1
|
Immunoglobulin heavy constant gamma gene evolution is modulated by both the divergent and birth-and-death evolutionary models. Primates 2022; 63:611-625. [DOI: 10.1007/s10329-022-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
|
2
|
Parra-Montaño JD, Mateus-Rincon KC, Aranguren-Borrás JV, Medrano-Robayo M, Figueredo-López A, González-Amaya LM, Vega-Valderrama JD, González-Bautista LF, Becerra-Embus AL, Aponte-Rubio Y, Alfonso-González H, Buitrago SP, Garzón-Ospina D. IgG subclasses in New World Monkeys: an issue for debate? Immunogenetics 2022; 74:507-511. [PMID: 35616699 DOI: 10.1007/s00251-022-01266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Immunoglobulin G (IgG) is an essential antibody in adaptive immunity; a differential expansion of the gene encoding the Fc region (IGHG) of this antibody has been observed in mammals. Like humans, animal biomedical models, such as mice and macaques, have four functional genes encoding 4 IgG subclasses; however, the data for New World monkeys (NWM) seems contentious. Some publications argue for the existence of a single-copy gene for IgG Fc; however, a recent paper has suggested the presence of IgG subclasses in some NWM species. Here, we evaluated the genetic distances and phylogenetic relationships in NWM to assess the presence of IgG subclasses using the sequences of IGHG genes from 13 NWM species recovered from genomic data and lab PCR and cloning-based procedures available in GenBank. The results show that several sequences do not cluster into the expected taxon, probably due to cross-contamination during laboratory procedures, and consequently, they appear to be wrongly assigned. Additionally, several sequences reported as subclasses were shown to be 100% identical in the CH domains. The data presented here suggests that there is not enough evidence to establish the presence of IgG subclasses in NWM.
Collapse
Affiliation(s)
- Jehymin D Parra-Montaño
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Kimberly C Mateus-Rincon
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Juliana V Aranguren-Borrás
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Mary Medrano-Robayo
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Alejandro Figueredo-López
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Laura M González-Amaya
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Juan D Vega-Valderrama
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Luisa F González-Bautista
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Andrea L Becerra-Embus
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Yury Aponte-Rubio
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Heliairis Alfonso-González
- Lab of the Genetics I Course, Biology Program at the School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Sindy P Buitrago
- PGAME - Population Genetics And Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia
- GEBIMOL, School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
- GEO, School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Diego Garzón-Ospina
- PGAME - Population Genetics And Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia.
- GEBIMOL, School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia.
- GEO, School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia.
| |
Collapse
|
3
|
Yepes-Pérez Y, Rodríguez-Obediente K, Camargo A, Diaz-Arévalo D, Patarroyo ME, Patarroyo MA. Molecular characterisation of parvorder Platyrrhini IgG sub-classes. Mol Immunol 2021; 139:23-31. [PMID: 34450539 DOI: 10.1016/j.molimm.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHP) are essential in modern biomedical research; New World monkeys (NWM) are mainly used as an experimental model regarding human malaria as they provide useful information about the parasite's biology and an induced immune response. It is known that a vaccine candidate's efficacy is mediated by a protection-inducing antibody response (IgG). Not enough information is available concerning IgG subclasses' molecular characteristics regarding NHP from parvorder Platyrrhini. Understanding the nature of the humoral immune response and characterising the IgG subclasses' profile will provide valuable information about the immunomodulator mechanisms of vaccines evaluated using an NHP animal model. This article has characterised IgG subclasses in NWM (i.e. genera Aotus, Cebus, Ateles and Alouatta) based on the amplification, cloning and sequencing of the immunoglobulin heavy constant gamma (IGHG) gene's CH1 to CH3 regions. The resulting sequences enabled elucidating IGHG gene organisation; two IgG variants were found in the Aotus and Ateles monkey group and three IgG variants in the Cebus and Alouatta group. The sequences were highly conserved in Platyrrhini and had a similar structure to that reported for monkeys from parvorder Catarrhini. Such information will help in developing tools for a detailed characterisation of the humoral immune response in an NWM experimental animal model.
