1
|
Emmelot ME, Bodewes R, Maissan C, Vos M, de Swart RL, van Els CACM, Kaaijk P. Impact of genotypic variability of measles virus T-cell epitopes on vaccine-induced T-cell immunity. NPJ Vaccines 2025; 10:36. [PMID: 39979288 PMCID: PMC11842548 DOI: 10.1038/s41541-025-01088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
After the COVID-19 pandemic, significant increases in measles cases were observed globally. Community-wide vaccination remains the most effective strategy for preventing measles. However, it is crucial to understand whether prevalent genotypes, when circulating in populations with suboptimal vaccination coverage, may undergo adaptive mutations that allow them to escape vaccine-induced immunity. In this study, a bioinformatics-guided approach was used to predict universal helper T-cell epitopes specific to the measles vaccine virus (vaccine-MeV) presented by multiple HLA-DR, -DP, and -DQ alleles to achieve population-wide coverage. By using MeV-specific T-cell lines, we identified 37 functional epitopes out of 83 predicted candidates, including 25 novel ones. Strikingly, 73% of these epitope regions were associated with sequence variations in wild-type viruses. More importantly, we demonstrated that mutations disrupted the ability of vaccine-induced CD4+ T cells to respond to circulating viruses. Consequently, mutations in epitope regions of circulating viruses may affect the effectiveness of vaccine-induced T-cell immunity.
Collapse
Affiliation(s)
- Maarten E Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rogier Bodewes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cyril Maissan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
2
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Reid TB, Godornes C, Campbell VL, Laing KJ, Tantalo LC, Gomez A, Pholsena TN, Lieberman NAP, Krause TM, Cegielski VI, Culver LA, Nguyen N, Tong DQ, Hawley KL, Greninger AL, Giacani L, Cameron CE, Dombrowski JC, Wald A, Koelle DM. Treponema pallidum Periplasmic and Membrane Proteins Are Recognized by Circulating and Skin CD4+ T Cells. J Infect Dis 2024; 230:281-292. [PMID: 38932740 PMCID: PMC11326851 DOI: 10.1093/infdis/jiae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Histologic and serologic studies suggest the induction of local and systemic Treponema pallidum-specific CD4+ T-cell responses to T. pallidum infection. We hypothesized that T. pallidum-specific CD4+ T cells are detectable in blood and in the skin rash of secondary syphilis and persist in both compartments after treatment. METHODS Peripheral blood mononuclear cells collected from 67 participants were screened by interferon-γ (IFN-γ) ELISPOT response to T. pallidum sonicate. T. pallidum-reactive T-cell lines from blood and skin were probed for responses to 89 recombinant T. pallidum antigens. Peptide epitopes and HLA class II restriction were defined for selected antigens. RESULTS We detected CD4+ T-cell responses to T. pallidum sonicate ex vivo. Using T. pallidum-reactive T-cell lines we observed recognition of 14 discrete proteins, 13 of which localize to bacterial membranes or the periplasmic space. After therapy, T. pallidum-specific T cells persisted for at least 6 months in skin and 10 years in blood. CONCLUSIONS T. pallidum infection elicits an antigen-specific CD4+ T-cell response in blood and skin. T. pallidum-specific CD4+ T cells persist as memory in both compartments long after curative therapy. The T. pallidum antigenic targets we identified may be high-priority vaccine candidates.
Collapse
Affiliation(s)
- Tara B Reid
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Charmie Godornes
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Victoria L Campbell
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lauren C Tantalo
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Thepthara N Pholsena
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Taylor M Krause
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Victoria I Cegielski
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Lauren A Culver
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nhi Nguyen
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Denise Q Tong
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelly L Hawley
- Department of Medicine and Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases, Connecticut Children's, Hartford, Connecticut, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lorenzo Giacani
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Caroline E Cameron
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julia C Dombrowski
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David M Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
5
|
Reid TB, Godornes C, Campbell VL, Laing KJ, Tantalo LC, Gomez A, Pholsena TN, Lieberman NAP, Krause TM, Cegielski VI, Culver LA, Nguyen N, Tong DQ, Hawley KL, Greninger AL, Giacani L, Cameron CE, Dombrowski JC, Wald A, Koelle DM. Treponema pallidum periplasmic and membrane proteins are recognized by circulating and skin CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581790. [PMID: 38464313 PMCID: PMC10925203 DOI: 10.1101/2024.02.27.581790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Histologic and serologic studies suggest the induction of local and systemic Treponema pallidum ( Tp )-specific CD4+ T cell responses to Tp infection. We hypothesized that Tp -specific CD4+ T cells are detectable in blood and in the skin rash of secondary syphilis and persist in both compartments after treatment. Methods PBMC collected from 67 participants were screened by IFNγ ELISPOT response to Tp sonicate. Tp -reactive T cell lines from blood and skin were probed for responses to 88 recombinant Tp antigens. Peptide epitopes and HLA class II restriction were defined for selected antigens. Results We detected CD4+ T cell responses to Tp sonicate ex vivo. Using Tp -reactive T cell lines we observed recognition of 14 discrete proteins, 13 of which localize to bacterial membranes or the periplasmic space. After therapy, Tp -specific T cells persisted for at least 6 months in skin and 10 years in blood. Conclusions Tp infection elicits an antigen-specific CD4+ T cell response in blood and skin. Tp -specific CD4+ T cells persist as memory in both compartments long after curative therapy. The Tp antigenic targets we identified may be high priority vaccine candidates.
