1
|
Saleh MS, Landi V, Derks MFL, Centoducati G, Groenen MAM, De Palo P, Ciani E, Pugliese N, Circella E, Camarda A. Genomic scans for selection and runs of homozygosity in southern Italian turkey populations. Poult Sci 2025; 104:104750. [PMID: 39827693 PMCID: PMC11787592 DOI: 10.1016/j.psj.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Basilicata and Apulian (BAS-APU) turkeys, a native population in the Basilicata and Puglia regions of southern Italy, are known for their high meat quality and tolerance to local conditions. Understanding the genomic patterns of BAS-APU turkeys is critical for effective breeding and preservation strategies. In this study, we characterized runs of homozygosity (ROH), and selection signatures using the integrated haplotype score (iHS) and ROH approaches. A total of 73 BAS-APU turkeys from five populations were sequenced (12X). The inbreeding coefficients based on ROH ranged from 0.177 to 0.405. A total of 120,956 ROH were detected in BAS-APU populations. We identified 27 genomic regions that harbor 61 candidate genes in ROH islands in which single nucleotide polymorphisms (SNPs) occur in more than 90 % of individuals. In addition, we detected 608 genomic regions under positive selection using the iHS method being 104, 98, 130, 102, and 174 for BAS, APU_C, APU_M, APU_PN, and APU_PS, respectively. For both methods, most of the genes within these regions are related to production performance, reproduction, immune responses, and adaptation. This study contributes significantly to our understanding of the genetic makeup of native turkey populations in southern Italy. The identified genes under selection can aid future breeding and conservations programs for southern Italian native turkeys. The results of inbreeding levels, especially in the absence of complete pedigrees or when only a few samples are available, which is often the case for local breeds, will help to avoid genetic relatedness in the mating plan in breeding and conservation plans for BAS-APU populations. Also, the detected genes in the selective sweep regions could be used as a marker-assisted selection to improve productive traits and adaptation of BAS-APU local populations.
Collapse
Affiliation(s)
- Medhat S Saleh
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands; Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| |
Collapse
|
2
|
Jorud K, Mendoza KM, Kono T, Coulombe RA, Reed KM. Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys. Toxins (Basel) 2024; 16:453. [PMID: 39591208 PMCID: PMC11598555 DOI: 10.3390/toxins16110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a major foodborne mycotoxin that poses a significant economic risk to poultry due to a greater degree of susceptibility compared to other agricultural species. Domesticated turkeys (Meleagris gallopavo) are especially sensitive to AFB1; however, wild turkeys (M. g. silvestris) are more resistant. A lack of functional isoforms of hepatic glutathione S-transferases (GSTs), an enzyme that plays a role in the detoxification of aflatoxin, is suspected as the reason for the increased sensitivity. Previous studies comparing the gene expression of domesticated and wild turkeys exposed to AFB1 identified hepatic genes responding differentially to AFB1, but could not fully explain the difference in response. The current study examined differences in the expression of microRNAs (miRNAs) in the livers of wild and domesticated turkeys fed dietary AFB1 (320 μg/kg in feed). Short-read RNA sequencing and expression analysis examined both domesticated and wild turkeys exposed to AFB1 compared to controls. A total of 25 miRNAs was identified as being significantly differentially expressed (DEM) in pairwise comparisons. The majority of these have mammalian orthologs with known dysregulation in liver disease. The largest number of DEMs occurred between controls, suggesting an underlying difference in liver potential. Sequences of the DEMs were used to identify potential miRNA binding sites in target genes, resulting in an average of 4302 predicted target sites per DEM. These DEMs and gene targets provide hypotheses for future investigations into the role of miRNAs in AFB1 resistance.
Collapse
Affiliation(s)
- Kade Jorud
- College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Roger A. Coulombe
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA;
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
3
|
Lu Q, Hu Y, Nabi F, Li Z, Janyaro H, Zhu W, Liu J. Effect of Penthorum Chinense Pursh Compound on AFB1-Induced Immune Imbalance via JAK/STAT Signaling Pathway in Spleen of Broiler Chicken. Vet Sci 2023; 10:521. [PMID: 37624308 PMCID: PMC10459701 DOI: 10.3390/vetsci10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Aflatoxin B1(AFB1) is the main secondary metabolite produced by Aspergillus flavus, which is highly toxic, carcinogenic, mutagenic and teratogenic. It can induce immune imbalance in animals or humans. Penthorum chinense Pursh (PCP) is a traditional herbal plant that has been used as a hepatoprotective drug with a long history in China. Based on the theory of traditional Chinese Medicine, we prepared Penthorum chinense Pursh Compound (PCPC) by combining four herbal medicines: 5 g Penthorum chinense Pursh, 5 g Radix bupleuri, 1 g Artemisia capillaris Thunb and 1 g Radix glycyrrhizae. The role of the Penthorum chinense Pursh Compound (PCPC) in preventing AFB1-induced immune imbalance in broiler chickens was studied. A total of 180 broiler chickens were equally distributed in six groups: controls, AFB1, YCHD and high-, medium- and low-dose PCPC treatment groups. After 28 days, broilers were anesthetized, and serum spleen and thymus samples were collected for analysis. Results show that AFB1 significantly increased and decreased the relative organ weight of the spleen and thymus, respectively. Pathological section of hematoxylin/eosin (H&E) stained spleen sections showed that AFB1 resulted in splenic tissue damage. Both the serum levels of Immunoglobulin A (IgA) and Immunoglobulin G (IgG) were suppressed in the AFB1 group. IL-6 was elevated in the AFB1 group. The balance between pro-inflammatory cytokines (IFN-γ and IL-2) and anti-inflammatory cytokine (IL-4) was disturbed by AFB1. The apoptosis-related protein and JAK/STAT pathway-related gene expression indicated that AFB1-induced apoptosis via JAK/STAT pathway. PCPC has proven its immunoprotective effects by preventing AFB1-induced immune imbalance. PCPC can be applied as a novel immune-modulating medicine in broiler chickens. It can be applied as a novel immune modulator in veterinary clinical practice.
