1
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Al-Eitan LN, ElMotasem MFM, Khair IY, Alahmad SZ. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des 2024; 30:1031-1047. [PMID: 38898820 DOI: 10.2174/0113816128280417231204085137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 06/21/2024]
Abstract
Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moh'd Fahmi Munib ElMotasem
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
3
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
4
|
CD14 Is Involved in the Interferon Response of Human Macrophages to Rubella Virus Infection. Biomedicines 2022; 10:biomedicines10020266. [PMID: 35203475 PMCID: PMC8869353 DOI: 10.3390/biomedicines10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Macrophages (MΦ) as specialized immune cells are involved in rubella virus (RuV) pathogenesis and enable the study of its interaction with the innate immune system. A similar replication kinetics of RuV in the two human MΦ types, the pro-inflammatory M1-like (or GM-MΦ) and anti-inflammatory M2-like (M-MΦ), was especially in M-MΦ accompanied by a reduction in the expression of the innate immune receptor CD14. Similar to RuV infection, exogenous interferon (IFN) β induced a loss of glycolytic reserve in M-MΦ, but in contrast to RuV no noticeable influence on CD14 expression was detected. We next tested the contribution of CD14 to the generation of cytokines/chemokines during RuV infection of M-MΦ through the application of anti-CD14 blocking antibodies. Blockage of CD14 prior to RuV infection enhanced generation of virus progeny. In agreement with this observation, the expression of IFNs was significantly reduced in comparison to the isotype control. Additionally, the expression of TNF-α was slightly reduced, whereas the chemokine CXCL10 was not altered. In conclusion, the observed downmodulation of CD14 during RuV infection of M-MΦ appears to contribute to virus-host-adaptation through a reduction of the IFN response.
Collapse
|
5
|
Poland GA, Ovsyannikova IG, Kennedy RB. Pharmacogenomics and Vaccine Development. Clin Pharmacol Ther 2021; 110:546-548. [PMID: 34097754 PMCID: PMC8239825 DOI: 10.1002/cpt.2288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Gregory A. Poland
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Yang N, Ji F, Cheng L, Lu J, Sun X, Lin X, Lan X. Knockout of immunotherapy prognostic marker genes eliminates the effect of the anti-PD-1 treatment. NPJ Precis Oncol 2021; 5:37. [PMID: 33963274 PMCID: PMC8105367 DOI: 10.1038/s41698-021-00175-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The efficacy of immunotherapy is largely patient-specific due to heterogeneity in tumors. Combining statistic power from a variety of immunotherapies across cancer types, we found four biological pathways significantly correlated with patient survival following immunotherapy. The expression of immunotherapy prognostic marker genes (IPMGs) in these pathways can predict the patient survival with high accuracy not only in the TCGA cohort (89.36%) but also in two other independent cohorts (80.91%), highlighting that the activity of the IPMGs can reflect the sensitivity of the tumor immune microenvironment (TIME) to immunotherapies. Using mouse models, we show that knockout of one of the IPMGs, MALT1, which is critical for the T-cell receptor signaling, can eliminate the antitumor effect of anti-PD-1 treatment completely by impairing the activation of CD8+ T cells. Notably, knockout of another IPMG, CLEC4D, a C-type lectin receptor that expressed on myeloid cells, also reduced the effect of anti-PD-1 treatment potentially through maintaining the immunosuppressive effects of myeloid cells. Our results suggest that priming TIME via activating the IPMGs may increase the response rate and the effect of immune checkpoint blockers.
Collapse
Affiliation(s)
- Naixue Yang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China
| | - Fansen Ji
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liqing Cheng
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingzhe Lu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaofeng Sun
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China. .,Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China.