Collapse
|
6
|
Sette A, Sidney J, Grifoni A. Pre-existing SARS-2-specific T cells are predicted to cross-recognize BA.2.86. Cell Host Microbe 2024; 32:19-24.e2. [PMID: 38070502 PMCID: PMC10843579 DOI: 10.1016/j.chom.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024]
Abstract
Effective monitoring of evolving SARS-CoV-2 variants requires understanding the potential effect of mutations on immune evasion. Here, we predicted the impact of BA.2.86-associated mutations on SARS-CoV-2-specific T cell responses. First, evaluating the effect on known experimentally defined T cell epitopes, we found that 72% and 89% of the total SARS-CoV-2 CD4 and CD8 responses were 100% conserved, with lower rates (56% and 72%) for just spike, a major structural protein. Among the mutated spike epitopes, however, 96% and 62% still bound the same reported HLA-restricting alleles. Additional prediction analyses comparing the ancestral and BA.2 sequences with BA.2.86 mutations identified several potentially novel BA.2.86 epitopes. By simulating exposure with BA.2, the large number of epitopes conserved with BA.2.86 suggests that variant-specific epitopes induced following breakthrough infection or bivalent vaccination can bridge the gap between ancestral immunization and upcoming circulating variants, allowing for a more stable T cell response across viral evolution.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Lee MV, Saad OM, Wong S, LaMar J, Kamen L, Ordonia B, Melendez R, Hassanzadeh A, Chung S, Kaur S. Development of a semi-automated MHC-associated peptide proteomics (MAPPs) method using streptavidin bead-based immunoaffinity capture and nano LC-MS/MS to support immunogenicity risk assessment in drug development. Front Immunol 2023; 14:1295285. [PMID: 38022649 PMCID: PMC10667718 DOI: 10.3389/fimmu.2023.1295285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Major histocompatibility complex (MHC)-Associated Peptide Proteomics (MAPPs) is an ex vivo method used to assess the immunogenicity risk of biotherapeutics. MAPPs can identify potential T-cell epitopes within the biotherapeutic molecule. Using adalimumab treated human monocyte derived dendritic cells (DCs) and a pan anti-HLA-DR antibody (Ab), we systematically automated and optimized biotin/streptavidin (SA)-capture antibody coupling, lysate incubation with capture antibody, as well as the washing and elution steps of a MAPPs method using functionalized magnetic beads and a KingFisher Magnetic Particle processor. Automation of these steps, combined with capturing using biotinylated-Ab/SA magnetic beads rather than covalently bound antibody, improved reproducibility as measured by minimal inter-and intra-day variability, as well as minimal analyst-to-analyst variability. The semi-automated MAPPs workflow improved sensitivity, allowing for a lower number of cells per analysis. The method was assessed using five different biotherapeutics with varying immunogenicity rates ranging from 0.1 to 48% ADA incidence in the clinic. Biotherapeutics with ≥10%immunogenicity incidence consistently presented more peptides (1.8-28 fold) and clusters (10-21 fold) compared to those with <10% immunogenicity incidence. Our semi-automated MAPPs method provided two main advantages over a manual workflow- the robustness and reproducibility affords confidence in the epitopes identified from as few as 5 to 10 donors and the method workflow can be readily adapted to incorporate different capture Abs in addition to anti-HLA-DR. The incorporation of semi-automated MAPPs with biotinylated-Ab/SA bead-based capture in immunogenicity screening strategies allows the generation of more consistent and reliable data, helping to improve immunogenicity prediction capabilities in drug development. MHC associated peptide proteomics (MAPPs), Immunogenicity risk assessment, in vitro/ex vivo, biotherapeutics, Major Histocompatibility Complex Class II (MHC II), LC-MS, Immunoaffinity Capture, streptavidin magnetic beads.
Collapse
Affiliation(s)
| | - Ola M. Saad
- *Correspondence: M. Violet Lee, ; Ola M. Saad,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Neto TAP, Sidney J, Grifoni A, Sette A. Correlative CD4 and CD8 T-cell immunodominance in humans and mice: Implications for preclinical testing. Cell Mol Immunol 2023; 20:1328-1338. [PMID: 37726420 PMCID: PMC10616275 DOI: 10.1038/s41423-023-01083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Antigen-specific T-cell recognition is restricted by Major Histocompatibility Complex (MHC) molecules, and differences between CD4 and CD8 immunogenicity in humans and animal species used in preclinical vaccine testing are yet to be fully understood. In this study, we addressed this matter by analyzing experimentally identified epitopes based on published data curated in the Immune Epitopes DataBase (IEDB) database. We first analyzed SARS-CoV-2 spike (S) and nucleoprotein (N), which are two common targets of the immune response and well studied in both human and mouse systems. We observed a weak but statistically significant correlation between human and H-2b mouse T-cell responses (CD8 S specific (r = 0.206, p = 1.37 × 10-13); CD4 S specific (r = 0.118, p = 2.63 × 10-5) and N specific (r = 0.179, p = 2.55 × 10-4)). Due to intrinsic differences in MHC molecules across species, we also investigated the association between the immunodominance of common Human Leukocyte Antigen (HLA) alleles for which HLA transgenic mice are available, namely, A*02:01, B*07:02, DRB1*01:01, and DRB1*04:01, and found higher significant correlations for both CD8 and CD4 (maximum r = 0.702, p = 1.36 × 10-31 and r = 0.594, p = 3.04-122, respectively). Our results further indicated that some regions are commonly immunogenic between humans and mice (either H-2b or HLA transgenic) but that others are human specific. Finally, we noted a significant correlation between CD8 and CD4 S- (r = 0.258, p = 7.33 × 1021) and N-specific (r = 0.369, p = 2.43 × 1014) responses, suggesting that discrete protein subregions can be simultaneously recognized by T cells. These findings were confirmed in other viral systems, providing general guidance for the use of murine models to test T-cell immunogenicity of viral antigens destined for human use.
Collapse
Affiliation(s)
- Tertuliano Alves Pereira Neto
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Sivelle C, Sierocki R, Lesparre Y, Lomet A, Quintilio W, Dubois S, Correia E, Moro AM, Maillère B, Nozach H. Combining deep mutational scanning to heatmap of HLA class II binding of immunogenic sequences to preserve functionality and mitigate predicted immunogenicity. Front Immunol 2023; 14:1197919. [PMID: 37575221 PMCID: PMC10416631 DOI: 10.3389/fimmu.2023.1197919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.
Collapse
Affiliation(s)
- Coline Sivelle
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Raphael Sierocki
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
- Deeptope SAS, Orsay, France
| | | | - Aurore Lomet
- CEA List, Université Paris-Saclay, Palaiseau, France
| | - Wagner Quintilio
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo, Brazil
| | - Steven Dubois
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Ana Maria Moro
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo, Brazil
| | - Bernard Maillère
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
11
|
Guo J, Qin C, Li X, Zhuang X. The Flow Cytometric Analysis of Peripheral Blood Lymphocytes and Expression of HLA II Molecules in Lymphocyte During Acute Rejection After Renal Transplantation. J Inflamm Res 2023; 16:2607-2613. [PMID: 37360623 PMCID: PMC10289173 DOI: 10.2147/jir.s410341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To investigate the changes in the proportion of peripheral blood lymphocytes and the expression of HLA II molecules in lymphocytes during acute rejection after renal transplantation. Methods Thirty-five patients who had undergone renal transplantation were selected. Eighteen patients with clinical and pathological confirmed acute rejection were selected as the test group, and twelve patients without clinical acute rejection symptoms were selected as the control group. Flow cytometry analysis was used to determine the proportion of peripheral blood lymphocytes. The mRNA and protein expression of HLA II molecules on peripheral blood lymphocytes were detected using real-time fluorescence quantification and immunoblotting, respectively. Results The proportion of T lymphocytes, B lymphocytes, and CD4CD8 double positive T cells in the Control Group were 67.48% ± 5.35%, 10.82% ± 1.26%, and 0.88% ± 0.06%, respectively, and in the Test Group were 87.52% ± 6.28%, 3.36% ± 0.26%, and 0.34% ± 0.03%, with a significant difference respectively. The mRNA and protein expressions of HLA II molecules of peripheral blood B lymphocytes in the control group were significantly higher that these in the test group. Conclusion The proportion of peripheral blood T lymphocytes, B lymphocytes, CD4CD8 double positive T cells, and the expression of HLA II molecules of peripheral blood lymphocytes can all indicate the occurrence of acute renal transplantation rejection, which were exceedingly useful to clinicians in judging the acute rejection of renal transplantation in the early stages.
