1
|
Al-Balushi MS, Antony I, Al-Shirawi AH, Al-Riyami H, Al-Busaidi JZ, Koh CY, Al-Naamani KM, Hasson SS, Al-Jabri AA, Said EA. HLA-B*58 and HLA-C*2 Alleles Are Associated with the Occurrence of Rheumatoid Arthritis Among Omanis. J Clin Med 2025; 14:1219. [PMID: 40004750 PMCID: PMC11856611 DOI: 10.3390/jcm14041219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is an autoimmune disease that is influenced by polymorphisms in the HLA molecules. Only a few studies assessed the presence of an association between HLA class I genes and RA. Moreover, ethnic background influences the association of HLA molecules and RA. HLA-I molecules are essential for the activation of CD8 T cells and natural killer (NK) cells. The implication of these cells in RA pathogenesis is controversial. Therefore, we investigated the presence of associations between HLA-I alleles and RA in Omani patients. Methods: HLA class I alleles were genotyped in a total of 206 volunteers (102 RA patients and 104 controls). The control group included volunteers who were not affected by any known disease. The Chi square test was used to investigate the significance of the associations between the HLA alleles and the occurrence of RA. A corrected p value (pc) was calculated using the Bonferroni correction. Results: The frequency of HLA-B*58 was ≈2.7-fold lower in RA patients (10.8%) compared to the control group (28.8%; pc = 0.0324). Moreover, the frequency of HLA-C*02 in RA patient was ≈8-fold higher compared to the control group (pc = 0.0104). Conclusions: This study is the first to demonstrate the presence of association between HLA-B*58 and HLA-C*02 and the occurrence of RA, which could guide future research on targeted therapies. It also suggests that these HLA alleles might influence CD8 T cells and NK cells implication in RA pathogenesis.
Collapse
Affiliation(s)
- Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Irin Antony
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Ali H. Al-Shirawi
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman
| | - Hamad Al-Riyami
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman
| | - Jumaa Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Khalid M. Al-Naamani
- Department of Medicine, The Medical City for Military and Security Services, P.O. Box 35, Muscat 123, Oman;
| | - Sidgi S. Hasson
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| | - Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman (A.A.A.-J.)
| |
Collapse
|
2
|
Haus-Cohen M, Reiter Y. Harnessing antibody-mediated recognition of the intracellular proteome with T cell receptor-like specificity. Front Immunol 2024; 15:1486721. [PMID: 39650646 PMCID: PMC11621052 DOI: 10.3389/fimmu.2024.1486721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
The clinical success of cancer immunotherapy has driven ongoing efforts to identify novel targets that can effectively guide potent effector functions to eliminate malignant cells. Traditionally, immunotherapies have focused on surface antigens; however, these represent only a small fraction of the cancer proteome, limiting their therapeutic potential. In contrast, the majority of proteins within the human proteome are intracellular, yet they are represented on the cell surface as short peptides presented by MHC class I molecules. These peptide-MHC complexes offer a vast and largely untapped resource for cancer immunotherapy targets. The intracellular proteome, including neo-antigens, presents an exciting opportunity for the development of novel cell-based and soluble immunotherapies. Targeting these intracellular-derived peptide-MHC molecules on malignant cell surfaces can be achieved using specific T-cell receptors (TCRs) or TCR-mimicking antibodies, known as TCR-like (TCRL) antibodies. Current therapeutic strategies under investigation include adoptive cell transfer of TCR-engineered or TCRL-T cells and CAR-T cells that target peptide-MHC complexes, as well as soluble TCR- and TCRL-based agents like bispecific T cell engagers. Recent clinical developments in targeting the intracellular proteome using TCRL- and TCR-based molecules have shown promising results, with two therapies recently receiving FDA approval for the treatment of unresectable or metastatic uveal melanoma and synovial sarcoma. This review focuses on the processes for selecting and isolating TCR- and TCRL-based targeting moieties, with an emphasis on pre-clinical and clinical studies that explore the potential of peptide-MHC targeting agents in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yoram Reiter
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology Technion
– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Identification of novel bovine leukocyte antigen alleles and association of BoLA-DRB3.2*020:02:01 with resistance to Theileria orientalis infection in crossbred Kedah-Kelantan cattle: a pilot study. Trop Anim Health Prod 2024; 56:277. [PMID: 39316238 DOI: 10.1007/s11250-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The bovine leukocyte antigen (BoLA) gene is a significant genetic part of the immune system and has been used as a disease marker in cattle. In this study, we detected Theileria orientalis, T. sinensis, Anaplasma marginale, Anaplasma platys, Candidatus Mycoplasma haemobos and Trypanosoma evansi by PCR amplification and sequencing of the amplicons. The allelic association of the BoLA-DRB3.2 gene with blood pathogen disease resistance and susceptibility in 87 Kedah-Kelantan x Brahman (KKB) and 38 Bali cattle was determined by Fisher's exact test and Cochran Mantel Haenszel (CMH) correction test. Sequence-based typing of the BoLA-DRB3.2 gene identified 43 alleles (27 previously reported alleles and 16 novel alleles) across the two cattle breeds. Alignment analysis of the 16 novel alleles revealed 90.7-95.8% and 85-92% nucleotide and amino acid identities, with the reference