Collapse
Affiliation(s)
- Qin Lu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
| | - Yu Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- Wanzhou District Livestock Industry Development Center, Chongqing 404020, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Habibullah Janyaro
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Pakistan;
| | - Wenyan Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Juan Liu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| |
Collapse
|
4
|
Effects of Bacillus methylotrophicus SY200 Supplementation on Growth Performance, Antioxidant Status, Intestinal Morphology, and Immune Function in Broiler Chickens. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09924-6. [PMID: 35150396 DOI: 10.1007/s12602-022-09924-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
The present study was focused on evaluating the effects of Bacillus methylotrophicus SY200 in broiler production. A total of 120 healthy 7-day-old broiler chicks were randomly assigned to four dietary treatments, which included basal diet supplemented with 0%, 0.10%, 0.25%, or 0.50% (w/w) B. methylotrophicus SY200 preparation (1.0 × 109 cfu/g), regarded as negative control group (NC), low-dose group (BML), medium-dose group (BMM), and high-dose group (BMH), respectively. Each treatment was fed the corresponding experimental diet for 35 days. Results showed that dietary supplementation of B. methylotrophicus SY200 could improve broiler weight gain, especially the finisher phase. Further studies suggested that a certain amount of B. methylotrophicus SY200 enhanced the broiler antioxidant status and improved the morphological development of jejunum. Besides, dietary supplementation of B. methylotrophicus SY200 especially in 0.50% levels significantly increased the relative weight of immune organs and Newcastle disease virus antibody titer, similarly, increased mRNA expression levels of claudin-1, claudin-3, zonula occluden-1, and zonula occluden-2 were observed in the jejunum of BMM group. Moreover, B. methylotrophicus SY200 also showed beneficial effects in improving broilers microbiota homeostasis by increasing the number of beneficial bacteria. Conclusively, B. methylotrophicus SY200 could effectively improve the antioxidant status, modulate the intestinal structure, enhance the intestinal mucosal barrier function, and regulate the immune function of broilers, which finally improves the performance of the chicken in the finisher period.
Collapse
|
5
|
Gu X, Zhang J, Li J, Wang Z, Feng J, Li J, Pan K, Ni X, Zeng D, Jing B, Zhang D. Effects of Bacillus cereus PAS38 on Immune-Related Differentially Expressed Genes of Spleen in Broilers. Probiotics Antimicrob Proteins 2021; 12:425-438. [PMID: 31243733 DOI: 10.1007/s12602-019-09567-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study mainly explored the immunomodulatory mechanisms of the probiotic Bacillus cereus PAS38 (PB) on broiler spleen. A total of 120 avian white feather broilers were randomly divided into 4 groups (N = 30), as follows: control (CNTL, fed with basal diet), PB (fed with diet supplemented with probiotic B. cereus PAS38), vaccine (VAC, fed with basal diet and injected with Newcastle disease virus vaccine), and vaccine + PB group (PBVAC, fed with basal diet supplemented with B. cereus PAS38 and injected with NDV vaccine). The experiment was conducted for 42 days. Twelve spleens were collected from four different groups, weighed, and cut into histological sections, and transcriptome analysis was performed using RNA-seq. Results of the spleen and histological section relative weights showed that feeding with probiotic B. cereus PAS38 and vaccination had a similar tendency to promote spleen development. Compared with the CNTL group, 21 immune-related genes were significantly downregulated in the PB and PBVAC groups. These genes were mainly involved in attenuating inflammatory response. The upregulated antimicrobial peptide NK-lysin and guanylate-binding protein 1 expression levels indicated that this strain enhanced the body's antimicrobial capacity. B. cereus PAS38 also amplified the broilers' immune response to the vaccine, which mainly reflected on nonspecific immunity. Hence, probiotic B. cereus PAS38 can regulate and promote the immune function of broilers.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiao Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Jie Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Monson MS, Bearson BL, Sylte MJ, Looft T, Lamont SJ, Bearson SMD. Transcriptional response of blood leukocytes from turkeys challenged with Salmonella enterica serovar Typhimurium UK1. Vet Immunol Immunopathol 2020; 232:110181. [PMID: 33401108 DOI: 10.1016/j.vetimm.2020.110181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022]
