri
- Department of Evolutionary Biology; Uppsala University; Norbyvägen 18D SE-752 36 Uppsala Sweden
| | - W. H. Gharib
- Interfaculty Bioinformatics Unit; University of Bern; CH-3012 Bern Switzerland
| | - P. Taberlet
- CNRS; Laboratoire d'Ecologie Alpine (LECA); 38000 Grenoble France
- Laboratoire d'Ecologie Alpine (LECA); University of Grenoble Alpes; 38000 Grenoble France
| | - A. Roulin
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| | - L. Fumagalli
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| |
Collapse
|
17
|
Balasubramaniam S, Bray RD, Mulder RA, Sunnucks P, Pavlova A, Melville J. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines. BMC Evol Biol 2016; 16:112. [PMID: 27206579 PMCID: PMC4875725 DOI: 10.1186/s12862-016-0681-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. Results We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Conclusions Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0681-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shandiya Balasubramaniam
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia. .,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Rebecca D Bray
- Terrestrial Vertebrates, Western Australian Museum, Perth, WA, 6986, Australia
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jane Melville
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia
| |
Collapse
|
18
|
Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn PO. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion. Heredity (Edinb) 2016; 116:466-76. [PMID: 26860199 DOI: 10.1038/hdy.2016.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.
Collapse
Affiliation(s)
- P Minias
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Z W Bateson
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, TX, USA
| | - S Oyler-McCance
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | - P O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
19
|
O'Connor EA, Strandh M, Hasselquist D, Nilsson JÅ, Westerdahl H. The evolution of highly variable immunity genes across a passerine bird radiation. Mol Ecol 2016; 25:977-89. [DOI: 10.1111/mec.13530] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. A. O'Connor
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - M. Strandh
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - D. Hasselquist
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - J.-Å. Nilsson
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - H. Westerdahl
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| |
Collapse
|
20
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
21
|
Lyons AC, Hoostal MJ, Bouzat JL. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution. Genetica 2015; 143:521-34. [PMID: 26071093 DOI: 10.1007/s10709-015-9850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Abstract
The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.
Collapse
Affiliation(s)
- Amanda C Lyons
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | |
Collapse
|
22
|
Lei W, Fang W, Lin Q, Zhou X, Chen X. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes). Immunogenetics 2015; 67:463-72. [PMID: 26033691 DOI: 10.1007/s00251-015-0846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China,
| | | | | | | | | |
Collapse
|
23
|
Caro SP, Balthazart J, Bonadonna F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm Behav 2015; 68:25-42. [PMID: 24928570 PMCID: PMC4263688 DOI: 10.1016/j.yhbeh.2014.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Chemical cues were probably the first cues ever used to communicate and are still ubiquitous among living organisms. Birds have long been considered an exception: it was believed that birds were anosmic and relied on their acute visual and acoustic capabilities. Birds are however excellent smellers and use odors in various contexts including food searching, orientation, and also breeding. Successful reproduction in most vertebrates involves the exchange of complex social signals between partners. The first evidence for a role of olfaction in reproductive contexts in birds only dates back to the seventies, when ducks were shown to require a functional sense of smell to express normal sexual behaviors. Nowadays, even if the interest for olfaction in birds has largely increased, the role that bodily odors play in reproduction still remains largely understudied. The few available studies suggest that olfaction is involved in many reproductive stages. Odors have been shown to influence the choice and synchronization of partners, the choice of nest-building material or the care for the eggs and offspring. How this chemical information is translated at the physiological level mostly remains to be described, although available evidence suggests that, as in mammals, key reproductive brain areas like the medial preoptic nucleus are activated by relevant olfactory signals. Olfaction in birds receives increasing attention and novel findings are continuously published, but many exciting discoveries are still ahead of us, and could make birds one of the animal classes with the largest panel of developed senses ever described.