allele, BoLA-DRB3*016:01 cDNA clone NR-1. BoLA-DRB3*009:02 (25.6%) and BoLA-DRB3*036:01 (36%) were the most frequent alleles in KKB and Bali cattle, respectively. In KKB cattle, BoLA-DRB3*020:02:01 was significantly associated with resistance to T. orientalis whereas *007:01 and *009:02 were significantly associated with resistance to C. Mycoplasma haemobos. Also, DRB3*017:01 was associated with susceptibility to T. orientalis in KKB cattle. In the Bali cattle, BoLA-DRB3*015:01 was found to be a genetic marker of susceptibility to C. Mycoplasma haemobos infection. Therefore, this study identified BoLA-DRB3.2 alleles associated with resistance and susceptibility to T. orientalis infection in KKB cattle and susceptibility to C. Mycoplasma haemobos infection in Bali cattle for the first time. Therefore, this study suggests that these BoLA-DRB3 resistance alleles could be used as candidate markers for selection, whereas susceptibility alleles could be used as candidate markers for culling in the beef industry.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Developmental Institute, Serdang Selangor 43400, Headquarters, Malaysia
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
von Asmuth EGJ, Hiensch F, Heidt S, Mohseny AB, Roelen DL, Kramer CSM, Claas FHJ, Albert MH, Neven B, Lankester AC, van Beek AA. Permissible HLA mismatches in 9/10 unrelated donor pediatric stem cell transplants using HLA-EMMA: an EBMT Inborn Errors Working Party study. Blood Adv 2024; 8:4767-4777. [PMID: 38985189 PMCID: PMC11414666 DOI: 10.1182/bloodadvances.2024012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (HSCT) with mismatched unrelated donors (MMUD) is associated with inferior outcome compared with matched unrelated donors (MUDs). We aimed to identify permissible mismatches using HLA epitope mismatch algorithm, which determines permissibility by analyzing amino acid sequences, in a single-center cohort of 70 pediatric 9/10 MMUD HSCTs and 157 10/10 MUDs for comparison. Amino acid matching was evaluated for the whole HLA protein, the α-helices, and the β-sheets, in both host vs graft (HvG) and graft vs host (GvH) direction. Superior event-free survival (EFS) was found in 13 patients permissibly mismatched in the HvG direction (totalHvG, 92% vs 58% at 1 year; P = .009) and in 21 patients matched on the α-helices (αHvG, 90% vs 53%; P = .002). These rates were similar to EFS rates in patients with 10/10 MUDs (90% vs 80%; P = .60). EFS was not related to β-sheet amino acid matching, nor to matching in the GvH direction. Overall survival (OS) rates trended similarly to those of EFS for amino acid mismatches (totalHvG, 92% vs 74%; P = .075; αHvG, 90% vs 71%; P = .072). These findings were reproduced in an EBMT Registry inborn errors cohort of 271 pediatric 9/10 MMUD HSCTs and 929 10/10 MUD HSCTs, showing a significant effect of αHvG matching on both OS and EFS and similar OS and EFS between αHvG matched MMUDs and 10/10 MUDs. In summary, HvG amino acid matching on the α-helices identifies 9/10 MMUDs with permissible mismatches, which are correlated with favorable transplant outcomes similar to those of matched donors.
Collapse
Affiliation(s)
- Erik G. J. von Asmuth
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Fleur Hiensch
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center Rotterdam, The Netherlands
| | - Alexander B. Mohseny
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S. M. Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H. J. Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael H. Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Bénédicte Neven
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Arjan C. Lankester
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriaan A. van Beek
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Su L, Yan Y, Ma B, Zhao S, Cui Z. GIHP: Graph convolutional neural network based interpretable pan-specific HLA-peptide binding affinity prediction. Front Genet 2024; 15:1405032. [PMID: 39050251 PMCID: PMC11266168 DOI: 10.3389/fgene.2024.1405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Accurately predicting the binding affinities between Human Leukocyte Antigen (HLA) molecules and peptides is a crucial step in understanding the adaptive immune response. This knowledge can have important implications for the development of effective vaccines and the design of targeted immunotherapies. Existing sequence-based methods are insufficient to capture the structure information. Besides, the current methods lack model interpretability, which hinder revealing the key binding amino acids between the two molecules. To address these limitations, we proposed an interpretable graph convolutional neural network (GCNN) based prediction method named GIHP. Considering the size differences between HLA and short peptides, GIHP represent HLA structure as amino acid-level graph while represent peptide SMILE string as atom-level graph. For interpretation, we design a novel visual explanation method, gradient weighted activation mapping (Grad-WAM), for identifying key binding residues. GIHP achieved better prediction accuracy than state-of-the-art methods across various datasets. According to current research findings, key HLA-peptide binding residues mutations directly impact immunotherapy efficacy. Therefore, we verified those highlighted key residues to see whether they can significantly distinguish immunotherapy patient groups. We have verified that the identified functional residues can successfully separate patient survival groups across breast, bladder, and pan-cancer datasets. Results demonstrate that GIHP improves the accuracy and interpretation capabilities of HLA-peptide prediction, and the findings of this study can be used to guide personalized cancer immunotherapy treatment. Codes and datasets are publicly accessible at: https://github.com/sdustSu/GIHP.