Abstract
Non-typhoidal Salmonella is one of the most common causes of bacterial foodborne disease and consumption of contaminated poultry products, including turkey, is one source of exposure. Minimizing Salmonella colonization of commercial turkeys could decrease the incidence of Salmonella-associated human foodborne illness. Understanding host responses to these bacteria is critical in developing strategies to minimize colonization and reduce food safety risk. In this study, we evaluated bacterial load and blood leukocyte transcriptomic responses of 3-week-old turkeys challenged with the Salmonella enterica serovar Typhimurium (S. Typhimurium) UK1 strain. Turkeys (n = 8/dose) were inoculated by oral gavage with 108 or 1010 colony forming units (CFU) of S. Typhimurium UK1, and fecal shedding and tissue colonization were measured across multiple days post-inoculation (dpi). Fecal shedding was 1-2 log10 higher in the 1010 CFU group than the 108 CFU group, but both doses effectively colonized the crop, spleen, ileum, cecum, colon, bursa of Fabricius and cloaca without causing any detectable clinical signs in either group of birds. Blood leukocytes were isolated from a subset of the birds (n = 3-4/dpi) both pre-inoculation (0 dpi) and 2 dpi with 1010 CFU and their transcriptomic responses assayed by RNA-sequencing (RNA-seq). At 2 dpi, 647 genes had significant differential expression (DE), including large increases in expression of immune genes such as CCAH221, IL4I1, LYZ, IL13RA2, IL22RA2, and ACOD1. IL1β was predicted as a major regulator of DE in the leukocytes, which was predicted to activate cell migration, phagocytosis and proliferation, and to impact the STAT3 and toll-like receptor pathways. These analyses revealed genes and pathways by which turkey blood leukocytes responded to the pathogen and can provide potential targets for developing intervention strategies or diagnostic assays to mitigate S. Typhimurium colonization in turkeys.
Collapse
Affiliation(s)
- Melissa S Monson
- Iowa State University, Department of Animal Science, Ames, IA, United States
| | - Bradley L Bearson
- USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - Matthew J Sylte
- USDA, ARS, National Animal Disease Center, Ames, IA, United States
| | - Torey Looft
- USDA, ARS, National Animal Disease Center, Ames, IA, United States
| | - Susan J Lamont
- Iowa State University, Department of Animal Science, Ames, IA, United States
| | | |
Collapse
|
7
|
Razmgah N, Torshizi MAK, Sanjabi MR, Mojgani N. Anti-mycotoxigenic properties of probiotic Bacillus spp. in Japanese quails. Trop Anim Health Prod 2020; 52:2863-2872. [PMID: 32946023 DOI: 10.1007/s11250-020-02223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/24/2020] [Indexed: 10/23/2022]
Abstract
The current study was conducted to evaluate the anti-mycotoxigenic effects of previously isolated Bacillus spp. in Japanese quails. A total of 240-day-old Japanese quails were assigned in to six treatments and four replicates. Dietary treatments included the following: negative control (basal diet), positive control (basal diet + 2.5 ppm afltatoxin B1), probiotic treatments (basal diet + 2.5 ppm afltatoxin B1), and 108 cfu/ml of different Bacillus spp. (B. megaterium, B. subtilis, or B. laterosporus) in drinking water and treatment P (basal diet + 2.5 ppm afltatoxin B1 and 2.5 ppm Polysorb®). Body weight gain, feed intake, and feed conversion ratio were not affected by dietary treatments (P > 0.05). Carcass yield significantly increased in B. megaterium and B. subtilis treatments compared with positive control. Supplementation of B. megaterium significantly increased testes, uterus and oviduct weights, skin response to 2,4-dinitro 1-chlorobenzene and phytohemagglutinin, and antibody production against sheep red blood cells (P < 0.05). B. megaterium could significantly increase bursa weight and decrease liver weight compared with positive control (P < 0.05). B. megaterium, B. laterosporus, and Polysorb treatments significantly decreased H:L and aspartate aminotransferase activity in aflatoxin B1 fed control (P < 0.05). B. megaterium and B. laterosporus significantly increased tibia weight, length, radius, index, and ash content compared with positive control (P < 0.05). All dietary additives significantly reduced meat oxidation, total aerobic bacteria, and spore forming bacteria of ileal content compared with positive control (P < 0.05). Ileal lactic acid bacteria significantly increased in B. megaterium treatment (P < 0.05). Totally, B. megaterium might be a promising probiotic with a comparable afltatoxin B1 removal potential to commercial toxin binder (Polysorb).