Collapse
Affiliation(s)
- Samuel P Caro
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | - Francesco Bonadonna
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France
| |
Collapse
|
24
|
Dearborn DC, Gager AB, Gilmour ME, McArthur AG, Hinerfeld DA, Mauck RA. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach’s storm-petrel. Immunogenetics 2014; 67:111-23. [DOI: 10.1007/s00251-014-0813-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
|
25
|
Jones MR, Cheviron ZA, Carling MD. Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis). Immunogenetics 2014; 66:693-704. [DOI: 10.1007/s00251-014-0800-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
|
26
|
Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour 2014; 14:778-88. [PMID: 24479469 DOI: 10.1111/1755-0998.12234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
The amount of sequence data available today highly facilitates the access to genes from many gene families. Primers amplifying the desired genes over a range of species are readily obtained by aligning conserved gene regions, and laborious gene isolation procedures can often be replaced by quicker PCR-based approaches. However, in the case of multigene families, PCR-based approaches bear the often ignored risk of incomplete isolation of family members. This problem is most prominent in gene families with highly variable and thus unpredictable number of gene copies among species, such as in the major histocompatibility complex (MHC). In this study, we (i) report new primers for the isolation of the MHC class IIB (MHCIIB) gene family in birds and (ii) share our experience with isolating MHCIIB genes from an unprecedented number of avian species from all over the avian phylogeny. We report important and usually underappreciated problems encountered during PCR-based multigene family isolation and provide a collection of measures to help significantly improving the chance of successfully isolating complete multigene families using PCR-based approaches.
Collapse
Affiliation(s)
- R Burri
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-75236, Uppsala, Sweden
| | | | | | | |
Collapse
|
27
|
Alcaide M, Muñoz J, Martínez-de la Puente J, Soriguer R, Figuerola J. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 2014; 4:688-98. [PMID: 24683452 PMCID: PMC3967895 DOI: 10.1002/ece3.974] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022] Open
Abstract
The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird.
Collapse
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Joaquin Muñoz
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
- The University of Oklahoma Biological Station15389 Station Road, Kingston, Oklahoma, 73439
| | | | - Ramón Soriguer
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| |
Collapse
|
28
|
Bauer MM, Miller MM, Briles WE, Reed KM. Genetic variation at the MHC in a population of introduced wild turkeys. Anim Biotechnol 2013; 24:210-28. [PMID: 23777350 DOI: 10.1080/10495398.2013.767267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.
Collapse
Affiliation(s)
- Miranda M Bauer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | | |
Collapse
|
29
|
Wang Z, Zhou X, Lin Q, Fang W, Chen X. Characterization, polymorphism and selection of major histocompatibility complex (MHC) DAB genes in vulnerable Chinese egret (Egretta eulophotes). PLoS One 2013; 8:e74185. [PMID: 24019955 PMCID: PMC3760844 DOI: 10.1371/journal.pone.0074185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/28/2013] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB) were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes). Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.
Collapse
Affiliation(s)
- Zeng Wang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| |
Collapse
|
30
|
Characteristics of MHC class I genes in house sparrows Passer domesticus as revealed by long cDNA transcripts and amplicon sequencing. J Mol Evol 2013; 77:8-21. [PMID: 23877344 DOI: 10.1007/s00239-013-9575-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
In birds the major histocompatibility complex (MHC) organization differs both among and within orders; chickens Gallus gallus of the order Galliformes have a simple arrangement, while many songbirds of the order Passeriformes have a more complex arrangement with larger numbers of MHC class I and II genes. Chicken MHC genes are found at two independent loci, classical MHC-B and non-classical MHC-Y, whereas non-classical MHC genes are yet to be verified in passerines. Here we characterize MHC class I transcripts (α1 to α3 domain) and perform amplicon sequencing using a next-generation sequencing technique on exon 3 from house sparrow Passer domesticus (a passerine) families. Then we use phylogenetic, selection, and segregation analyses to gain a better understanding of the MHC class I organization. Trees based on the α1 and α2 domain revealed a distinct cluster with short terminal branches for transcripts with a 6-bp deletion. Interestingly, this cluster was not seen in the tree based on the α3 domain. 21 exon 3 sequences were verified in a single individual and the average numbers within an individual were nine and five for sequences with and without a 6-bp deletion, respectively. All individuals had exon 3 sequences with and without a 6-bp deletion. The sequences with a 6-bp deletion have many characteristics in common with non-classical MHC, e.g., highly conserved amino acid positions were substituted compared with the other alleles, low nucleotide diversity and just a single site was subject to positive selection. However, these alleles also have characteristics that suggest they could be classical, e.g., complete linkage and absence of a distinct cluster in a tree based on the α3 domain. Thus, we cannot determine for certain whether or not the alleles with a 6-bp deletion are non-classical based on our present data. Further analyses on segregation patterns of these alleles in combination with dating the 6-bp deletion through MHC characterization across the genus Passer may solve this matter in the future.