Collapse
Affiliation(s)
- Lingtao Su
- Shandong University of Science and Technology, Qingdao, China
| | - Yan Yan
- Shandong Guohe Industrial Technology Research Institute Co. Ltd., Jinan, China
| | - Bo Ma
- Qingdao UNIC Information Technology Co. Ltd., Qingdao, China
| | - Shiwei Zhao
- Shandong University of Science and Technology, Qingdao, China
| | - Zhenyu Cui
- Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
6
|
de Gier M, Pico-Knijnenburg I, van Ostaijen-ten Dam MM, Berghuis D, Smiers FJ, van Beek AA, Jolink H, Jansen PM, Lankester AC, van der Burg M. Case report: Persistent hypogammaglobulinemia and mixed chimerism after HLA class-II disparate-hematopoietic stem cell transplant. Front Immunol 2024; 15:1397567. [PMID: 39044816 PMCID: PMC11263073 DOI: 10.3389/fimmu.2024.1397567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for various hematological, immunological and metabolic diseases, replacing the patient's hematopoietic system with donor-derived healthy hematopoietic stem cells. HSCT can be complicated by early and late events related to impaired immunological recovery such as prolonged hypogammaglobulinemia post-HSCT. We present a 16-year-old female patient with sickle-cell disease who underwent HSCT with stem cells from a human leukocyte antigen (HLA) class-II mismatched family donor. While cellular recovery was good post-HSCT, the patient developed mixed chimerism and suffered from cervical lymphadenopathy, recurrent airway infections and cutaneous SLE. She presented with hypogammaglobulinemia and was started on immunoglobulin substitution therapy and antibiotic prophylaxis. B-cell phenotyping showed that she had increased transitional and naïve mature B cells, reduced memory B cells, and diminished marginal zone/natural effector cells. In-depth immunophenotyping and B-cell receptor repertoire sequencing ruled out an intrinsic B-cell defect by expression of activation-induced cytidine deaminase (AID), presence of somatic hypermutations and differentiation into IgG- and IgA-producing plasma cells in vitro. Immunohistochemistry and flow cytometry of lymph node tissue showed a clear block in terminal B-cell differentiation. Chimerism analysis of sorted lymph node populations showed that exclusively patient-derived B cells populated germinal centers, while only a minor fraction of follicular helper T cells was patient-derived. Given this discrepancy, we deduced that the HLA class-II disparity between patient and donor likely hinders terminal B-cell differentiation in the lymph node. This case highlights that studying disturbed cognate T-B interactions in the secondary lymphoid organs can provide unique insights when deciphering prolonged hypogammaglobulinemia post-HSCT.
Collapse
Affiliation(s)
- Melanie de Gier
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Monique M. van Ostaijen-ten Dam
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Frans J. Smiers
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Adriaan A. van Beek
- HLA Laboratory, Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arjan C. Lankester
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
7
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
8
|
Aharon A, Benedek G, Barhoum B, Parnasa E, Magadle N, Perzon O, Mevorach D. HLA binding-groove motifs are associated with myocarditis induction after Pfizer-BioNTech BNT162b2 vaccination. Eur J Clin Invest 2024; 54:e14142. [PMID: 38071404 DOI: 10.1111/eci.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS We found a higher incidence of myocarditis in young males who had received at least two Pfizer-BioNTech BNT162b2 vaccinations. The human leukocyte antigens (HLA) are known to play an important role in infectious and autoinflammatory diseases. We hypothesized that certain HLA alleles might be associated with vaccination-induced myocarditis. METHODS HLA typing was performed using next-generation sequencing technology with the Illumina Iseq100 platform. HLA class I and II loci were genotyped in 29 patients with post-vaccination myocarditis and compared with HLA data from 300 healthy controls. RESULTS We demonstrate that the DRB1*14:01, DRB1*15:03 alleles and the motifs in HLA-A - Leu62 and Gln63, which are part of binding pocket B and HLA-DR Tyr47, His60, Arg70 and Glu74, which are part of binding pockets P4, P7 and P9, were significantly associated with disease susceptibility. CONCLUSIONS Our findings suggest that immunogenetic fingerprints in HLA peptide-binding grooves may affect the presentation of peptides derived from the Pfizer-BioNTech BNT162b2 vaccination to T cells and induce an inflammatory process that results in myocarditis.