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Grolmusz VK, Bozsik A, Papp J, Patócs A. Germline Genetic Variants of Viral Entry and Innate Immunity May Influence Susceptibility to SARS-CoV-2 Infection: Toward a Polygenic Risk Score for Risk Stratification. Front Immunol 2021; 12:653489. [PMID: 33763088 PMCID: PMC7982482 DOI: 10.3389/fimmu.2021.653489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2 has affected all aspects of human society with a special focus on healthcare. Although older patients with preexisting chronic illnesses are more prone to develop severe complications, younger, healthy individuals might also exhibit serious manifestations. Previous studies directed to detect genetic susceptibility factors for earlier epidemics have provided evidence of certain protective variations. Following SARS-CoV-2 exposure, viral entry into cells followed by recognition and response by the innate immunity are key determinants of COVID-19 development. In the present review our aim was to conduct a thorough review of the literature on the role of single nucleotide polymorphisms (SNPs) as key agents affecting the viral entry of SARS-CoV-2 and innate immunity. Several SNPs within the scope of our approach were found to alter susceptibility to various bacterial and viral infections. Additionally, a multitude of studies confirmed genetic associations between the analyzed genes and autoimmune diseases, underlining the versatile immune consequences of these variants. Based on confirmed associations it is highly plausible that the SNPs affecting viral entry and innate immunity might confer altered susceptibility to SARS-CoV-2 infection and its complex clinical consequences. Anticipating several COVID-19 genomic susceptibility loci based on the ongoing genome wide association studies, our review also proposes that a well-established polygenic risk score would be able to clinically leverage the acquired knowledge.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, Eötvös Loránd Research Network—Semmelweis University, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, Eötvös Loránd Research Network—Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, Eötvös Loránd Research Network—Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, Eötvös Loránd Research Network—Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Crooke SN, Ovsyannikova IG, Kennedy RB, Warner ND, Poland GA. Associations between markers of cellular and humoral immunity to rubella virus following a third dose of measles-mumps-rubella vaccine. Vaccine 2020; 38:7897-7904. [PMID: 33158591 DOI: 10.1016/j.vaccine.2020.10.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Rubella virus (RV) was eliminated in the United States in 2004, although a small portion of the population fails to develop long-term immunity against RV even after two doses of the measles-mumps-rubella (MMR) vaccine. We hypothesized that inherent biological differences in cytokine and chemokine signaling likely govern an individual's response to a third dose of the vaccine. METHODS Healthy young women (n = 97) were selected as study participants if they had either low or high extremes of RV-specific antibody titer after two previous doses of MMR vaccine. We measured cytokine and chemokine secretion from RV-stimulated PBMCs before and 28 days after they received a third dose of MMR vaccine and assessed correlations with humoral immune response outcomes. RESULTS High and low antibody vaccine responders exhibited a strong pro-inflammatory cellular response, with an underlying Th1-associated signature (IL-2, IFN-γ, MIP-1β, IP-10) and suppressed production of most Th2-associated cytokines (IL-4, IL-10, IL-13). IL-10 and IL-4 exhibited significant negative associations with neutralizing antibody titers and memory B cell ELISpot responses among low vaccine responders. CONCLUSION IL-4 and IL-10 signaling pathways may be potential targets for understanding and improving the immune response to rubella vaccination or for designing new vaccines that induce more durable immunity.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | - Nathaniel D Warner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Abstract
Although the development of effective vaccines has saved countless lives from infectious diseases, the basic workings of the human immune system are complex and have required the development of animal models, such as inbred mice, to define mechanisms of immunity. More recently, new strategies and technologies have been developed to directly explore the human immune system with unprecedented precision. We discuss how these approaches are advancing our mechanistic understanding of human immunology and are facilitating the development of vaccines and therapeutics for infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H: Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Kalkanli Tas S, Kirkik D, Tanoglu A, Kahraman R, Ozturk K, Esen MF, Coskunpinar ME, Cagiltay E. Polymorphisms in Toll-like receptors 1, 2, 5, and 10 are associated with predisposition to Helicobacter