Collapse
Affiliation(s)
- Niloofar Razmgah
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Sanjabi
- Agriculture Research Institute, Iranian Research Organization for Science & Technology (IROST), Shahrak-e-Shahab Sang, Tehran, Tehran Province, Iran
| | - Naheed Mojgani
- Research and Development Department, Razi Vaccine and Serum Research Institute-Agriculture Research Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
8
|
Mojgani N, Razmgah N, Torshizi MAK, Sanjabi MR. Effects of three Bacillus specious on hatchability, growth performance and serum biochemistry in Japanese quails fed diet contaminated with Aflatoxin B1. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020. [DOI: 10.4025/actascianimsci.v42i1.50184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In total, 240 one-day–old Japanese quails (Coturnix Coturnix Japonica) allocated at random to 6 treatments with 4 replicates and 10 birds in each. Treatments used were: 1) Negative control (without any additives or AFB1); 2) Positive control (basal diet + 2.5 ppm AFB1; 2); 3) TA008 (positive control + 108 cfu/ml Bacillus. megaterium TA008); 4) TA049 (positive control + 108 cfu mL-1 Bacillus. subtilis TA049); 5) TA010 (positive control+ 108 cfu mL-1 Brevibacillus brevis TA010) and 6) P (positive control + 2.5 g kg-1 Polysorb® in feed). Hatchability and embryonic mortality were significantly influenced by additives and AFB1 (p < 0.05). Birds fed TA008 improved 12 % hatchability and reduced 10 % embryonic mortality in compared to positive control (p < 0.05). Weight gain and feed conversion ratio did not affected by treatments (p > 0.05). Feed intake was significantly improved in birds feeding by TA008 at 0-21 days (p < 0.05). There were significant differences on relative weights of carcass, gizzard and proventriculus among treatments (p < 0.05). Serum total protein, albumin, cholesterol, glucose, HDL, globulin and uric acid were significantly affected by treatments (p < 0.05). These results showed that the inclusion of bacillus megaterium as potential probiotic into contaminated diets could improve the adverse effects of AFB1 in Japanese quails.
Collapse
|
9
|
Yang C, Song G, Lim W. Effects of mycotoxin-contaminated feed on farm animals. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122087. [PMID: 32004836 DOI: 10.1016/j.jhazmat.2020.122087] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary products produced by fungi in cereals and are frequently found in the livestock industry as contaminants of farm animal feed. Studies analyzing feed mycotoxins have been conducted worldwide and have confirmed the presence of mycotoxins with biological activity, including aflatoxin, ochratoxin A, fumonisin, zearalenone, and deoxynivalenol, in a large proportion of feed samples. Exposure to mycotoxins can cause immunotoxicity and impair reproductive function in farm animals. In addition, exposure of tissues, such as the kidneys, liver, and intestines, to mycotoxins can exert histopathological changes that can interfere with animal growth and survival. This review describes previous studies regarding the presence of major mycotoxins in the feed of farm animals, especially pigs and poultry. Moreover, it describes the adverse effects of mycotoxins in farm animals following exposure, as well as the biological activity of mycotoxins in animal-derived cells. Mycotoxins have been shown to regulate signaling pathways, oxidative stress, endoplasmic reticulum stress, apoptosis, and proliferation in porcine and bovine cells. A clear understanding of the effects of mycotoxins on farm animals will help reduce farm household economic loss and address the health concerns of people who consume these meat and dairy products.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
10
|
AFB1 Induced Transcriptional Regulation Related to Apoptosis and Lipid Metabolism in Liver of Chicken. Toxins (Basel) 2020; 12:toxins12050290. [PMID: 32375309 PMCID: PMC7290437 DOI: 10.3390/toxins12050290] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at different concentrations were evaluated. The purpose of this study was to explore the mechanism of liver toxicosis responses to AFB1. We found that highly toxic group exposure resulted in liver fat deposition, increased interstitial space, and hepatocyte apoptosis in laying hens. Furthermore, a total of 164 differentially expressed lnRNAs and 186 differentially expressed genes were found to be highly correlated (Pearson Correlation Coefficient > 0.80, p-value < 0.05) by sequencing the transcriptome of control (CB) and highly toxic group (TB3) chickens. We also identify 29 differentially expressed genes and 19 miRNAs that have targeted regulatory relationships. Based on the liver cell apoptosis and fatty liver syndrome that this research focused on, we found that the highly toxic AFB1 led to dysregulation of the expression of PPARG and BCL6. They are cis-regulated by TU10057 and TU45776, respectively. PPARG was the target gene of gga-miR-301a-3p, gga-miR-301b-3p, and BCL6 was the target gene of gga-miR-190a-3p. In summary, highly toxic AFB1 affects the expression levels of protein-coding genes and miRNAs in the liver of Roman layer hens, as well as the expression level of long non-coding RNA in the liver, which upregulates the expression of PPARG and downregulates the expression of Bcl-6. Our study provides information on possible genetic regulatory networks in AFB1-induced hepatic fat deposition and hepatocyte apoptosis.