Collapse
Affiliation(s)
- Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia.
| | - Kewin Rodríguez-Obediente
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá D.C. 111321, Colombia.
| | - Anny Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia.
| | - Diana Diaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia.
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia; Pathology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá D.C. 111321, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá D.C. 110231, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C. 111321, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá D.C. 110231, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá D.C. 111321, Colombia.
| |
Collapse
|
4
|
Huang X, Xu X, Partridge MA, Chen J, Koehler-Stec E, Sumner G, Qiu H, Torri A, Li N. Isotyping and Semi-Quantitation of Monkey Anti-Drug Antibodies by Immunocapture Liquid Chromatography-Mass Spectrometry. AAPS J 2021; 23:16. [PMID: 33404777 PMCID: PMC7788027 DOI: 10.1208/s12248-020-00538-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
There is an urgent demand to develop new technologies to characterize immunogenicity to biotherapeutics. Here, we developed an immunocapture LC-MS assay to isotype and semi-quantify monkey anti-drug antibodies (ADAs) to fully human monoclonal antibody (mAb) drugs. ADAs were isolated from serum samples using an immunocapture step with the Fab of the full-length mAb cross-linked to magnetic beads to minimize matrix interference. A positive monoclonal antibody control against the human immunoglobulin kappa light chain was used as a calibration standard for ADA quantitation. The final LC-MS method contains 17 multiple reaction monitoring (MRM) transitions and an optimized 15-min LC method. The results suggested that IgG1 was the most abundant isotype in ADA-positive samples. IgG2 and IgG4 were identified at lower levels, whereas IgG3 and IgA levels were only observed at very minor levels. In addition, levels of total ADA measured by the LC-MS assay were comparable to results obtained using a traditional ligand binding assay (LBA). The LC-MS ADA assay enabled rapid immunogenicity assessment with additional isotype information that LBAs cannot provide.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Xiaobin Xu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA.
| | - Michael A Partridge
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Jihua Chen
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Ellen Koehler-Stec
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Giane Sumner
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA.
| | - Albert Torri
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| |
Collapse
|
5
|
Grunst MW, Grandea AG, Janaka SK, Hammad I, Grimes P, Karl JA, Wiseman R, O'Connor DH, Evans DT. Functional Interactions of Common Allotypes of Rhesus Macaque FcγR2A and FcγR3A with Human and Macaque IgG Subclasses. THE JOURNAL OF IMMUNOLOGY 2020; 205:3319-3332. [PMID: 33208458 DOI: 10.4049/jimmunol.2000501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
The rhesus macaque is an important animal model for AIDS and other infectious diseases. However, the investigation of Fc-mediated Ab responses in macaques is complicated by species-specific differences in FcγRs and IgG subclasses relative to humans. To assess the effects of these differences on FcγR-IgG interactions, reporter cell lines expressing common allotypes of human and rhesus macaque FcγR2A and FcγR3A were established. FcγR-mediated responses to B cells were measured in the presence of serial dilutions of anti-CD20 Abs with Fc domains corresponding to each of the four subclasses of human and rhesus IgG and with Fc variants of IgG1 that enhance binding to FcγR2A or FcγR3A. All of the FcγRs were functional and preferentially recognized either IgG1 or IgG2. Whereas allotypes of rhesus FcγR2A were identified with responses similar to variants of human FcγR2A with higher (H131) and lower (R131) affinity for IgG, all of the rhesus FcγR3A allotypes exhibited responses most similar to the higher affinity V158 variant of human FcγR3A. Unlike responses to human IgGs, there was little variation in FcγR-mediated responses to different subclasses of rhesus IgG. Phylogenetic comparisons suggest that this reflects limited sequence variation of macaque IgGs as a result of their relatively recent diversification from a common IGHG gene since humans and macaques last shared a common ancestor. These findings reveal species-specific differences in FcγR-IgG interactions with important implications for investigating Ab effector functions in macaques.