Collapse
Affiliation(s)
- Jianzhuang Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, Shandong, People’s Republic of China
| | - Chengwei Qin
- Department of Anesthesiology, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Xiangdong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, Shandong, People’s Republic of China
| | - Xiaoxuan Zhuang
- International Medical College of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
12
|
Emmelot ME, Vos M, Boer MC, Rots NY, van Els CACM, Kaaijk P. SARS-CoV-2 Omicron BA.4/BA.5 Mutations in Spike Leading to T Cell Escape in Recently Vaccinated Individuals. Viruses 2022; 15:101. [PMID: 36680141 PMCID: PMC9863717 DOI: 10.3390/v15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
SARS-CoV-2 Omicron (B.1.1.529) lineages rapidly became dominant in various countries reflecting its enhanced transmissibility and ability to escape neutralizing antibodies. Although T cells induced by ancestral SARS-CoV-2-based vaccines also recognize Omicron variants, we showed in our previous study that there was a marked loss of T cell cross-reactivity to spike epitopes harboring Omicron BA.1 mutations. The emerging BA.4/BA.5 subvariants carry other spike mutations than the BA.1 variant. The present study aims to investigate the impact of BA.4/BA.5 spike mutations on T cell cross-reactivity at the epitope level. Here, we focused on universal T-helper epitopes predicted to be presented by multiple common HLA class II molecules for broad population coverage. Fifteen universal T-helper epitopes of ancestral spike, which contain mutations in the Omicron BA.4/BA.5 variants, were identified utilizing a bioinformatic tool. T cells isolated from 10 subjects, who were recently vaccinated with mRNA-based BNT162b2, were tested for functional cross-reactivity between epitopes of ancestral SARS-CoV-2 spike and the Omicron BA.4/BA.5 spike counterparts. Reduced T cell cross-reactivity in one or more vaccinees was observed against 87% of the tested 15 non-conserved CD4+ T cell epitopes. These results should be considered for vaccine boosting strategies to protect against Omicron BA.4/BA.5 and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
13
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.01.518643. [PMID: 36482973 PMCID: PMC9727760 DOI: 10.1101/2022.12.01.518643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
14
|
Laing KJ, Ouwendijk WJD, Campbell VL, McClurkan CL, Mortazavi S, Elder Waters M, Krist MP, Tu R, Nguyen N, Basu K, Miao C, Schmid DS, Johnston C, Verjans GMGM, Koelle DM. Selective retention of virus-specific tissue-resident T cells in healed skin after recovery from herpes zoster. Nat Commun 2022; 13:6957. [PMID: 36376285 PMCID: PMC9663441 DOI: 10.1038/s41467-022-34698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes zoster is a localized skin infection caused by reactivation of latent varicella-zoster virus. Tissue-resident T cells likely control skin infections. Zoster provides a unique opportunity to determine if focal reinfection of human skin boosts local or disseminated antigen-specific tissue-resident T cells. Here, we show virus-specific T cells are retained over one year in serial samples of rash site and contralateral unaffected skin of individuals recovered from zoster. Consistent with zoster resolution, viral DNA is largely undetectable on skin from day 90 and virus-specific B and T cells decline in blood. In skin, there is selective infiltration and long-term persistence of varicella-zoster virus-specific T cells in the rash site relative to the contralateral site. The skin T cell infiltrates express the canonical tissue-resident T cell markers CD69 and CD103. These findings show that zoster promotes spatially-restricted long-term retention of antigen-specific tissue-resident T cells in previously infected skin.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Werner J D Ouwendijk
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Shahin Mortazavi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Maxwell P Krist
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Tu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nhi Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Krithi Basu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Congrong Miao
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - D Scott Schmid
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georges M G M Verjans
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
15
|
Roy P, Sidney J, Lindestam Arlehamn CS, Phillips E, Mallal S, Suthahar SSA, Billitti M, Rubiro P, Marrama D, Drago F, Vallejo J, Suryawanshi V, Orecchioni M, Makings J, Kim PJ, McNamara CA, Peters B, Sette A, Ley K. Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circ Res 2022; 131:258-276. [PMID: 35766025 PMCID: PMC9536649 DOI: 10.1161/circresaha.122.321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Sujit Silas Armstrong Suthahar
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Monica Billitti
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Fabrizio Drago
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Jenifer Vallejo
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Vasantika Suryawanshi
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Marco Orecchioni
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Jeffrey Makings
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul J. Kim
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus Ley
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Emmelot ME, Vos M, Boer MC, Rots NY, de Wit J, van Els CACM, Kaaijk P. Omicron BA.1 Mutations in SARS-CoV-2 Spike Lead to Reduced T-Cell Response in Vaccinated and Convalescent Individuals. Viruses 2022; 14:v14071570. [PMID: 35891550 PMCID: PMC9318964 DOI: 10.3390/v14071570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023] Open
Abstract
Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.
Collapse
Affiliation(s)
- Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
- Correspondence:
| |
Collapse
|
17
|
Schreiber S, Honz M, Mamozai W, Kurktschiev P, Schiemann M, Witter K, Moore E, Zielinski C, Sette A, Protzer U, Wisskirchen K. Characterization of a library of 20 HBV-specific MHC class II-restricted T cell receptors. Mol Ther Methods Clin Dev 2021; 23:476-489. [PMID: 34853796 PMCID: PMC8605085 DOI: 10.1016/j.omtm.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
CD4+ T cells play an important role in the immune response against cancer and infectious diseases. However, mechanistic details of their helper function in hepatitis B virus (HBV) infection in particular, or their advantage for adoptive T cell therapy remain poorly understood as experimental and therapeutic tools are missing. Therefore, we identified, cloned, and characterized a comprehensive library of 20 MHC class II-restricted HBV-specific T cell receptors (TCRs) from donors with acute or resolved HBV infection. The TCRs were restricted by nine different MHC II molecules and specific for eight different epitopes derived from intracellularly processed HBV envelope, core, and polymerase proteins. Retroviral transduction resulted in a robust expression of all TCRs on primary T cells. A high functional avidity was measured for all TCRs specific for epitopes S17, S21, S36, and P774 (half-maximal effective concentration [EC50] <10 nM), or C61 and preS9 (EC50 <100 nM). Eight TCRs recognized peptide variants of HBV genotypes A to D. Both CD4+ and CD8+ T cells transduced with the MHC II-restricted TCRs were polyfunctional, producing interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and granzyme B (GrzB), and killed peptide-loaded target cells. Our set of MHC class II-restricted TCRs represents an important tool for elucidating CD4+ T cell help in viral infection with potential benefit for T cell therapy.