Collapse
|
11
|
Li J, Li W, Li J, Wang Z, Xiao D, Wang Y, Ni X, Zeng D, Zhang D, Jing B, Liu L, Luo Q, Pan K. Screening of differentially expressed immune-related genes from spleen of broilers fed with probiotic Bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2019; 14:e0226829. [PMID: 31869398 PMCID: PMC6927618 DOI: 10.1371/journal.pone.0226829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to construct the spleen differential genes library of broilers fed with probiotic Bacillus cereus PAS38 by suppression subtractive hybridization (SSH) and screen the immune-related genes. Sixty seven-day-old broilers were randomly divided into two groups. The control group was fed with basal diet, and the treated group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Spleen tissues were taken and extracted its total RNA at 42 days old, then SSH was used to construct differential gene library and screen immune-related genes. A total of 119 differentially expressed sequence tags (ESTs) were isolated by SSH and 9 immune-related genes were screened out by Gene ontology analysis. Nine differentially expressed genes were identified by qRT-PCR. JCHAIN, FTH1, P2RX7, TLR7, IGF1R, SMAD7, and SLC7A6 were found to be significantly up-regulated in the treated group. Which was consistent with the results of SSH. These findings imply that probiotic Bacillus cereus PAS38-induced differentially expressed genes in spleen might play an important role in the improvement of immunity for broilers, which provided useful information for further understanding of the molecular mechanism of probiotics responsible to affect the poultry immunity.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Dan Xiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Lei Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
12
|
Zhao L, Feng Y, Deng J, Zhang NY, Zhang WP, Liu XL, Rajput SA, Qi DS, Sun LH. Selenium Deficiency Aggravates Aflatoxin B1-Induced Immunotoxicity in Chick Spleen by Regulating 6 Selenoprotein Genes and Redox/Inflammation/Apoptotic Signaling. J Nutr 2019; 149:894-901. [PMID: 31070734 DOI: 10.1093/jn/nxz019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Selenium (Se) plays a protective role in aflatoxin B1 (AFB1)-induced splenic immunotoxicity in chicks. OBJECTIVE This study was designed to reveal the underlying mechanism of Se-mediated protection against AFB1-induced splenic injury in broilers. METHODS Four groups of 1-d-old Cobb male broilers (n = 5 cages/diet, 6 chicks/cage) were arranged in a 3-wk 2 × 2 factorial design trial whereby they were fed an Se-deficient, corn- and soy-based diet [base diet (BD), 36 μg Se/kg], BD plus 1.0 mg AFB1/kg, BD plus 0.3 mg Se/kg, or BD plus 1.0 mg AFB1/kg and 0.3 mg Se/kg (as 2-hydroxy-4-methylselenobutanoic acid). Serum and spleen were collected at week 3 to assay for cytokines, histology, redox status, selected inflammation- and apoptosis-related genes and proteins, and the selenogenome. RESULTS Dietary AFB1 induced growth retardation and spleen injury, decreasing (P < 0.05) body weight gain, feed intake, feed conversion efficiency, and serum interleukin-1β by 17.8-98.1% and increasing (P < 0.05) the spleen index and serum interleukin-6 by 37.6-113%. It also reduced the splenic lymphocyte number, the white pulp region, and histiocyte proliferation in Se-adequate groups. However, Se deficiency aggravated (P < 0.05) these AFB1-induced alterations by 16.2-103%. Moreover, Se deficiency decreased (P < 0.05) splenic glutathione peroxidase (GPX) activity and glutathione-S transferase and glutathione concentrations by 35.6-89.4% in AFB1-exposed groups. Furthermore, Se deficiency upregulated (P < 0.05) the apoptotic (Caspase 3 and Caspase 9) and antimicrobial (β defensin 1 and 2) genes, but downregulated (P < 0.05) antiapoptotic (B-cell lymphoma 2) and inflammatory (E3 ubiquitin-protein ligase CBL-B) genes at the mRNA and/or protein level in AFB1 supplementation groups. Additionally, Se deficiency downregulated (P < 0.05) GPX3, thioredoxin reductase 1 (TXNRD 1), GPX4, and selenoprotein (SELENO) S, and upregulated (P < 0.05) SELENOT and SELENOU in spleen in AFB1 administered groups. CONCLUSIONS Dietary Se deficiency exacerbated AFB1-induced spleen injury in chicks, partially through the regulation of oxidative stress, inflammatory and apoptotic signaling, and 6 selenoproteins.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Li Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| |
Collapse
|
13
|
Ramiah SK, Abdullah N, Akhmal M, Mookiah S, Soleimani Farjam A, Wei Li C, Juan Boo L, Idrus Z. Effect of feeding less shell, extruded and enzymatically treated palm kernel cake on expression of growth-related genes in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1589393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Norhani Abdullah
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Muhammad Akhmal
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | | | | | - Chen Wei Li
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Liang Juan Boo
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
14
|