Collapse
|
31
|
Promerová M, Králová T, Bryjová A, Albrecht T, Bryja J. MHC class IIB exon 2 polymorphism in the Grey partridge (Perdix perdix) is shaped by selection, recombination and gene conversion. PLoS One 2013; 8:e69135. [PMID: 23935938 PMCID: PMC3720538 DOI: 10.1371/journal.pone.0069135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism.
Collapse
Affiliation(s)
- Marta Promerová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tereza Králová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anna Bryjová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Aguilar JRD, Schut E, Merino S, Martínez J, Komdeur J, Westerdahl H. MHC class II B diversity in blue tits: a preliminary study. Ecol Evol 2013; 3:1878-89. [PMID: 23919136 PMCID: PMC3728931 DOI: 10.1002/ece3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
Collapse
Affiliation(s)
- Juan Rivero-de Aguilar
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Elske Schut
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Javier Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de AlcaláAlcalá de Henares, E-28871, Madrid, Spain
| | - Jan Komdeur
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Ecology Building, Lund UniversitySölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
33
|
Alcaide M, Liu M, Edwards SV. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ 2013; 1:e86. [PMID: 23781408 PMCID: PMC3685324 DOI: 10.7717/peerj.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/23/2013] [Indexed: 01/04/2023] Open
Abstract
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds.
Collapse
Affiliation(s)
- Miguel Alcaide
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Mark Liu
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Follin E, Karlsson M, Lundegaard C, Nielsen M, Wallin S, Paulsson K, Westerdahl H. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function. Immunogenetics 2013; 65:299-311. [PMID: 23358931 DOI: 10.1007/s00251-012-0676-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022]
Abstract
The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.
Collapse
Affiliation(s)
- Elna Follin
- Immunology Section, BMC-D14, Department of Experimental Medical Sciences, Lund University, 221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Buehler DM, Verkuil YI, Tavares ES, Baker AJ. Characterization of MHC class I in a long-distance migrant shorebird suggests multiple transcribed genes and intergenic recombination. Immunogenetics 2012; 65:211-25. [PMID: 23239370 DOI: 10.1007/s00251-012-0669-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic gene families encoding proteins crucial to the vertebrate acquired immune system. Classical MHC class I (MHCI) genes code for molecules expressed on the surfaces of most nucleated cells and are associated with defense against intracellular pathogens, such as viruses. These genes have been studied in a few wild bird species, but have not been studied in long-distance migrating shorebirds. Red Knots Calidris canutus are medium-sized, monogamous sandpipers with migratory routes that span the globe. Understanding how such long-distance migrants protect themselves from disease has gained new relevance since the emergence of avian-borne diseases, including intracellular pathogens recognized by MHCI molecules, such as avian influenza. In this study, we characterized MHCI genes in knots and found 36 alleles in eight individuals and evidence for six putatively functional and expressed MHCI genes in a single bird. We also found evidence for recombination and for positive selection at putative peptide binding sites in exons 2 and 3. These results suggest surprisingly high MHC diversity in knots, given their demographic history. This may be a result of selection from diverse pathogens encountered by shorebirds throughout their annual migrations.