Collapse
|
18
|
Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Adv 2021; 5:3309-3321. [PMID: 34473237 DOI: 10.1182/bloodadvances.2021004456] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Infection with adenoviruses is a common and significant complication in pediatric patients after allogeneic hematopoietic stem cell transplantation. Treatment options with traditional antivirals are limited by poor efficacy and significant toxicities. T-cell reconstitution is critical for the management of adenoviral infections, but it generally takes place months after transplantation. Ex vivo-generated virus-specific T cells (VSTs) are an alternative approach for viral control and can be rapidly generated from either a stem cell donor or a healthy third-party donor. In the context of a single-center phase 1/2 clinical trial, we treated 30 patients with a total of 43 infusions of VSTs for adenoviremia and/or adenoviral disease. Seven patients received donor-derived VSTs, 21 patients received third-party VSTs, and 2 received VSTs from both donor sources. Clinical responses were observed in 81% of patients, with a complete response in 58%. Epitope prediction and potential epitope identification for common HLA molecules helped elucidate HLA restriction in a subset of patients receiving third-party products. Intracellular interferon-γ expression in T cells in response to single peptides and response to cell lines stably transfected with a single HLA molecule demonstrated HLA-restricted CD4+ T-cell response, and these results correlated with clinical outcomes. Taken together, these data suggest that VSTs are a highly safe and effective therapy for the management of adenoviral infection in immunocompromised hosts. The trials were registered at www.clinicaltrials.gov as #NCT02048332 and #NCT02532452.
Collapse
|
19
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
21
|
Hyun YS, Jo HA, Lee YH, Kim SM, Baek IC, Sohn HJ, Cho HI, Kim TG. Comprehensive Analysis of CD4 + T Cell Responses to CMV pp65 Antigen Restricted by Single HLA-DR, -DQ, and -DP Allotype Within an Individual. Front Immunol 2021; 11:602014. [PMID: 33658991 PMCID: PMC7917246 DOI: 10.3389/fimmu.2020.602014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/18/2023] Open
Abstract
Within an individual, six different HLA class II heterodimers are expressed co-dominantly by two alleles of HLA-DR, -DQ, and -DP loci. However, it remained unclear which HLA allotypes were used in T cell responses to a given antigen. For the measurement of the CD4+ T cell responses restricted by a single HLA allotype, we established a panel of artificial antigen-presenting cells (aAPCs) expressing each single HLA allele of 20 HLA-DRB1, 16 HLA-DQ, and 13 HLA-DP alleles. CD4+ T cell responses to cytomegalovirus (CMV) pp65 restricted by single HLA class II allotype defined in 45 healthy donors. The average magnitude of CD4+ T cell responses by HLA-DR allotypes was higher than HLA-DQ and HLA-DP allotypes. CD4+ T cell responses by DRA*01:01/DRB1*04:06, DQA1*01:02/DQB1*06:02, DPA1*02:02/DPB1*05:01 were higher among the other alleles in each HLA-DR, -DQ, and -DP locus. Interestingly, the frequencies of HLA-DR alleles and the positivity of specific allotypes showed an inverse correlation. One allotype within individuals is dominantly used in CD4+ T cell response in 49% of donors, and two allotypes showed that in 7% of donors, and any positive response was detected in 44% of donors. Even if one individual had several dominant alleles, CD4+ T cell responses tended to be restricted by only one of them. Furthermore, CD8+ and CD4+ T cell responses by HLA class I and class II were correlated. Our results demonstrate that the CD4+ T cell preferentially use a few dominant HLA class II allotypes within individuals, similar to CD8+ T cell response to CMV pp65.
Collapse
Affiliation(s)
- You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc., Seoul, South Korea
| | - Hyun-Il Cho
- Translational and Clinical Division, ViGenCell Inc., Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
22
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Identification and Characterization of CD4 + T Cell Epitopes after Shingrix Vaccination. J Virol 2020; 94:JVI.01641-20. [PMID: 32999027 DOI: 10.1128/jvi.01641-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infections with varicella-zoster virus (VZV) are associated with a range of clinical manifestations. Primary infection with VZV causes chicken pox. The virus remains latent in neurons, and it can reactivate later in life, causing herpes zoster (HZ). Two different vaccines have been developed to prevent HZ; one is based on a live attenuated VZV strain (Zostavax), and the other is based on adjuvanted gE recombinant protein (Shingrix). While Zostavax efficacy wanes with age, Shingrix protection retains its efficacy in elderly subjects (individuals 80 years of age and older). In this context, it is of much interest to understand if there is a role for T cell immunity in the differential clinical outcome and if there is a correlate of protection between T cell immunity and Shingrix efficacy. In this study, we characterized the Shingrix-specific ex vivo CD4 T cell responses in the context of natural exposure and HZ vaccination using pools of predicted epitopes. We show that T cell reactivity following natural infection and Zostavax vaccination dominantly targets nonstructural (NS) proteins, while Shingrix vaccination redirects dominant reactivity to target gE. We mapped the gE-specific responses following Shingrix vaccination to 89 different gE epitopes, 34 of which accounted for 80% of the response. Using antigen presentation assays and single HLA molecule-transfected lines, we experimentally determined HLA restrictions for 94 different donor/peptide combinations. Finally, we used our results as a training set to assess strategies to predict restrictions based on measured or predicted HLA binding and the corresponding HLA types of the responding subjects.IMPORTANCE Understanding the T cell profile associated with the protection observed in elderly vaccinees following Shingrix vaccination is relevant to the general definition of correlates of vaccine efficacy. Our study enables these future studies by clarifying the patterns of immunodominance associated with Shingrix vaccination, as opposed to natural infection or Zostavax vaccination. Identification of epitopes recognized by Shingrix-induced CD4 T cells and their associated HLA restrictions enables the generation of tetrameric staining reagents and, more broadly, the capability to characterize the specificity, magnitude, and phenotype of VZV-specific T cells.
Collapse
|
24
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Stryhn A, Kongsgaard M, Rasmussen M, Harndahl MN, Østerbye T, Bassi MR, Thybo S, Gabriel M, Hansen MB, Nielsen M, Christensen JP, Randrup Thomsen A, Buus S. A Systematic, Unbiased Mapping of CD8 + and CD4 + T Cell Epitopes in Yellow Fever Vaccinees. Front Immunol 2020; 11:1836. [PMID: 32983097 PMCID: PMC7489334 DOI: 10.3389/fimmu.2020.01836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.