Collapse
Affiliation(s)
- Aviran Aharon
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Gil Benedek
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Barhoum Barhoum
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elchanan Parnasa
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nur Magadle
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Perzon
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Shen Y, Parks JM, Smith JC. HLA-Clus: HLA class I clustering based on 3D structure. BMC Bioinformatics 2023; 24:189. [PMID: 37161375 PMCID: PMC10169335 DOI: 10.1186/s12859-023-05297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND In a previous paper, we classified populated HLA class I alleles into supertypes and subtypes based on the similarity of 3D landscape of peptide binding grooves, using newly defined structure distance metric and hierarchical clustering approach. Compared to other approaches, our method achieves higher correlation with peptide binding specificity, intra-cluster similarity (cohesion), and robustness. Here we introduce HLA-Clus, a Python package for clustering HLA Class I alleles using the method we developed recently and describe additional features including a new nearest neighbor clustering method that facilitates clustering based on user-defined criteria. RESULTS The HLA-Clus pipeline includes three stages: First, HLA Class I structural models are coarse grained and transformed into clouds of labeled points. Second, similarities between alleles are determined using a newly defined structure distance metric that accounts for spatial and physicochemical similarities. Finally, alleles are clustered via hierarchical or nearest-neighbor approaches. We also interfaced HLA-Clus with the peptide:HLA affinity predictor MHCnuggets. By using the nearest neighbor clustering method to select optimal allele-specific deep learning models in MHCnuggets, the average accuracy of peptide binding prediction of rare alleles was improved. CONCLUSIONS The HLA-Clus package offers a solution for characterizing the peptide binding specificities of a large number of HLA alleles. This method can be applied in HLA functional studies, such as the development of peptide affinity predictors, disease association studies, and HLA matching for grafting. HLA-Clus is freely available at our GitHub repository ( https://github.com/yshen25/HLA-Clus ).
Collapse
Affiliation(s)
- Yue Shen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Papadaki GF, Ani O, Florio TJ, Young MC, Danon JN, Sun Y, Dersh D, Sgourakis NG. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Front Immunol 2023; 14:1116906. [PMID: 36761745 PMCID: PMC9905809 DOI: 10.3389/fimmu.2023.1116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, in vitro tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.
Collapse
Affiliation(s)
- Georgia F. Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Omar Ani
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Florio
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia N. Danon
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devin Dersh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Shen Y, Parks JM, Smith JC. HLA Class I Supertype Classification Based on Structural Similarity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:103-114. [PMID: 36453976 DOI: 10.4049/jimmunol.2200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
HLA class I proteins, a critical component in adaptive immunity, bind and present intracellular Ags to CD8+ T cells. The extreme polymorphism of HLA genes and associated peptide binding specificities leads to challenges in various endeavors, including neoantigen vaccine development, disease association studies, and HLA typing. Supertype classification, defined by clustering functionally similar HLA alleles, has proven helpful in reducing the complexity of distinguishing alleles. However, determining supertypes via experiments is impractical, and current in silico classification methods exhibit limitations in stability and functional relevance. In this study, by incorporating three-dimensional structures we present a method for classifying HLA class I molecules with improved breadth, accuracy, stability, and flexibility. Critical for these advances is our finding that structural similarity highly correlates with peptide binding specificity. The new classification should be broadly useful in peptide-based vaccine development and HLA-disease association studies.
Collapse
Affiliation(s)
- Yue Shen
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and
| | - Jeremy C Smith
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and.,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| |
Collapse
|
13
|
Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules. PNAS NEXUS 2022; 1:pgac124. [PMID: 36003074 PMCID: PMC9391200 DOI: 10.1093/pnasnexus/pgac124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules bind and present peptides at the cell surface to facilitate the induction of appropriate CD8+ T cell-mediated immune responses to pathogen- and self-derived proteins. The HLA-I peptide-binding cleft contains dominant anchor sites in the B and F pockets that interact primarily with amino acids at peptide position 2 and the C-terminus, respectively. Nonpocket peptide-HLA interactions also contribute to peptide binding and stability, but these secondary interactions are thought to be unique to individual HLA allotypes or to specific peptide antigens. Here, we show that two positively charged residues located near the top of peptide-binding cleft facilitate interactions with negatively charged residues at position 4 of presented peptides, which occur at elevated frequencies across most HLA-I allotypes. Loss of these interactions was shown to impair HLA-I/peptide binding and complex stability, as demonstrated by both in vitro and in silico experiments. Furthermore, mutation of these Arginine-65 (R65) and/or Lysine-66 (K66) residues in HLA-A*02:01 and A*24:02 significantly reduced HLA-I cell surface expression while also reducing the diversity of the presented peptide repertoire by up to 5-fold. The impact of the R65 mutation demonstrates that nonpocket HLA-I/peptide interactions can constitute anchor motifs that exert an unexpectedly broad influence on HLA-I-mediated antigen presentation. These findings provide fundamental insights into peptide antigen binding that could broadly inform epitope discovery in the context of viral vaccine development and cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle R Jackson
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Amjad H Talukder
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ariana R Maleki
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kano Amagai
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Avery Salmon
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun S Katailiha
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Romanos Fasoulis
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Brenda D Melendez
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Heather M Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Yang Liu
- ThermoFisher Scientific, San Jose, CA, USA
| | - David Horn
- ThermoFisher Scientific, San Jose, CA, USA
| | | | | | - Patrick Hwu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Gregory Lizée
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Curr Opin Immunol 2022; 76:102178. [PMID: 35462277 PMCID: PMC8947957 DOI: 10.1016/j.coi.2022.102178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
Abstract
The extraordinary variation of the human leukocyte antigen (HLA) molecules is critical for diversifying antigen presentation to T cells. Coupled with the rise of novel strains and rapidly evolving immune evasion by SARS-CoV-2 proteins, HLA-mediated immunity in COVID-19 is critically important but far from being fully understood. A growing number of studies have found the association of HLA variants with different COVID-19 outcomes and that HLA genotypes associate with differential immune responses against SARS-CoV-2. Prediction studies have shown that mutations in multiple viral strains, most concentrated in the Spike protein, affect the affinity between these mutant peptides and HLA molecules. Understanding the impact of this variation on T-cell responses is critical for comprehending the immunogenic mechanisms in both natural immunity and vaccine development.