pylori infection. Eur J Gastroenterol Hepatol 2020; 32:1141-1146. [PMID: 32541244 DOI: 10.1097/meg.0000000000001797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Toll-like receptors (TLRs) are significant receptors to the innate immune system which symbolizes a family of pattern recognition receptors. We aimed to investigate associations between rs4833095 polymorphism of TLR1, rs3804099 polymorphism of TLR2, rs5744174 polymorphism of TLR5, and rs10004195 polymorphism of TLR10 in dyspeptic individuals with Helicobacter pylori infection. METHODS Genomic DNA was isolated and genotyping of rs4833095 polymorphism in TLR1, rs3804099 polymorphism in TLR2, rs5744174 polymorphism in TLR5, and rs10004195 polymorphism in TLR10 were investigated in 400 individuals (205 in dyspeptic individuals with H. pylori-positive subjects and 195 dyspeptic individuals with H. pylori-negative subjects) by real-time PCR. Statistical analysis was performed by Pearson's Chi-square test. RESULTS According to our study; rs4833095 polymorphism in TLR1 C allele, rs3804099 polymorphism in TLR2 C allele, rs5744174 polymorphism in TLR5 C allele, and rs10004195 polymorphism in TLR10 A allele increased the risk of H. pylori infection [odds ratio (OR), 2.01; 95% confidence interval (CI), 1.39-3.16; OR, 1.78; 95% CI, 1.19-2.6; OR, 1.87; 95% CI, 1.25-2.78; OR, 2.66; 95% CI, 1.72-4.099, respectively]. CONCLUSION This is the first study that investigates TLRs in H. pylori infection in Turkey. Our findings may support the hypothesis that polymorphisms in certain TLRs may cause a genetic predisposition to H. pylori-related gastric problems.
Collapse
Affiliation(s)
| | - Duygu Kirkik
- Medical Biology, Hamidiye Medicine Faculty, University of Health Sciences
| | - Alpaslan Tanoglu
- Department of Gastroenterology, Sultan Abdulhamid Han Training and Research Hospital
| | - Resul Kahraman
- Department of Gastroenterology, Umraniye Training and Research Hospital
| | - Kubra Ozturk
- Medical Biology, Hamidiye Medicine Faculty, University of Health Sciences
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Hamidiye Medicine Faculty, University of Health Sciences
| | | | - Eylem Cagiltay
- Department of Endocrinology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Raeven RHM, van Riet E, Meiring HD, Metz B, Kersten GFA. Systems vaccinology and big data in the vaccine development chain. Immunology 2018; 156:33-46. [PMID: 30317555 PMCID: PMC6283655 DOI: 10.1111/imm.13012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems‐based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics‐techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.
Collapse
Affiliation(s)
- René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.,Leiden Academic Center for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Youssef SS, Hamdy NM. SOCS1 and pattern recognition receptors: TLR9 and RIG-I; novel haplotype associations in Egyptian fibrotic/cirrhotic patients with HCV genotype 4. Arch Virol 2017; 162:3347-3354. [PMID: 28762092 DOI: 10.1007/s00705-017-3498-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
In this paper we explore the role of suppressor of cytokine signaling 1 (SOCS1) (rs243327), the regulator of toll-like receptor-9 (TLR9) (rs352140), retinoic acid inducible gene-I (RIG-I) (rs669260), and cluster of differentiation 152 (CD152) (rs231776) in fibrotic/cirrhotic patients. Single nucleotide polymorphisms (SNPs) within these genes as well as haplotype analyses were performed on a cohort of 120 Egyptian fibrotic patients. Fibrosis had progressed from HCV genotype 4 infections. Using RT-PCR, SNPs were evaluated in the DNA collected from each patient using TaqMan® genotyping assays. A regression model was used to evaluate allelic and haplotypic associations with a fibrosis/cirrhotic scale. The necroinflammatory A score was adjusted for non-genetic covariates. The genotype distributions for SOCS1 (rs243327) and TLR-9 (rs352140) differed significantly between the F1-F3 and F3-F4 groups. On the other hand, the genotype distributions for RIG-I (rs669260) and CD152 (rs231776) genes did not significantly differ. The allele frequency was calculated using Hardy-Weinberg Equilibrium (HWE) for the SOCS1 (rs243327), RIG-I (rs669260), and CD152 (rs231776) genes. These calculated frequency values indicated the need to compare them to another population for that locus. However, TLR9 (rs352140) did not show similar results. The A allele in SOCS1, TLR9, and RIG-I SNPs was an adverse prognostic factor for liver fibrosis and liver activity. Haplotype analysis revealed a significant association between SOCS1 and TLR9 in fibrotic/cirrhotic patients. This indicated the presence of the A allele in either gene, which is considered a risk factor for the progression of liver disease to cirrhosis. SOCS1 rs243327, TLR9 rs352140, and RIG-I rs669260 polymorphisms might affect liver pathophysiology and the cirrhotic outcome following genotype 4 HCV infection. Therefore, performing this specific SNP testing may be of value for the stratification of the population at risk.