Reed KM, Mendoza KM, Coulombe RA. Altered Gene Response to Aflatoxin B 1 in the Spleens of Susceptible and Resistant Turkeys. Toxins (Basel) 2019; 11:toxins11050242. [PMID: 31035349 PMCID: PMC6562755 DOI: 10.3390/toxins11050242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Susceptibility and/or resistance to aflatoxin B1 (AFB1) is a threshold trait governed principally by glutathione S transferase (GST)-mediated detoxification. In poultry, domesticated turkeys are highly sensitive to AFB1, most likely due to dysfunction in hepatic GSTs. In contrast, wild turkeys are comparatively resistant to aflatoxicosis due to the presence of functional hepatic GSTAs and other possible physiological and immunological interactions. The underlying genetic basis for the disparate GST function in turkeys is unknown as are the broader molecular interactions that control the systemic response. This study quantifies the effects of dietary AFB1 on gene expression in the turkey spleen, specifically contrasting genetically distinct domesticated (DT, susceptible) and Eastern wild (EW, resistant) birds. Male turkey poults were subjected to a short-term AFB1 treatment protocol with feed supplemented with 320 ppb AFB1 beginning on day 15 of age and continuing for 14 days. Spleen tissues were harvested and subjected to deep RNA sequencing and transcriptome analysis. Analysis of differential gene expression found the effects of AFB1 treatment on the spleen transcriptomes considerably more prominent in the DT birds compared to EW. However, expression of the differentially expressed genes (DEGs) was directionally biased, with the majority showing higher expression in EW (i.e., down-regulation in DT). Significantly altered pathways included FXR/RXR and LXR/RXR activation, coagulation system, prothrombin activation, acute phase response, and atherosclerosis signaling. Differential extra-hepatic expression of acute phase protein genes was confirmed by quantitative real time PCR (qRT-PCR) in the original experiment and additional turkey lines. Results demonstrate that wild turkeys possess a capacity to more effectively respond to AFB1 exposure.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Roger A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
15
|
Reed KM, Mendoza KM, Coulombe RA. Differential Transcriptome Responses to Aflatoxin B₁ in the Cecal Tonsil of Susceptible and Resistant Turkeys. Toxins (Basel) 2019; 11:toxins11010055. [PMID: 30669283 PMCID: PMC6357151 DOI: 10.3390/toxins11010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
The nearly-ubiquitous food and feed-borne mycotoxin aflatoxin B1 (AFB1) is carcinogenic and mutagenic, posing a food safety threat to humans and animals. One of the most susceptible animal species known and thus a good model for characterizing toxicological pathways, is the domesticated turkey (DT), a condition likely due, at least in part, to deficient hepatic AFB1-detoxifying alpha-class glutathione S-transferases (GSTAs). Conversely, wild turkeys (Eastern wild, EW) are relatively resistant to the hepatotoxic, hepatocarcinogenic and immunosuppressive effects of AFB1 owing to functional gene expression and presence of functional hepatic GSTAs. This study was designed to compare the responses in gene expression in the gastrointestinal tract between DT (susceptible phenotype) and EW (resistant phenotype) following dietary AFB1 challenge (320 ppb for 14 days); specifically in cecal tonsil which functions in both nutrient absorption and gut immunity. RNAseq and gene expression analysis revealed significant differential gene expression in AFB1-treated animals compared to control-fed domestic and wild birds and in within-treatment comparisons between bird types. Significantly upregulated expression of the primary hepatic AFB1-activating P450 (CYP1A5) as well as transcriptional changes in tight junction proteins were observed in AFB1-treated birds. Numerous pro-inflammatory cytokines, TGF-β and EGF were significantly down regulated by AFB1 treatment in DT birds and pathway analysis suggested suppression of enteroendocrine cells. Conversely, AFB1 treatment modified significantly fewer unique genes in EW birds; among these were genes involved in lipid synthesis and metabolism and immune response. This is the first investigation of the effects of AFB1 on the turkey gastro-intestinal tract. Results suggest that in addition to the hepatic transcriptome, animal resistance to this mycotoxin occurs in organ systems outside the liver, specifically as a refractory gastrointestinal tract.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Roger A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
16
|
Park W, Srikanth K, Lim D, Park M, Hur T, Kemp S, Dessie T, Kim MS, Lee SR, te Pas MFW, Kim JM, Park JE. Comparative transcriptome analysis of Ethiopian indigenous chickens from low and high altitudes under heat stress condition reveals differential immune response. Anim Genet 2018; 50:42-53. [DOI: 10.1111/age.12740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2018] [Indexed: 01/22/2023]
Affiliation(s)
- W. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - K. Srikanth
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - D. Lim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - M. Park
- Animal Breeding and Genomics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - T. Hur
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| | - S. Kemp
- Animal Biosciences; International Livestock Research Institute (ILRI); P.O. Box 30709 Nairobi 00100 Kenya
| | - T. Dessie
- Animal Biosciences; International Livestock Research Institute (ILRI); P.O. Box 5689 Addis Ababa Ethiopia
| | - M. S. Kim