Collapse
Affiliation(s)
- Danillo G Augusto
- Department of Neurology, University of California, San Francisco,
CA, USA,Programa de Pós-Graduação em Genética, Universidade Federal do
Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco,
CA, USA,Department of Epidemiology and Biostatistics, University of
California, San Francisco, CA, USA
| |
Collapse
|
15
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
16
|
Impact of Micropolymorphism Outside the Peptide Binding Groove in the Clinically Relevant Allele HLA-C*14 on T Cell Responses in HIV-1 Infection. J Virol 2022; 96:e0043222. [PMID: 35475667 PMCID: PMC9131871 DOI: 10.1128/jvi.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.
Collapse
|
17
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Stuart PE, Tsoi LC, Nair RP, Ghosh M, Kabra M, Shaiq PA, Raja GK, Qamar R, Thelma B, Patrick MT, Parihar A, Singh S, Khandpur S, Kumar U, Wittig M, Degenhardt F, Tejasvi T, Voorhees JJ, Weidinger S, Franke A, Abecasis GR, Sharma VK, Elder JT. Transethnic analysis of psoriasis susceptibility in South Asians and Europeans enhances fine-mapping in the MHC and genomewide. HGG ADVANCES 2022; 3:100069. [PMID: 34927100 PMCID: PMC8682265 DOI: 10.1016/j.xhgg.2021.100069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
Because transethnic analysis may facilitate prioritization of causal genetic variants, we performed a genomewide association study (GWAS) of psoriasis in South Asians (SAS), consisting of 2,590 cases and 1,720 controls. Comparison with our existing European-origin (EUR) GWAS showed that effect sizes of known psoriasis signals were highly correlated in SAS and EUR (Spearman ρ = 0.78; p < 2 × 10-14). Transethnic meta-analysis identified two non-MHC psoriasis loci (1p36.22 and 1q24.2) not previously identified in EUR, which may have regulatory roles. For these two loci, the transethnic GWAS provided higher genetic resolution and reduced the number of potential causal variants compared to using the EUR sample alone. We then explored multiple strategies to develop reference panels for accurately imputing MHC genotypes in both SAS and EUR populations and conducted a fine-mapping of MHC psoriasis associations in SAS and the largest such effort for EUR. HLA-C*06 was the top-ranking MHC locus in both populations but was even more prominent in SAS based on odds ratio, disease liability, model fit and predictive power. Transethnic modeling also substantially boosted the probability that the HLA-C*06 protein variant is causal. Secondary MHC signals included coding variants of HLA-C and HLA-B, but also potential regulatory variants of these two genes as well as HLA-A and several HLA class II genes, with effects on both chromatin accessibility and gene expression. This study highlights the shared genetic basis of psoriasis in SAS and EUR populations and the value of transethnic meta-analysis for discovery and fine-mapping of susceptibility loci.
Collapse
Affiliation(s)
- Philip E. Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Manju Ghosh
- Department of Pediatrics Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Pakeeza A. Shaiq
- Department of Biochemistry, PMASAA University, Rawalpindi, Pakistan
| | - Ghazala K. Raja
- Department of Biochemistry, PMASAA University, Rawalpindi, Pakistan
| | - Raheel Qamar
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - B.K. Thelma
- Department of Genetics, University of Delhi South Campus, 110021 New Delhi, India
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anita Parihar
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Singh
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Michael Wittig
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - John J. Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Goncalo R. Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vinod K. Sharma
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - James T. Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| |
Collapse
|
19
|
The pockets guide to HLA class I molecules. Biochem Soc Trans 2021; 49:2319-2331. [PMID: 34581761 PMCID: PMC8589423 DOI: 10.1042/bst20210410] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigens (HLA) are cell-surface proteins that present peptides to T cells. These peptides are bound within the peptide binding cleft of HLA, and together as a complex, are recognised by T cells using their specialised T cell receptors. Within the cleft, the peptide residue side chains bind into distinct pockets. These pockets ultimately determine the specificity of peptide binding. As HLAs are the most polymorphic molecules in humans, amino acid variants in each binding pocket influences the peptide repertoire that can be presented on the cell surface. Here, we review each of the 6 HLA binding pockets of HLA class I (HLA-I) molecules. The binding specificity of pockets B and F are strong determinants of peptide binding and have been used to classify HLA into supertypes, a useful tool to predict peptide binding to a given HLA. Over the years, peptide binding prediction has also become more reliable by using binding affinity and mass spectrometry data. Crystal structures of peptide-bound HLA molecules provide a means to interrogate the interactions between binding pockets and peptide residue side chains. We find that most of the bound peptides from these structures conform to binding motifs determined from prediction software and examine outliers to learn how these HLAs are stabilised from a structural perspective.