Collapse
Affiliation(s)
- Samar S Youssef
- Genetic Engineering Division, Microbial Biotechnology Department, National Research Centre, El Behous st, Dokki, Cairo, Giza, 12311, Egypt.
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt.
| |
Collapse
|
13
|
Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, Hakansson LG, Hanks BA, Karanikas V, Khleif SN, Kirkwood JM, Miller LD, Schendel DJ, Tanneau I, Wigginton JM, Butterfield LH. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 2017; 5:44. [PMID: 28515944 PMCID: PMC5432988 DOI: 10.1186/s40425-017-0243-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
As cancer strikes, individuals vary not only in terms of factors that contribute to its occurrence and development, but as importantly, in their capacity to respond to treatment. While exciting new therapeutic options that mobilize the immune system against cancer have led to breakthroughs for a variety of malignancies, success is limited to a subset of patients. Pre-existing immunological features of both the host and the tumor may contribute to how patients will eventually fare with immunotherapy. A broad understanding of baseline immunity, both in the periphery and in the tumor microenvironment, is needed in order to fully realize the potential of cancer immunotherapy. Such interrogation of the tumor, blood, and host immune parameters prior to treatment is expected to identify biomarkers predictive of clinical outcome as well as to elucidate why some patients fail to respond to immunotherapy. To approach these opportunities for progress, the Society for Immunotherapy of Cancer (SITC) reconvened the Immune Biomarkers Task Force. Comprised of an international multidisciplinary panel of experts, Working Group 4 sought to make recommendations that focus on the complexity of the tumor microenvironment, with its diversity of immune genes, proteins, cells, and pathways naturally present at baseline and in circulation, and novel tools to aid in such broad analyses.
Collapse
Affiliation(s)
- Sacha Gnjatic
- Department of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, S5-105, 1470 Madison Avenue, Box 1128, New York, NY 10029 USA
| | - Vincenzo Bronte
- Head of Immunology Section, University of Verona, Piazzale Le L. A. Scuro, 10, Verona, Italy
| | - Laura Rosa Brunet
- Immodulon Therapeutics Ltd, Stockley Park, 6-9 The Square, Uxbridge, UK
| | - Marcus O Butler
- Princess Margaret Hospital/Ontario Cancer Institute, RM 9-622, 610 University Ave, Toronto, ON Canada
| | - Mary L Disis
- University of Washington, Tumor Vaccine Group, 850 Mercer Street, Box 358050, Seattle, WA 98109 USA
| | - Jérôme Galon
- INSERM - Cordeliers Research Center, Integrative Cancer Immunology Laboratory, 15 rue de l'Ecole de Médecine, Paris, France
| | - Leif G Hakansson
- CanImGuide Therapeutics AB, Domkyrkovägen 23, Hoellviken, Sweden
| | - Brent A Hanks
- Duke University Medical Center, 308 Research Drive, LSRC, Room C203, Box 3819, Durham, NC 27708 USA
| | - Vaios Karanikas
- Roche Innovation Center Zurich, Wagistrasse 18, Schlieren, Switzerland
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, 1120 15th Street, CN-2101A, Augusta, GA 30912 USA
| | - John M Kirkwood
- University of Pittsburgh, Hillman Cancer Center-Research Pavilion, 5117 Centre Avenue, Suite 1.32, Pittsburg, PA 15213 USA
| | - Lance D Miller
- Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Dolores J Schendel
- Medigene Immunotherapies GmbH, Lochhamer Strasse 11, Planegg-Martinsried, Germany
| | | | - Jon M Wigginton
- MacroGenics, Inc., 9704 Medical Center Drive, Rockville, MD 20850 USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
14
|
Melhem NM, Mahfouz RA, Kreidieh K, Abdul-Khalik R, El-Khatib R, Talhouk R, Musharrafieh U, Hamadeh G. Potential role of killer immunoglobulin receptor genes among individuals vaccinated against hepatitis B virus in Lebanon. World J Hepatol 2016; 8:1212-1221. [PMID: 27803766 PMCID: PMC5067441 DOI: 10.4254/wjh.v8.i29.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of killer immunoglobulin receptor (KIR) genes in responsiveness or non-responsiveness to vaccination against hepatitis B virus.