- Department of Animal Science; College of Agriculture and Life Sciences; Chonnam National University; Republic of Korea Gwangju 61186 Korea
| | - S.-R. Lee
- Department of Agro-biotechnology Convergence; Jeonju University; Republic of Korea 55069 Jeonju Korea
| | - M. F. W. te Pas
- Animal Breeding and Genomics; Wageningen UR Livestock Research; 6700AH Wageningen The Netherlands
| | - J.-M. Kim
- Department of Animal Science and Technology; Chung-Ang University; Anseong Gyeonggi-do 17546 Korea
| | - J.-E. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science, RDA; Wanju 55365 Korea
| |
Collapse
|
17
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
18
|
Rotimi OA, Rotimi SO, Oluwafemi F, Ademuyiwa O, Balogun EA. Oxidative Stress in Extrahepatic Tissues of Rats Co-Exposed to Aflatoxin B1 and Low Protein Diet. Toxicol Res 2018; 34:211-220. [PMID: 30057695 PMCID: PMC6057291 DOI: 10.5487/tr.2018.34.3.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
Early life exposure to aflatoxin B1 (AFB1) and low protein diet through complementary foods during weaning is common in parts of Africa and Asia. This study evaluated the effect of co-exposure to AFB1 and low protein diet on the extrahepatic tissues of rats. Twenty-four three-week old weanling male albino rats were used for this study and were randomly assigned into four groups: group 1 served as control and was fed normal protein diet (20% protein), group 2 was fed low protein diet (5% protein), group 3 was fed normal protein diet + 40 ppb AFB1 while group 4 received low protein diet + 40 ppb AFB1, all for eight weeks. Afterward, biomarkers of anemia (packed cell volume (PCV), hemoglobin) and kidney function (urea, uric acid, and creatinine) were determined in the blood while biomarkers of oxidative stress were determined in the tissues spectrophotometrically. Co-exposure to AFB1 and low protein diet significantly (p < 0.05) decreased body weight gain and PCV, increased biomarkers of kidney functions and induced oxidative stress in the tissues studied. There was significant (p < 0.05) reduction in glutathione concentration while TBARS was significantly increased in the tissues. Co-exposure to AFB1 and low protein diet had additive effects on decreasing the weight gain and potentiation effect of kidney dysfunction in the rats. The co-exposure also decreased antioxidant enzymes and increased oxidant status in the tissues. Our results demonstrate that this co-exposure has deleterious health effects on extrahepatic tissues and should be a public health concern especially in developing countries where AFB1 contamination is common.
Collapse
Affiliation(s)
| | | | - Flora Oluwafemi
- Department of Microbiology, Federal University of Agriculture, Abeokuta,
Nigeria
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta,
Nigeria
| | | |
Collapse
|
19
|
Liew WPP, Mohd-Redzwan S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front Cell Infect Microbiol 2018; 8:60. [PMID: 29535978 PMCID: PMC5834427 DOI: 10.3389/fcimb.2018.00060] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
Collapse
Affiliation(s)
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Merrick BA, Chang JS, Phadke DP, Bostrom MA, Shah RR, Wang X, Gordon O, Wright GM. HAfTs are novel lncRNA transcripts from aflatoxin exposure. PLoS One 2018; 13:e0190992. [PMID: 29351317 PMCID: PMC5774710 DOI: 10.1371/journal.pone.0190992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The transcriptome can reveal insights into precancer biology. We recently conducted RNA-Seq analysis on liver RNA from male rats exposed to the carcinogen, aflatoxin B1 (AFB1), for 90 days prior to liver tumor onset. Among >1,000 differentially expressed transcripts, several novel, unannotated Cufflinks-assembled transcripts, or HAfTs (Hepatic Aflatoxin Transcripts) were found. We hypothesized PCR-cloning and RACE (rapid amplification of cDNA ends) could further HAfT identification. Sanger data was obtained for 6 transcripts by PCR and 16 transcripts by 5’- and 3’-RACE. BLAST alignments showed, with two exceptions, HAfT transcripts were lncRNAs, >200nt without apparent long open reading frames. Six rat HAfT transcripts were classified as ‘novel’ without RefSeq annotation. Sequence alignment and genomic synteny showed each rat lncRNA had a homologous locus in the mouse genome and over half had homologous loci in the human genome, including at least two loci (and possibly three others) that were previously unannotated. While HAfT functions are not yet clear, coregulatory roles may be possible from their adjacent orientation to known coding genes with altered expression that include 8 HAfT-gene pairs. For example, a unique rat HAfT, homologous to Pvt1, was adjacent to known genes controlling cell proliferation. Additionally, PCR and RACE Sanger sequencing showed many alternative splice variants and refinements of exon sequences compared to Cufflinks assembled transcripts and gene prediction algorithms. Presence of multiple splice variants and short tandem repeats found in some HAfTs may be consequential for secondary structure, transcriptional regulation, and function. In summary, we report novel, differentially expressed lncRNAs after exposure to the genotoxicant, AFB1, prior to neoplastic lesions. Complete cloning and sequencing of such transcripts could pave the way for a new set of sensitive and early prediction markers for chemical hepatocarcinogens.