Collapse
|
20
|
Connecting MHC-I-binding motifs with HLA alleles via deep learning. Commun Biol 2021; 4:1194. [PMID: 34663927 PMCID: PMC8523706 DOI: 10.1038/s42003-021-02716-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
The selection of peptides presented by MHC molecules is crucial for antigen discovery. Previously, several predictors have shown impressive performance on binding affinity. However, the decisive MHC residues and their relation to the selection of binding peptides are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele signatures on the important positions to disclose the relation between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele signatures (HLA-A: 13, HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and allele signatures disclosed the critical polymorphic residues that determine the binding preference, which are believed to be valuable for antigen discovery and vaccine design when allele specificity is concerned. Ko-Han Lee et al. develop MHCfovea, a machine-learning method for predicting peptide-binding by MHC molecules and inferring peptide motifs and MHC allele signatures. They demonstrate that MHCfovea is capable of detecting meaningful hyper-motifs and allele signatures, making it a useful resource for the community.
Collapse
|
21
|
Castelli EC, de Castro MV, Naslavsky MS, Scliar MO, Silva NSB, Andrade HS, Souza AS, Pereira RN, Castro CFB, Mendes-Junior CT, Meyer D, Nunes K, Matos LRB, Silva MVR, Wang JYT, Esposito J, Coria VR, Bortolin RH, Hirata MH, Magawa JY, Cunha-Neto E, Coelho V, Santos KS, Marin MLC, Kalil J, Mitne-Neto M, Maciel RMB, Passos-Bueno MR, Zatz M. MHC Variants Associated With Symptomatic Versus Asymptomatic SARS-CoV-2 Infection in Highly Exposed Individuals. Front Immunol 2021; 12:742881. [PMID: 34650566 PMCID: PMC8506217 DOI: 10.3389/fimmu.2021.742881] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the high number of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) symptoms worldwide, many exposed individuals remain asymptomatic and/or uninfected and seronegative. This could be explained by a combination of environmental (exposure), immunological (previous infection), epigenetic, and genetic factors. Aiming to identify genetic factors involved in immune response in symptomatic COVID-19 as compared to asymptomatic exposed individuals, we analyzed 83 Brazilian couples where one individual was infected and symptomatic while the partner remained asymptomatic and serum-negative for at least 6 months despite sharing the same bedroom during the infection. We refer to these as "discordant couples". We performed whole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic major histocompatibility complex (MHC) region. The discordant partners had comparable ages and genetic ancestry, but women were overrepresented (65%) in the asymptomatic group. In the antigen-presentation pathway, we observed an association between HLA-DRB1 alleles encoding Lys at residue 71 (mostly DRB1*03:01 and DRB1*04:01) and DOB*01:02 with symptomatic infections and HLA-A alleles encoding 144Q/151R with asymptomatic seronegative women. Among the genes related to immune modulation, we detected variants in MICA and MICB associated with symptomatic infections. These variants are related to higher expression of soluble MICA and low expression of MICB. Thus, quantitative differences in these molecules that modulate natural killer (NK) activity could contribute to susceptibility to COVID-19 by downregulating NK cell cytotoxic activity in infected individuals but not in the asymptomatic partners.