Collapse
Affiliation(s)
- Anette Stryhn
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kongsgaard
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Nors Harndahl
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerbye
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Thybo
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Nielsen
- Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Steiner G, Marban-Doran C, Langer J, Pimenova T, Duran-Pacheco G, Sauter D, Langenkamp A, Solier C, Singer T, Bray-French K, Ducret A. Enabling Routine MHC-II-Associated Peptide Proteomics for Risk Assessment of Drug-Induced Immunogenicity. J Proteome Res 2020; 19:3792-3806. [PMID: 32786679 DOI: 10.1021/acs.jproteome.0c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Major histocompatibility complex-II (MHC-II)-Associated Peptide Proteomics (MAPPs) is a mass spectrometry-based approach to identify and relatively quantitate naturally processed and presented MHC-II-associated peptides that can potentially activate T cells and contribute to the immunogenicity of a drug. Acceptance of the MAPPs technology as an appropriate preclinical (and potentially clinical) immunogenicity risk assessment tool depends not only on its technical stability and robustness but also on the ability to compare results across experiments and donors. To this end, we developed a specialized MAPPs data processing pipeline, dataMAPPs, which presents complex mass spectrometric data sets in the form of heat maps (heatMAPPs), enabling rapid and convenient comparison between conditions and donors. A customized normalization procedure based on identified endogenous peptides standardizes signal intensities within and between donors and enables cross-experimental comparison. We evaluated the technical reproducibility of the MAPPs platform using tool compounds with respect to the most prominent experimental factors and found that the systematic biological differences across donors by far outweighed any technical source of variation. We illustrate the capability of the MAPPs platform to generate data that may be used for preclinical risk assessment of drug-induced immunogenicity and discuss its applicability in the clinics.
Collapse
Affiliation(s)
- Guido Steiner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Céline Marban-Doran
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Jessica Langer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Tatiana Pimenova
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Gonzalo Duran-Pacheco
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Denise Sauter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Anja Langenkamp
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Corinne Solier
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Katharine Bray-French
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| |
Collapse
|
27
|
Campbell VL, Nguyen L, Snoey E, McClurkan CL, Laing KJ, Dong L, Sette A, Lindestam Arlehamn CS, Altmann DM, Boyton RJ, Roby JA, Gale M, Stone M, Busch MP, Norris PJ, Koelle DM. Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination. Immunohorizons 2020; 4:444-453. [PMID: 32753403 PMCID: PMC7839664 DOI: 10.4049/immunohorizons.2000068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that caused an epidemic in 2015-2016. ZIKV-specific T cell responses are functional in animal infection models, and helper CD4 T cells promote avid Abs in the vaccine context. The small volumes of blood available from field research limit the determination of T cell epitopes for complex microbes such as ZIKV. The goal of this project was efficient determination of human ZIKV CD4 T cell epitopes at the whole proteome scale, including validation of reactivity to whole pathogen, using small blood samples from convalescent time points when T cell response magnitude may have waned. Polyclonal enrichment of candidate ZIKV-specific CD4 T cells used cell-associated virus, documenting that T cells in downstream peptide analyses also recognize whole virus after Ag processing. Sequential query of bulk ZIKV-reactive CD4 T cells with pooled/single ZIKV peptides and molecularly defined APC allowed precision epitope and HLA restriction assignments across the ZIKV proteome and enabled discovery of numerous novel ZIKV CD4 T cell epitopes. The research workflow is useful for the study of emerging infectious diseases with a very limited human blood sample availability.
Collapse
Affiliation(s)
| | - LeAnn Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elise Snoey
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Danny M. Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Justin A. Roby
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Phillip J. Norris
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Benaroya Research Institute, Seattle, WA, USA,Department of Laboratory Medicine, Seattle, WA, USA,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Corresponding author: David Koelle MD, 750 Republican Street, Room E651, Seattle, WA, 981109, phone 206 616 1940, fax 206 616 4898,
| |
Collapse
|
28
|
Abstract
Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.
Collapse
Affiliation(s)
- Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 Buenos Aires, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
29
|
Ihantola EL, Ilmonen H, Kailaanmäki A, Rytkönen-Nissinen M, Azam A, Maillère B, Lindestam Arlehamn CS, Sette A, Motwani K, Seay HR, Brusko TM, Knip M, Veijola R, Toppari J, Ilonen J, Kinnunen T. Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes-Associated HLA Class II Molecules. THE JOURNAL OF IMMUNOLOGY 2020; 204:2349-2359. [PMID: 32229538 DOI: 10.4049/jimmunol.1901079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing β cells within the pancreas are destroyed. Identification of target Ags and epitopes of the β cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk.
Collapse
Affiliation(s)
- Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Henna Ilmonen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Anssi Kailaanmäki
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Aurélien Azam
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | - Bernard Maillère
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610.,Department of Pediatrics, University of Florida, College of Medicine Gainesville, FL 32610
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, FI-33520 Tampere, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland.,Folkhälsan Research Center, FI-00290 Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, FI-90014 Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, FI-20521 Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland.,Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland; and
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Eastern Finland Laboratory Centre (ISLAB), FI-70210 Kuopio, Finland
| |
Collapse
|
30
|
Genome-Wide Approach to the CD4 T-Cell Response to Human Herpesvirus 6B. J Virol 2019; 93:JVI.00321-19. [PMID: 31043533 DOI: 10.1128/jvi.00321-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) are population-prevalent betaherpesviruses with intermittent lytic replication that can be pathogenic in immunocompromised hosts. Elucidation of the adaptive immune response is valuable for understanding pathogenesis and designing novel treatments. Knowledge of T-cell antigens has reached the genome-wide level for CMV and other human herpesviruses, but study of HHV-6 is at an earlier stage. Using rare-cell enrichment combined with an HLA-agnostic, proteome-wide approach, we queried HHV-6B-specific CD4 T cells from 18 healthy donors with each known HHV-6B protein. We detected a low abundance of HHV-6-specific CD4 T cells in blood; however, the within-person CD4 T-cell response is quite broad: the median number of open reading frame (ORF) products recognized was nine per person. Overall, the data expand the number of documented HHV-6B CD4 T-cell antigens from approximately 11 to 60. Epitopes in the proteins encoded by U14, U90, and U95 were mapped with synthetic peptides, and HLA restriction was defined for some responses. Intriguingly, CD4 T-cell antigens newly described in this report are among the most population prevalent, including U73, U72, U95, and U30. Our results indicate that selection of HHV-6B ORFs for immunotherapy should consider this expanded panel of HHV-6B antigens.IMPORTANCE Human herpesvirus 6 is highly prevalent and maintains chronic infection in immunocompetent individuals, with the potential to replicate widely in settings of immunosuppression, leading to clinical disease. Antiviral compounds may be ineffective and/or pose dose-limiting toxicity, and therefore, immune-based therapies have garnered increased interest in recent years. Attempts at addressing this unmet medical need begin with understanding the cellular response to HHV-6 at the individual and population levels. The present study provides a comprehensive assessment of HHV-6-specific T-cell responses that may inform the development of cell-based therapies directed at this virus.
Collapse
|
31
|
Becerra-Artiles A, Cruz J, Leszyk JD, Sidney J, Sette A, Shaffer SA, Stern LJ. Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses. Eur J Immunol 2019; 49:1167-1185. [PMID: 31020640 DOI: 10.1002/eji.201948126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.