METHODS We recruited 101 voluntary participants between March 2010 and December 2011. Sera samples from vaccinated and non-vaccinated participants were tested for the presence of anti-HBs antibodies as a measure of protection against hepatitis B, hepatitis B surface antigen and hepatitis B core antibody as indicators of infection by enzyme-linked immunosorbent assay. KIR gene frequencies were determined by polymerase chain reaction.
RESULTS Sera samples from 99 participants were tested for the levels of anti-HBs as an indicator of protection (≥ 10 mIU/mL) following vaccination as defined by the World Health Organization international reference standard. Among the vaccinated participants, 47% (35/74) had anti-HBs titers above 100 mIU/mL, 22% (16/74) had anti-HBs ranging between 10-100 mIU/mL, and 20% (15/74) had values of less than 10 mIU/mL. We report the lack of significant association between the number of vaccine dosages and the titer of antibodies among our vaccinated participants. The inhibitory KIR2DL1, KIR2DL4, KIR3DL1, KIR3DL2, and KIR3DL were detected in more than 95%, whereas KIR2DL2, KIR2DL3, KIR2DL5 (KR2DL5A and KIR2DL5B) were expressed in 56%, 84% and 42% (25% and 29%) of participants, respectively. The observed frequency of the activating KIR genes ranged between 35% and 55% except for KIR2DS4, detected in 95% of the study participants (40.6% 2DS4*001/002; 82.2% 2DS4*003/007). KIR2DP1 pseudogene was detected in 99% of our participants, whereas KIR3DP*001/02/04 and KIR3DP1*003 had frequencies of 17% and 100%, respectively. No association between the frequency of KIR genes and anti-HBs antibodies was detected. When we compared the frequency of KIR genes between vaccinated individuals with protective antibodies titers and those who lost their protective antibody levels, we did not detect a significant difference. KIR2DL5B was significantly different among different groups of vaccinated participants (group I > 100 mIU/mL, group II 10-100 mIU/mL, group III < 10 mIU/mL and group IV with undetectable levels of protective antibodies).
CONCLUSION To our knowledge, this is the first study screening for the possible role of KIR genes among individuals vaccinated against hepatitis B virus (HBV). Our results can be used to design larger studies to better understand the role of KIR genes in protection against or susceptibility to HBV post vaccination.