Collapse
Affiliation(s)
- Erick C. Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mateus V. de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Heloisa S. Andrade
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Andreia S. Souza
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Raphaela N. Pereira
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila F. B. Castro
- Molecular Genetics and Bioinformatics Laboratory–Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Centro Universitário Sudoeste Paulista, Avaré, Brazil
| | - Celso T. Mendes-Junior
- Departamento de Química, Faculdade de Filosofa, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Larissa R. B. Matos
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Jaqueline Y. T. Wang
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Joyce Esposito
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Vivian R. Coria
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Raul H. Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario H. Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jhosiene Y. Magawa
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Keity S. Santos
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Maria Lucia C. Marin
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | | | | | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Gonçalves LB, de França PP, Petry NA, de Souza Xavier MB, de Carvalho NS, Bicalho MDG, Boldt ABW, de Araujo-Souza PS. Inside the pocket: Critical elements of HLA-mediated susceptibility to cervical precancerous lesions. HLA 2021; 98:448-458. [PMID: 34505756 DOI: 10.1111/tan.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023]
Abstract
Human papillomavirus (HPV) infection is a necessary cause for cervical cancer (CC), but it also depends on genetic factors, such as HLA polymorphism. However, few reports addressed the role of amino acids residues at the HLA peptide-binding cleft in HPV-related cervical disease. Therefore, we aimed to investigate the association between HLA-B, HLA-C, and HLA-DRB1 polymorphism and amino acid residues composing the pockets of the peptide-binding cleft of the respective polypeptide chains with cervical intraepithelial neoplasia (CIN II/III). HLA typing was performed by PCR-SSOP in 184 women with CIN II/III and 174 controls from South Brazil. Associations were estimated by multivariate logistic regression. FDR test was performed to correct the p-value for multiple comparisons. HLA-DRB1*13:01 was associated with protection against CIN II/III, while HLA-C*03:04 was associated with susceptibility. The amino acid residues isoleucine, tyrosine, and leucine at positions 95, 116, and 163 of HLA-C, respectively, were associated with CIN II/III susceptibility. In contrast, serine at positions 11 and 13 of HLA-DRB1 was associated with protection against the disease. Our results confirm previously reported associations between HLA and cervical diseases caused by HPV and suggest a role for amino acid residues at different positions of HLA-C and HLA-DRB1 in CIN II/III. This finding may be further explored to better understand the genetic risk and the influence of immune response to CC development.
Collapse
Affiliation(s)
- Letícia Boslooper Gonçalves
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Post-graduation Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Patrícia Pinho de França
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Post-graduation Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Natália Angelica Petry
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marina Bárbara de Souza Xavier
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Post-graduation Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Newton Sérgio de Carvalho
- Department of Gynecology and Obstetrics, Post Graduate Program of Gynecology and Obstetrics, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria da Graça Bicalho
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Patrícia Savio de Araujo-Souza
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
23
|
Hoek M, Demmers LC, Wu W, Heck AJR. Allotype-Specific Glycosylation and Cellular Localization of Human Leukocyte Antigen Class I Proteins. J Proteome Res 2021; 20:4518-4528. [PMID: 34415762 PMCID: PMC8419865 DOI: 10.1021/acs.jproteome.1c00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Presentation of antigens
by human leukocyte antigen (HLA) complexes
at the cell surface is a key process in the immune response. The α-chain,
containing the peptide-binding groove, is one of the most polymorphic
proteins in the proteome. All HLA class I α-chains carry a conserved
N-glycosylation site, but little is known about its nature and function.
Here, we report an in-depth characterization of N-glycosylation features
of HLA class I molecules. We observe that different HLA-A α-chains
carry similar glycosylation, distinctly different from the HLA-B,
HLA-C, and HLA-F α-chains. Although HLA-A displays the broadest
variety of glycan characteristics, HLA-B α-chains carry mostly
mature glycans, and HLA-C and HLA-F α-chains carry predominantly
high-mannose glycans. We expected these glycosylation features to
be directly linked to cellular localization of the HLA complexes.
Indeed, analyzing HLA class I complexes from crude plasma and inner
membrane-enriched fractions confirmed that most HLA-B complexes can
be found at the plasma membrane, while most HLA-C and HLA-F molecules
reside in the endoplasmic reticulum and Golgi membrane, and HLA-A
molecules are more equally distributed over these cellular compartments.
This allotype-specific cellular distribution of HLA molecules should
be taken into account when analyzing peptide antigen presentation
by immunopeptidomics.
Collapse
Affiliation(s)
- Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Laura C Demmers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
24
|
Abstract
The composition of the gut microbiota is affected by a number of factors, including the innate and adaptive immune system. The major histocompatibility complex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential role in vertebrate immunity and is very polymorphic in different populations. HLA determines the specificity of T lymphocyte and natural killer (NK) cell responses, including those against the commensal bacteria present in the human gut. Thus, it is likely that our HLA molecules, and thereby the adaptive immune response, can shape the composition of our microbiota. Here, we investigated the effect of HLA haplotype on the microbiota composition. We performed HLA typing and microbiota composition analyses on 3,002 public human gut microbiome data sets. We found that individuals with functionally similar HLA molecules are also similar in their microbiota composition. Our results show a statistical association between host HLA haplotype and gut microbiota composition. Because the HLA haplotype is a readily measurable parameter of the human immune system, these results open the door to incorporating the genetics of the immune system into predictive microbiome models. IMPORTANCE The microorganisms that live in the digestive tracts of humans, known as the gut microbiota, are essential for hosts' survival, as they support crucial functions. For example, they support the host in facilitating the uptake of nutrients and give colonization resistance against pathogens. The composition of the gut microbiota varies among humans. Studies have proposed multiple factors driving the observed variation, including diet, lifestyle, and health condition. Another major influence on the microbiota is the host's genetic background. We hypothesized the immune system to be one of the most important genetic factors driving the differences observed between gut microbiotas. Therefore, we searched for a link between the polymorphic molecules that shape human immune responses and the composition of the microbiota. HLA molecules are the most polymorphic molecules in our genome and therefore makes an excellent candidate to test such an association. To our knowledge for the first time, our results indicate a significant impact of the HLA on the human gut microbiota.