Collapse
Affiliation(s)
- Michael W Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Iman Hammad
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Parker Grimes
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Julie A Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Roger Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and .,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
6
|
An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. J Virol 2020; 94:JVI.01175-20. [PMID: 32554699 DOI: 10.1128/jvi.01175-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV vaccine field now recognizes the potential importance of generating polyfunctional antibodies (Abs). The only clinical HIV vaccine trial to date to show significant efficacy (RV144) found that reduced infection rates correlated with the level of nonneutralizing Abs specific for the V2 region of the envelope glycoprotein. We have conducted a comprehensive preclinical reverse vaccinology-based vaccine program that has included the design and production and testing of numerous scaffolded V2 region immunogens. The most immunogenic vaccine regimen in nonhuman primates among those studied as part of this program consisted of a cocktail of three immunogens presenting V2 from different viruses and clades in the context of different scaffolds. Presently we demonstrate that the V2-specific Ab response from this regimen was highly durable and functionally diverse for the duration of the study (25 weeks after the final immunization). The total IgG binding response at this late time point exhibited only an ∼5× reduction in potency. Three immunizations appeared essential for the elicitation of a strong Ab-dependent cellular cytotoxicity (ADCC) response for all animals, as opposed to the Ab-dependent cellular phagocytosis (ADCP) and virus capture responses, which were comparably potent after only 2 immunizations. All functionalities measured were highly durable through the study period. Therefore, testing this vaccine candidate for its protective capacity is warranted.IMPORTANCE The only HIV vaccine trial for which protective efficacy was detected correlated this efficacy with V2-specific Abs that were effectively nonneutralizing. This result has fueled a decade of HIV vaccine research focused on designing an HIV vaccine capable of eliciting V2-focused, polyfunctional Abs that effectively bind HIV and trigger various leukocytes to kill the virus and restrict viral spread. From the numerous vaccine candidates designed and tested as part of our V2-focused preclinical vaccine program, we have identified immunogens and a vaccine regimen that induces a highly durable and polyfunctional V2-focused Ab response in rhesus macaques, described herein.
Collapse
|
7
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
8
|
Tolbert WD, Subedi GP, Gohain N, Lewis GK, Patel KR, Barb AW, Pazgier M. From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. MAbs 2019; 11:709-724. [PMID: 30939981 PMCID: PMC6601566 DOI: 10.1080/19420862.2019.1589852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
Abstract
The Old World monkey, Rhesus macaque (Macaca mulatta, Mm), is frequently used as a primate model organism in the study of human disease and to test new vaccines/antibody treatments despite diverging before chimpanzees and orangutans. Mm and humans share 93% genome identity with substantial differences in the genes of the adaptive immune system that lead to different functional IgG subclass characteristics, Fcγ receptors expressed on innate immune cells, and biological interactions. These differences put limitations on Mm use as a primary animal model in the study of human disease and to test new vaccines/antibody treatments. Here, we comprehensively analyzed molecular properties of the Fc domain of the four IgG subclasses of Rhesus macaque to describe potential mechanisms for their interactions with effector cell Fc receptors. Our studies revealed less diversity in the overall structure among the Mm IgG Fc, with MmIgG1 Fc being the most structurally like human IgG3, although its CH2 loops and N297 glycan mobility are comparable to human IgG1. Furthermore, the Fcs of Mm IgG3 and 4 lack the structural properties typical for their human orthologues that determine IgG3's reduced interaction with the neonatal receptor and IgG4's ability for Fab-arm exchange and its weaker Fcγ receptor interactions. Taken together, our data indicate that MmIgG1-4 are less structurally divergent than the human IgGs, with only MmIgG1 matching the molecular properties of human IgG1 and 3, the most active IgGs in terms of Fcγ receptor binding and Fc-mediated functions. PDB accession numbers for deposited structures are 6D4E, 6D4I, 6D4M, and 6D4N for MmIgG1 Fc, MmIgG2 Fc, MmIgG3 Fc, and MmIgG4 Fc, respectively.