Collapse
|
15
|
Thakur R, Shankar J. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens. Front Microbiol 2016; 7:192. [PMID: 26941719 PMCID: PMC4763014 DOI: 10.3389/fmicb.2016.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/13/2023] Open
Abstract
Pentraxin-3 (PTX-3) protein is an evolutionary conserved protein that acts as a soluble pattern-recognition receptor for pathogens and plays important role in innate immune response. It recognizes various pathogens by interacting with extracellular moieties such as glactomannan of conidia (Aspergillus fumigatus), lipopolysaccharide of Pseudomonas aeruginosa, Streptococcus pneumonia and Salmonella typhimurium. Thus, PTX-3 protein helps to clear these pathogens by activating downstream innate immune process. In this study, computational methods were used to analyze various non-synonymous single nucleotide polymorphisms (nsSNPs) in PTX-3 gene. Three different databases were used to retrieve SNP data sets followed by seven different in silico algorithms to screen nsSNPs in PTX-3 gene. Sequence homology based approach was used to identify nsSNPs. Conservation profile of PTX-3 protein amino acid residues were predicted by ConSurf web server. In total, 10 high-risk nsSNPs were identified in pentraxin-domain of PTX-3 gene. Out of these 10 high-risk nsSNPs, 4 were present in the conserved structural and functional residues of the pentraxin-domain, hence, selected for structural analyses. The results showed alteration in the putative structure of pentraxin-domain. Prediction of protein–protein interactions analysis showed association of PTX-3 protein with C1q component of complement pathway. Different functional and structural residues along with various putative phosphorylation sites and evolutionary relationship were also predicted for PTX-3 protein. This is the first extensive computational analyses of pentraxin protein family with nsSNPs and will serve as a valuable resource for future population based studies.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Solan, India
| |
Collapse
|
16
|
Hutton J. Does Rubella Cause Autism: A 2015 Reappraisal? Front Hum Neurosci 2016; 10:25. [PMID: 26869906 PMCID: PMC4734211 DOI: 10.3389/fnhum.2016.00025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
In the 1970s, Stella Chess found a high prevalence of autism in children with congenital rubella syndrome (CRS), 200 times that of the general population at the time. Many researchers quote this fact to add proof to the current theory that maternal infection with immune system activation in pregnancy leads to autism in the offspring. This rubella and autism association is presented with the notion that rubella has been eliminated in today’s world. CRS cases are no longer typically seen; yet, autistic children often share findings of CRS including deafness, congenital heart defects, and to a lesser extent visual changes. Autistic children commonly have hyperactivity and spasticity, as do CRS children. Both autistic and CRS individuals may develop type 1 diabetes as young adults. Neuropathology of CRS infants may reveal cerebral vasculitis with narrowed lumens and cerebral necrosis. Neuroradiological findings of children with CRS show calcifications, periventricular leukomalacia, and dilated perivascular spaces. Neuroradiology of autism has also demonstrated hyperintensities, leukomalacia, and prominent perivascular spaces. PET studies of autistic individuals exhibit decreased perfusion to areas of the brain similarly affected by rubella. In both autism and CRS, certain changes in the brain have implicated the immune system. Several children with autism lack antibodies to rubella, as do children with CRS. These numerous similarities increase the probability of an association between rubella virus and autism. Rubella and autism cross many ethnicities in many countries. Contrary to current belief, rubella has not been eradicated and globally affects up to 5% of pregnant women. Susceptibility continues as vaccines are not given worldwide and are not fully protective. Rubella might still cause autism, even in vaccinated populations.
Collapse
Affiliation(s)
- Jill Hutton
- Department of Obstetrics and Gynecology, The Woman's Hospital of Texas , Houston, TX , USA
| |
Collapse
|
17
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends Mol Med 2015; 21:789-801. [PMID: 26602762 DOI: 10.1016/j.molmed.2015.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Despite the existence of an effective measles vaccine, resurgence in measles cases in the USA and across Europe has occurred, including in individuals vaccinated with two doses of the vaccine. Host genetic factors result in inter-individual variation in measles vaccine-induced antibodies, and play a role in vaccine failure. Studies have identified HLA (human leukocyte antigen) and non-HLA genetic influences that individually or jointly contribute to the observed variability in the humoral response to vaccination among healthy individuals. In this exciting era, new high-dimensional approaches and techniques including vaccinomics, systems biology, GWAS, epitope prediction and sophisticated bioinformatics/statistical algorithms provide powerful tools to investigate immune response mechanisms to the measles vaccine. These might predict, on an individual basis, outcomes of acquired immunity post measles vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics 2015; 67:547-61. [PMID: 26329766 DOI: 10.1007/s00251-015-0864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Hannah M Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA.
| |
Collapse
|
19
|
Pellegrino P, Perrotta C, Clementi E, Radice S. Vaccine–Drug Interactions: Cytokines, Cytochromes, and Molecular Mechanisms. Drug Saf 2015; 38:781-7. [DOI: 10.1007/s40264-015-0330-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|