Collapse
Affiliation(s)
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA
| | - John D Leszyk
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA.,Department of Medicine, University of California, San Diego, CA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
32
|
Molecular Cloning and Bioinformatics Analysis of DQA Gene from Mink (Neovison vison). Int J Mol Sci 2019; 20:ijms20051037. [PMID: 30818831 PMCID: PMC6429307 DOI: 10.3390/ijms20051037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/01/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
In the present study, we cloned, sequenced, and explored the structural and functional characteristics of the major histocompatibility complex (MHC)-DQA gene from mink (Neovison vison) for the first time. The full-length sequence of DQA gene was 1147-bp-long, contained a coding region of 768-bp, which was predicted to encoding 255 amino acid residues. The comparison between DQA from mink (Neovison vison) and other MHC-DQA molecules from different animal species showed that nucleotide and encoded amino acid sequences of the mink DQA gene exhibited high similarity with the ferret (Mustela pulourius furo). Phylogenetic analysis revealed that mink (Neovison vison) DQA is grouped with that of ferret (Mustela pulourius furo). The cloned sequence contained a 23-amino acid NH2-terminal signal sequence with the signal peptide cutting site located in amino acids 23–24, and had three Asn-Xaa-Ser/Thr sequons. Three cysteine residues were also identified (Cys-85, Cys-121, and Cys-138). The 218 to 240 amino acids were predicted to be the transmembrane domains. The prediction of the secondary structure revealed three α-helixes and fourteen β-sheets in Neovison vison DQA protein, while random coil was a major pattern. In this study, the whole CDS sequence of Neovison vison DQA gene was successfully cloned, which was valuable for exploring the function and antiviral molecular mechanisms underlying the molecule. The findings of the present study have laid the foundation for the disease resistance and breeding of mink.
Collapse
|
33
|
Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, Rosales SL, Anderson EL, LaRock CN, Vijayanand P, Seumois G, Layfield D, Cutress RI, Ottensmeier CH, Lindestam Arlehamn CS, Sette A, Nizet V, Bothwell M, Brigger M, Crotty S. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T FH cells. Sci Transl Med 2019; 11:eaau3776. [PMID: 30728285 PMCID: PMC6561727 DOI: 10.1126/scitranslmed.aau3776] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
"Strep throat" is highly prevalent among children, yet it is unknown why only some children develop recurrent tonsillitis (RT), a common indication for tonsillectomy. To gain insights into this classic childhood disease, we performed phenotypic, genotypic, and functional studies on pediatric group A Streptococcus (GAS) RT and non-RT tonsils from two independent cohorts. GAS RT tonsils had smaller germinal centers, with an underrepresentation of GAS-specific CD4+ germinal center T follicular helper (GC-TFH) cells. RT children exhibited reduced antibody responses to an important GAS virulence factor, streptococcal pyrogenic exotoxin A (SpeA). Risk and protective human leukocyte antigen (HLA) class II alleles for RT were identified. Lastly, SpeA induced granzyme B production in GC-TFH cells from RT tonsils with the capacity to kill B cells and the potential to hobble the germinal center response. These observations suggest that RT is a multifactorial disease and that contributors to RT susceptibility include HLA class II differences, aberrant SpeA-activated GC-TFH cells, and lower SpeA antibody titers.
Collapse
Affiliation(s)
- Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Rita Al-Kolla
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Ericka L Anderson
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Human Longevity Inc., San Diego, CA 92121, USA
| | - Christopher N LaRock
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - David Layfield
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | - Ramsey I Cutress
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
| | - Marcella Bothwell
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Matthew Brigger
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Thorstenson YR, Creary LE, Huang H, Rozot V, Nguyen TT, Babrzadeh F, Kancharla S, Fukushima M, Kuehn R, Wang C, Li M, Krishnakumar S, Mindrinos M, Fernandez Viña MA, Scriba TJ, Davis MM. Allelic resolution NGS HLA typing of Class I and Class II loci and haplotypes in Cape Town, South Africa. Hum Immunol 2018; 79:839-847. [PMID: 30240896 DOI: 10.1016/j.humimm.2018.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022]
Abstract
The development of next-generation sequencing (NGS) methods for HLA genotyping has already had an impact on the scope and precision of HLA research. In this study, allelic resolution HLA typing was obtained for 402 individuals from Cape Town, South Africa. The data were produced by high-throughput NGS sequencing as part of a study of T-cell responses to Mycobacterium tuberculosis in collaboration with the University of Cape Town and Stanford University. All samples were genotyped for 11 HLA loci, namely HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, and -DRB5. NGS HLA typing of samples from Cape Town inhabitants revealed a unique cohort, including unusual haplotypes, and 22 novel alleles not previously reported in the IPD-IMGT/HLA Database. Eight novel alleles were in Class I loci and 14 were in Class II. There were 62 different alleles of HLA-A, 72 of HLA-B, and 47 of HLA-C. Alleles A∗23:17, A∗43:01, A∗29:11, A∗68:27:01, A∗01:23, B∗14:01:01, B∗15:10:01, B∗39:10:01, B∗45:07, B∗82:02:01 and C∗08:04:01 were notably more frequent in Cape Town compared to other populations reported in the literature. Class II loci had 21 different alleles of DPA1, 46 of DPB1, 27 of DQA1, 26 of DQB1, 41 of DRB1, 5 of DRB3, 4 of DRB4 and 6 of DRB5. The Cape Town cohort exhibited high degrees of HLA diversity and relatively high heterozygosity at most loci. Genetic distances between Cape Town and five other sub-Saharan African populations were also calculated and compared to European Americans.
Collapse
Affiliation(s)
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | - Raquel Kuehn
- Immucor, Sirona Genomics, Mountain View, CA, USA
| | - Chunlin Wang
- Immucor, Sirona Genomics, Mountain View, CA, USA
| | - Ming Li
- Immucor, Sirona Genomics, Mountain View, CA, USA
| | | | | | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M Davis
- Stanford University and Howard Hughes Medical Institute, Stanford, CA
| |
Collapse
|
36
|
Quarmby V, Phung QT, Lill JR. MAPPs for the identification of immunogenic hotspots of biotherapeutics; an overview of the technology and its application to the biopharmaceutical arena. Expert Rev Proteomics 2018; 15:733-748. [DOI: 10.1080/14789450.2018.1521279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech Inc., San Francisco, CA, USA
| | - Qui T Phung
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., San Francisco, CA, USA
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., San Francisco, CA, USA
| |
Collapse
|
37
|
Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A. Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 2018; 9:1369. [PMID: 29963059 PMCID: PMC6010533 DOI: 10.3389/fimmu.2018.01369] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an “immunogenicity score.” We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
38
|
Schultz HS, Østergaard S, Sidney J, Lamberth K, Sette A. The effect of acylation with fatty acids and other modifications on HLA class II:peptide binding and T cell stimulation for three model peptides. PLoS One 2018; 13:e0197407. [PMID: 29758051 PMCID: PMC5951580 DOI: 10.1371/journal.pone.0197407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Immunogenicity is a major concern in drug development as anti-drug antibodies in many cases affect both patient safety and drug efficacy. Another concern is often the limited half-life of drugs, which can be altered by different chemical modifications, like acylation with fatty acids. However, acylation with fatty acids has been shown in some cases to modulate T cell activation. Therefore, to understand the role of acylation with fatty acids on immunogenicity we tested three immunogenic non-acylated peptides and 14 of their acylated analogues for binding to 26 common HLA class II alleles, and their ability to activate T cells in an ex vivo T cell assay. Changes in binding affinity associated with acylation with fatty acids were typically modest, though a significant decrease was observed for influenza HA acylated with a stearic acid, and affinities for DQ alleles were consistently increased. Importantly, we showed that for all three immunogenic peptides acylation with fatty acids decreased their capacity to activate T cells, a trend particularly evident with longer fatty acids typically positioned within the peptide HLA class II binding core region, or when closer to the C-terminus. With these results we have demonstrated that acylation with fatty acids of immunogenic peptides can lower their stimulatory capacity, which could be important knowledge for drug design and immunogenicity mitigation.