Collapse
Affiliation(s)
- William David Tolbert
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
- Infectious Disease Division, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Ganesh Prasad Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Kenneth Lewis
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kashyap Rajesh Patel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Adam Wesley Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology of Iowa State University, Ames, IA, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology of University of Maryland School of Medicine, Baltimore, MD, USA
- Infectious Disease Division, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
9
|
Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, Bharadwaj P, Hards R, Adamo ME, Gerber SA, Cocklin SL, Schmitz JE, Miles AR, Eckman JW, Belli AJ, Reimann KA, Ackerman ME. Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Front Immunol 2016; 7:589. [PMID: 28018355 PMCID: PMC5153528 DOI: 10.3389/fimmu.2016.00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Nana Yaw Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Thach H Chu
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Ying N Chan
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Pranay Bharadwaj
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Rufus Hards
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine , Lebanon, NH , USA
| | - Scott A Gerber
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Adam R Miles
- Wasatch Microfluidics , Salt Lake City, UT , USA
| | | | - Aaron J Belli
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Keith A Reimann
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
10
|
Chan YN, Boesch AW, Osei-Owusu NY, Emileh A, Crowley AR, Cocklin SL, Finstad SL, Linde CH, Howell RA, Zentner I, Cocklin S, Miles AR, Eckman JW, Alter G, Schmitz JE, Ackerman ME. IgG Binding Characteristics of Rhesus Macaque FcγR. THE JOURNAL OF IMMUNOLOGY 2016; 197:2936-47. [PMID: 27559046 DOI: 10.4049/jimmunol.1502252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Indian rhesus macaques (Macaca mulatta) are routinely used in preclinical studies to evaluate therapeutic Abs and candidate vaccines. The efficacy of these interventions in many cases is known to rely heavily on the ability of Abs to interact with a set of Ab FcγR expressed on innate immune cells. Yet, despite their presumed functional importance, M. mulatta Ab receptors are largely uncharacterized, posing a fundamental limit to ensuring accurate interpretation and translation of results from studies in this model. In this article, we describe the binding characteristics of the most prevalent allotypic variants of M. mulatta FcγR for binding to both human and M. mulatta IgG of varying subclasses. The resulting determination of the affinity, specificity, and glycan sensitivity of these receptors promises to be useful in designing and evaluating studies of candidate vaccines and therapeutic Abs in this key animal model and exposes significant evolutionary divergence between humans and macaques.
Collapse
Affiliation(s)
- Ying N Chan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Nana Y Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Ali Emileh
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Samantha L Finstad
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Caitlyn H Linde
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Rebecca A Howell
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Isaac Zentner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Adam R Miles
- Wasatch Microfluidics, Salt Lake City, UT 84103; and
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755;
| |
Collapse
|
11
|
Abstract
IgG4, the least represented human IgG subclass in serum, is an intriguing antibody with unique biological properties, such as the ability to undergo Fab-arm exchange and limit immune complex formation. The lack of effector functions, such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity, is desirable for therapeutic purposes. IgG4 plays a protective role in allergy by acting as a blocking antibody, and inhibiting mast cell degranulation, but a deleterious role in malignant melanoma, by impeding IgG1-mediated anti-tumor immunity. These findings highlight the importance of understanding the interaction between IgG4 and Fcγ receptors. Despite a wealth of structural information for the IgG1 subclass, including complexes with Fcγ receptors, and structures for intact antibodies, high-resolution crystal structures were not reported for IgG4-Fc until recently. Here, we highlight some of the biological properties of human IgG4, and review the recent crystal structures of IgG4-Fc. We discuss the unexpected conformations adopted by functionally important Cγ2 domain loops, and speculate about potential implications for the interaction between IgG4 and FcγRs.
Collapse
Affiliation(s)
- Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
12
|
Chenoweth AM, Trist HM, Tan PS, Wines BD, Hogarth PM. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates. Immunol Rev 2015; 268:175-91. [DOI: 10.1111/imr.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia M. Chenoweth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
| | - Halina M. Trist
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Peck-Szee Tan
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Bruce D. Wines
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| | - P. Mark Hogarth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|