Collapse
Affiliation(s)
- B. Alex Merrick
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Justin S. Chang
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Xinguo Wang
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Oksana Gordon
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Garron M. Wright
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| |
Collapse
|
21
|
Reed KM, Mendoza KM, Abrahante JE, Coulombe RA. Comparative Response of the Hepatic Transcriptomes of Domesticated and Wild Turkey to Aflatoxin B₁. Toxins (Basel) 2018; 10:toxins10010042. [PMID: 29342849 PMCID: PMC5793129 DOI: 10.3390/toxins10010042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
The food-borne mycotoxin aflatoxin B1 (AFB1) poses a significant risk to poultry, which are highly susceptible to its hepatotoxic effects. Domesticated turkeys (Meleagris gallopavo) are especially sensitive, whereas wild turkeys (M. g. silvestris) are more resistant. AFB1 toxicity entails bioactivation by hepatic cytochrome P450s to the electrophilic exo-AFB1-8,9-epoxide (AFBO). Domesticated turkeys lack functional hepatic GST-mediated detoxification of AFBO, and this is largely responsible for the differences in resistance between turkey types. This study was designed to characterize transcriptional changes induced in turkey livers by AFB1, and to contrast the response of domesticated (susceptible) and wild (more resistant) birds. Gene expression responses to AFB1 were examined using RNA-sequencing. Statistically significant differences in gene expression were observed among treatment groups and between turkey types. Expression analysis identified 4621 genes with significant differential expression (DE) in AFB1-treated birds compared to controls. Characterization of DE transcripts revealed genes dis-regulated in response to toxic insult with significant association of Phase I and Phase II genes and others important in cellular regulation, modulation of apoptosis, and inflammatory responses. Constitutive expression of GSTA3 was significantly higher in wild birds and was significantly higher in AFB1-treated birds when compared to controls for both genetic groups. This pattern was also observed by qRT-PCR in other wild and domesticated turkey strains. Results of this study emphasize the differential response of these genetically distinct birds, and identify genes and pathways that are differentially altered in aflatoxicosis.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Roger A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
22
|
Barati M, Chamani M, Mousavi SN, Hoseini SA, Taj Abadi Ebrahimi M. Effects of biological and mineral compounds in aflatoxin-contaminated diets on blood parameters and immune response of broiler chickens. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1388243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Barati
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Naser Mousavi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Tehran, Iran
| | - Seyed Abdollah Hoseini
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | | |
Collapse
|
23
|
Monson MS, Cardona CJ, Coulombe RA, Reed KM. Hepatic Transcriptome Responses of Domesticated and Wild Turkey Embryos to Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8010016. [PMID: 26751476 PMCID: PMC4728538 DOI: 10.3390/toxins8010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022] Open
Abstract
The mycotoxin, aflatoxin B₁ (AFB₁) is a hepatotoxic, immunotoxic, and mutagenic contaminant of food and animal feeds. In poultry, AFB₁ can be maternally transferred to embryonated eggs, affecting development, viability and performance after hatch. Domesticated turkeys (Meleagris gallopavo) are especially sensitive to aflatoxicosis, while Eastern wild turkeys (M. g. silvestris) are likely more resistant. In ovo exposure provided a controlled AFB₁ challenge and comparison of domesticated and wild turkeys. Gene expression responses to AFB₁ in the embryonic hepatic transcriptome were examined using RNA-sequencing (RNA-seq). Eggs were injected with AFB₁ (1 μg) or sham control and dissected for liver tissue after 1 day or 5 days of exposure. Libraries from domesticated turkey (n = 24) and wild turkey (n = 15) produced 89.2 Gb of sequence. Approximately 670 M reads were mapped to a turkey gene set. Differential expression analysis identified 1535 significant genes with |log₂ fold change| ≥ 1.0 in at least one pair-wise comparison. AFB₁ effects were dependent on exposure time and turkey type, occurred more rapidly in domesticated turkeys, and led to notable up-regulation in cell cycle regulators, NRF2-mediated response genes and coagulation factors. Further investigation of NRF2-response genes may identify targets to improve poultry resistance.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Carol J Cardona
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Roger A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture, Utah State University, Logan, UT 84322, USA.
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
24
|
Park ES, Bae IK, Kim HJ, Lee SE. Novel regulation of aflatoxin B1 biosynthesis in Aspergillus flavus by piperonal. Nat Prod Res 2015; 30:1854-7. [DOI: 10.1080/14786419.2015.1074228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eun-Sil Park
- School of Applied Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - In Kyung Bae
- School of Applied Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Kimcheon, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|