Collapse
Affiliation(s)
- Heidi S. Schultz
- Global research, Novo Nordisk A/S, Måløv, Denmark
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| | | | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| |
Collapse
|
39
|
Memon S, Wang L, Li G, Liu X, Deng W, Xi D. Isolation and characterization of the major histocompatibility complex DQA1 and DQA2 genes in gayal (Bos frontalis). J Genet 2018; 97:121-126. [PMID: 29666331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The species origin of Yunnan gayal has been controversial since many years. However, few recent genetic studies have suggested that it has perhaps originated from the hybridization between male Bos frontalis and female B. taurus or B. indicus. Being an important semi-wild bovid species, this has also been listed under the red list of International Union of Conservation of Nature and Natural Resources. However, there is limited information available about the immunogenicity of this precarious species of Bos. Major histocompatibility complex (MHC) plays a pivotal role in immune response to infectious diseases in vertebrates. In the present study, we have investigated the structural and functional characteristics and possible duplication of the MHC-DQA genes in gayal (B. frontalis). Two full-length cDNA clones of the MHC-DQA genes were amplified and designated as Bofr-DQA1 (DQA*0101) and Bofr-DQA2 (DQA*2001) with GenBank accession numbers KT318732 and KT318733, respectively. A comparison between Bofr-DQA1, Bofr-DQA2 and to other MHC-DQA molecules from different animal species showed that nucleotide and encoded amino acid sequences of these two identifiedMHC-DQA genes have more similarity to alleles of specific DQA1 and DQA2 molecules from other Ruminantia species than to each other. The phylogenic investigation also demonstrated a large genetic distance between these two genes than to homologous from the other species. The large genetic distance between Bofr-DQA1 and Bofr-DQA2, and the presence of different bovine DQA putative motifs clarify that these sequences are nonallelic type. These results could suggest thatduplication of the DQA genes has also occurred in gayal. The findings of the present study have strengthened our understanding to MHC diversity in rare ruminants and mutation of immunological functions, selective and evolutionary forces that affect MHC variation within and between species.
Collapse
Affiliation(s)
- Sameeullah Memon
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Memon S, Wang L, Li G, Liu X, Deng W, Xi D. Isolation and characterization of the major histocompatibility complex DQA1 and DQA2 genes in gayal (Bos frontalis). J Genet 2018. [DOI: 10.1007/s12041-018-0882-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, Senju S, Yuba E, Kamba T, Eto M, Nakayama H, Nishimura Y. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4 + T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology 2018; 7:e1415687. [PMID: 29632734 DOI: 10.1080/2162402x.2017.1415687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) and M-phase phosphoprotein 1 (MPHOSPH1) are human cancer testis antigens that are frequently overexpressed in urinary bladder cancer. In a phase I/II clinical trial, a DEPDC1- and MPHOSPH1-derived short peptide vaccine demonstrated promising efficacy in preventing bladder cancer recurrence. Here, we aimed to identify long peptides (LPs) derived from DEPDC1 and MPHOSPH1 that induced both T-helper (Th) cells and tumor-reactive cytotoxic T lymphocytes (CTLs). Stimulation of peripheral blood mononuclear cells (PBMCs) from healthy donors with the synthetic DEPDC1- and MPHOSPH1-LPs predicted to bind to promiscuous human leukocyte antigen (HLA) class II molecules by a computer algorithm induced specific CD4+ T cells as revealed by interferon-γ enzyme-linked immunospot assays. Three of six LPs encompassed HLA-A2- or -A24-restricted CTL epitopes or both, and all six LPs stimulated DEPDC1- or MPHOSPH1-specific Th cells restricted by promiscuous and frequently observed HLA class II molecules in the Japanese population. Some LPs are naturally processed from the proteins in DCs, and the capacity of these LPs to cross-prime CTLs was confirmed in vivo using HLA-A2 or -A24 transgenic mice. The LP-specific and HLA class II-restricted T-cell responses were also observed in PBMCs from patients with bladder cancer. Repeated stimulation of PBMCs with DEPDC1-LPs and MPHOSPH1-LPs yielded clonal Th cells expressing specific T-cell receptor (TCR)-α and β genes. These DEPDC1- or MPHOSPH1-derived LPs may have applications in immunotherapy in patients with bladder cancer, and the TCR genes identified may be useful for monitoring of Th cells specific to LPs in vivo.
Collapse
Affiliation(s)
- Miki Tsuruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Shohei Ueda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Poh Yin Yew
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Isao Fukuda
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Sachiko Yoshimura
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences (Medicine), University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Nishimura Project Laboratory, Center for Resource Development and Analysis, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
42
|
Dhanda SK, Grifoni A, Pham J, Vaughan K, Sidney J, Peters B, Sette A. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology 2017; 153:118-132. [PMID: 28833085 DOI: 10.1111/imm.12816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Kerrie Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
43
|
Paul S, Arlehamn CSL, Schulten V, Westernberg L, Sidney J, Peters B, Sette A. Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes. BMC Immunol 2017; 18:20. [PMID: 28681704 PMCID: PMC5499093 DOI: 10.1186/s12865-017-0204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Results Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher’s exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew’s correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Conclusions Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA.
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Veronique Schulten
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| |
Collapse
|
44
|
Liu XS, Mardis ER. Applications of Immunogenomics to Cancer. Cell 2017; 168:600-612. [PMID: 28187283 DOI: 10.1016/j.cell.2017.01.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2023]
Abstract
Cancer immunogenomics originally was framed by research supporting the hypothesis that cancer mutations generated novel peptides seen as "non-self" by the immune system. The search for these "neoantigens" has been facilitated by the combination of new sequencing technologies, specialized computational analyses, and HLA binding predictions that evaluate somatic alterations in a cancer genome and interpret their ability to produce an immune-stimulatory peptide. The resulting information can characterize a tumor's neoantigen load, its cadre of infiltrating immune cell types, the T or B cell receptor repertoire, and direct the design of a personalized therapeutic.