Collapse
MESH Headings
- Amino Acid Sequence
- Animal Migration
- Animals
- Charadriiformes/genetics
- Charadriiformes/immunology
- DNA, Complementary/genetics
- DNA, Intergenic/genetics
- Ecosystem
- Exons/genetics
- Genes, MHC Class I
- Genetic Variation
- Introns/genetics
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Genetic
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Recombination, Genetic
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Deborah M Buehler
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
36
|
Wutzler R, Foerster K, Kempenaers B. MHC class I variation in a natural blue tit population (Cyanistes caeruleus). Genetica 2012; 140:349-64. [PMID: 23073914 DOI: 10.1007/s10709-012-9679-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 09/03/2012] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex (MHC) is central to the vertebrate immune system and its highly polymorphic genes are considered to influence several life-history traits of individuals. To characterize the MHC in a natural population of blue tits (Cyanistes caeruleus) we investigated the class I exon 3 diversity of more than 900 individuals. We designed two pairs of motif-specific primers that reliably amplify independent subsets of MHC alleles. Applying denaturing gradient gel electrophoresis (DGGE) we obtained 48 independently inherited units of unique band patterns (DGGE-haplogroups), which were validated in a segregation analysis within 105 families. In a second approach, we extensively sequenced 6 unrelated individuals to confirm that DGGE-haplogroup composition reflects individual allelic variation. The highest number of different DGGE-haplogroups in a single individual corresponded in 19 MHC exon 3 sequences, suggesting a minimum of 10 amplified MHC class I loci in the blue tit. In total, we identified 50 unique functional and 3 non-functional sequences. Functional sequences showed high levels of recombination and strong positive selection in the antigen binding region, whereas nucleotide diversity was comparatively low in the range of all passerine species. Finally, in a phylogenetic comparison of passerine MHC class I exon 3 sequences we discuss conflicting evolutionary signals possibly due to recent gene duplication, recombination events and concerted evolution. Our results indicate that the described method is suitable to effectively explore the MHC diversity and its ecological impacts in blue tits in future studies.
Collapse
Affiliation(s)
- R Wutzler
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82305 Seewiesen, Germany.
| | | | | |
Collapse
|
37
|
Strandh M, Westerdahl H, Pontarp M, Canbäck B, Dubois MP, Miquel C, Taberlet P, Bonadonna F. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc Biol Sci 2012; 279:4457-63. [PMID: 22951737 DOI: 10.1098/rspb.2012.1562] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.
Collapse
Affiliation(s)
- Maria Strandh
- Behavioral Ecology Group, CEFE-CNRS, 1919 Route de Mende, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection. Immunogenetics 2012; 64:825-38. [PMID: 22864956 DOI: 10.1007/s00251-012-0637-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785-HQ008789, HQ008791-HQ008798, HQ008808-HQ008815, HQ008824, HQ008826-HQ008830, HQ008835, HQ008839, HQ008842-HQ008850, and JX023536-JX023540.
Collapse
|
39
|
GANGOSO L, ALCAIDE M, GRANDE JM, MUÑOZ J, TALBOT SL, SONSTHAGEN SA, SAGE GK, FIGUEROLA J. Colonizing the world in spite of reduced MHC variation. J Evol Biol 2012; 25:1438-47. [DOI: 10.1111/j.1420-9101.2012.02529.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Ye Q, He K, Wu SY, Wan QH. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant. PLoS One 2012; 7:e32154. [PMID: 22403630 PMCID: PMC3293878 DOI: 10.1371/journal.pone.0032154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 12/02/2022] Open
Abstract
The bacterial artificial chromosome (BAC) system is widely used in isolation of large genomic fragments of interest. Construction of a routine BAC library requires several months for picking clones and arraying BACs into superpools in order to employ 4D-PCR to screen positive BACs, which might be time-consuming and laborious. The major histocompatibility complex (MHC) is a cluster of genes involved in the vertebrate immune system, and the classical avian MHC-B locus is a minimal essential one, occupying a 100-kb genomic region. In this study, we constructed a more effective reverse-4D BAC library for the golden pheasant, which first creates sub-libraries and then only picks clones of positive sub-libraries, and identified several MHC clones within thirty days. The full sequencing of a 97-kb reverse-4D BAC demonstrated that the golden pheasant MHC-B locus contained 20 genes and showed good synteny with that of the chicken. The notable differences between these two species were the numbers of class II B loci and NK genes and the inversions of the TAPBP gene and the TAP1-TAP2 region. Furthermore, the inverse TAP2-TAP1 was unique in the golden pheasant in comparison with that of chicken, turkey, and quail. The newly defined genomic structure of the golden pheasant MHC will give an insight into the evolutionary history of the avian MHC.
Collapse
Affiliation(s)
| | | | - Shao-Ying Wu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|