Collapse
Affiliation(s)
- X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, 450 Brookline Ave, Boston MA 02215, USA.
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, and The Ohio State University College of Medicine, 575 Children's Crossroad, Columbus OH 43205, USA.
| |
Collapse
|
45
|
Ernst JD. Antigenic Variation and Immune Escape in the MTBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:171-190. [PMID: 29116635 DOI: 10.1007/978-3-319-64371-7_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases and Immunology, Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, Smilow Building, 9th floor, Rooms 901-907, 522 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
46
|
Ge F, Memon S, Xi D, Li S, Liu X, Li G, Wang L, Leng J, Khan S, Deng W. Cloning and characterization of MHC-DQA1 and MHC-DQA2 molecules from yak (<i>Bos grunniens</i>). Arch Anim Breed 2016. [DOI: 10.5194/aab-59-395-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The major histocompatibility complex (MHC) plays a crucial role in the processing and presentation of antigens and in discrimination between self and non-self. The aim of this investigation was to scrutinize the structural diversity and possible duplication of the MHC-DQA genes in yak (Bos grunniens). Two cDNA sequences were amplified and designated as Bogr-DQA1 (DQA*0101) and Bogr-DQA2 (DQA*2001) with GenBank accession numbers JQ864314 and JQ864315, respectively. The nucleotide and amino acid sequence alignment between Bogr-DQA1 and Bogr-DQA2 molecules showed that these two identified MHC-DQA gene sequences had more similarity to alleles of specific DQA1 and DQA2 genes from other Ruminantia species than to each other. The result from phylogenic investigation also revealed that there was a larger genetic distance between these two genes than between homologous genes from different species. The presence of different bovine DQA putative motifs and the large genetic distance between Bogr-DQA1 and Bogr-DQA2 suggest that these sequences are non-allelic. Further, these results indicate that DQA gene duplication occurs in ruminants. This study will be helpful in knowing MHC diversity in common ruminants and will deepen our understanding of the variation of immunological functions, evolutionary constraints, and selective forces that affect MHC variation within and between species.
Collapse
|
47
|
Scornet N, Delarue-Cochin S, Azoury ME, Le Mignon M, Chemelle JA, Nony E, Maillère B, Terreux R, Pallardy M, Joseph D. Bioinspired Design and Oriented Synthesis of Immunogenic Site-Specifically Penicilloylated Peptides. Bioconjug Chem 2016; 27:2629-2645. [DOI: 10.1021/acs.bioconjchem.6b00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Noémie Scornet
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Sandrine Delarue-Cochin
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Marie Eliane Azoury
- INSERM
UMR 996, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Maxime Le Mignon
- Stallergenes Greer, 6 rue Alexis de
Tocqueville, Antony, 92160, France
| | - Julie-Anne Chemelle
- PRABI-LG, UMR CNRS 5305 (LBTI), Lyon, 69367, France
- UFR Pharmacie, Lyon, 69367, France
| | - Emmanuel Nony
- Stallergenes Greer, 6 rue Alexis de
Tocqueville, Antony, 92160, France
| | - Bernard Maillère
- CEA,
Institut de Biologie et de Technologies, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Raphaël Terreux
- PRABI-LG, UMR CNRS 5305 (LBTI), Lyon, 69367, France
- UFR Pharmacie, Lyon, 69367, France
| | - Marc Pallardy
- INSERM
UMR 996, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Delphine Joseph
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| |
Collapse
|
48
|
Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E, Gregg Y, van Rooyen M, Ernst JD, Hatherill M, Hanekom WA, Peters B, Scriba TJ, Sette A. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog 2016; 12:e1005760. [PMID: 27409590 PMCID: PMC4943605 DOI: 10.1371/journal.ppat.1005760] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.
Collapse
Affiliation(s)
- Cecilia S. Lindestam Arlehamn
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Chelsea Carpenter
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edward Makgotlho
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yolande Gregg
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel D. Ernst
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| |
Collapse
|
49
|
Hinz D, Seumois G, Gholami AM, Greenbaum JA, Lane J, White B, Broide DH, Schulten V, Sidney J, Bakhru P, Oseroff C, Wambre E, James EA, Kwok WW, Peters B, Vijayanand P, Sette A. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity. Clin Exp Allergy 2016; 46:705-19. [PMID: 26662458 PMCID: PMC4846575 DOI: 10.1111/cea.12692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. OBJECTIVE The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. METHODS Peripheral blood mononuclear cells (PBMCs) obtained from allergic individuals and non-allergic controls, either during the pollen season or out of season, were stimulated with either TG extract or a pool of previously identified immunodominant antigenic regions. RESULTS PBMCs from allergic subjects exhibit higher IL-5 and IL-10 responses in season than when collected out of season. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN-γ compared to allergic individuals. Strikingly, non-allergic donors exhibited an opposing pattern, with decreased immune reactivity in season. The broad down-regulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure, but rather react with an active modulation of responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with the allergen exposure and inhibition of responses in non-allergic donors. CONCLUSION AND CLINICAL RELEVANCE Magnitude and functionality of T helper cell responses differ substantially in season vs. out of season in allergic and non-allergic subjects. The results indicate the specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programmes associated with health and allergic disease.
Collapse
MESH Headings
- Allergens/immunology
- Case-Control Studies
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunologic Memory
- Immunomodulation
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Lymphocyte Count
- Male
- Phenotype
- Phleum/immunology
- Pollen/immunology
- RNA, Messenger/genetics
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- Seasons
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amin M. Gholami
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Jerome Lane
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Brandie White
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Pearl Bakhru
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Abstract
Careful selection of dominant T cell epitope peptides of major allergens that display degeneracy for binding to a wide array of MHC class II molecules allows induction of clinical and immunological tolerance to allergen in a refined treatment strategy. From the original concept of peptide-induced T cell anergy arising from in vitro studies, proof-of-concept murine models and flourishing human trials followed. Current randomized, double-blind, placebo-controlled clinical trials of mixtures of T cell-reactive short allergen peptides or long contiguous overlapping peptides are encouraging with intradermal administration into non-inflamed skin a preferred delivery. Definitive immunological mechanisms are yet to be resolved but specific anergy, Th2 cell deletion, immune deviation, and Treg induction seem implicated. Significant efficacy, particularly with short treatment courses, in a range of aeroallergen therapies (cat, house dust mite, grass pollen) with inconsequential non-systemic adverse events likely heralds a new class of therapeutic for allergy, Synthetic Peptide Immuno-Regulatory Epitopes (SPIRE).
Collapse
Affiliation(s)
- Robyn E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Commercial Road, Melbourne, Victoria, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - Sara R Prickett
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jennifer M Rolland
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Commercial Road, Melbourne, Victoria, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|