Collapse
|
25
|
Margolis DJ, Mitra N, Duke JL, Berna R, Margolis JD, Hoffstad O, Kim BS, Yan AC, Zaenglein AL, Chiesa Fuxench Z, Dinou A, Wasserman J, Tairis N, Mosbruger TL, Ferriola D, Damianos G, Kotsopoulou I, Monos DS. Human leukocyte antigen class-I variation is associated with atopic dermatitis: A case-control study. Hum Immunol 2021; 82:593-599. [PMID: 33875297 PMCID: PMC8238855 DOI: 10.1016/j.humimm.2021.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a common immune-medicated skin disease. Previous studies have explored the relationship between Human Leukocyte Antigen (HLA) allelic variation and AD with conflicting results. The aim was to examine HLA Class I genetic variation, specifically peptide binding groove variation, and associations with AD. A case-control study was designed to evaluate HLA class I allelic variation and binding pocket polymorphisms, using next generation sequencing on 464 subjects with AD and 388 without AD. Logistic regression was used to evaluate associations with AD by estimating odds ratios (95% confidence intervals). Significant associations were noted with susceptibility to AD (B*53:01) and protection from AD (A*01:01, A*02:01, B*07:02 and C*07:02). Evaluation of polymorphic residues in Class I binding pockets revealed six amino acid residues conferring protection against AD: A9F (HLA-A, position 9, phenylalanine) [pocket B/C], A97I [pocket C/E], A152V [pocket E], A156R [pocket D/E], B163E [pocket A] and C116S [pocket F]. These findings demonstrate that specific HLA class I components are associated with susceptibility or protection from AD. Individual amino acid residues are relevant to protection from AD and set the foundation for evaluating potential HLA Class I molecules in complex with peptides/antigens that may initiate or interfere with T-cell responses.
Collapse
Affiliation(s)
- D J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - N Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - J L Duke
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - R Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J D Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - O Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - B S Kim
- Division of Dermatology, Department of Medicine, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, United States
| | - A C Yan
- Division of Dermatology, Department of Medicine, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, United States
| | - A L Zaenglein
- Departments of Dermatology and Pediatrics, Pennsylvania State University/Hershey Medical Center, Hershey, PA, United States
| | - Z Chiesa Fuxench
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Dinou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - J Wasserman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - N Tairis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - T L Mosbruger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D Ferriola
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
27
|
Montes-Grajales D, Olivero-Verbel J. Bioinformatics Prediction of SARS-CoV-2 Epitopes as Vaccine Candidates for the Colombian Population. Vaccines (Basel) 2021; 9:vaccines9070797. [PMID: 34358213 PMCID: PMC8310250 DOI: 10.3390/vaccines9070797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 represents an enormous challenge to global public health, with thousands of infections and deaths in over 200 countries worldwide. The purpose of this study was to identify SARS-CoV-2 epitopes with potential to interact in silico with the alleles of the human leukocyte antigen class I (HLA I) and class II (HLA II) commonly found in the Colombian population to promote both CD4 and CD8 immune responses against this virus. The generation and evaluation of the peptides in terms of HLA I and HLA II binding, immune response, toxicity and allergenicity were performed by using computer-aided tools, such as NetMHCpan 4.1, NetMHCIIpan 4.0, VaxiJem, ToxinPred and AllerTop. Furthermore, the interaction between the predicted epitopes with HLA I and HLA II proteins frequently found in the Colombian population was studied through molecular docking simulations in AutoDock Vina and interaction analysis in LigPlot+. One of the promising peptides proposed in this study is the HLA I epitope YQPYRVVVL, which displayed an estimated coverage of over 82% and 96% for the Colombian and worldwide population, respectively. These findings could be useful for the design of new epitope-vaccines that include Colombia among their population target.
Collapse
|
28
|
Di D, Nunes JM, Jiang W, Sanchez-Mazas A. Like Wings of a Bird: Functional Divergence and Complementarity between HLA-A and HLA-B Molecules. Mol Biol Evol 2021; 38:1580-1594. [PMID: 33320202 PMCID: PMC8355449 DOI: 10.1093/molbev/msaa325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jose Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| |
Collapse
|
29
|
Migdal M, Ruan DF, Forrest WF, Horowitz A, Hammer C. MiDAS-Meaningful Immunogenetic Data at Scale. PLoS Comput Biol 2021; 17:e1009131. [PMID: 34228721 PMCID: PMC8284797 DOI: 10.1371/journal.pcbi.1009131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunogenetic variation in the form of HLA and KIR types has been shown to be strongly associated with a multitude of immune-related phenotypes. However, association studies involving immunogenetic loci most commonly involve simple analyses of classical HLA allelic diversity, resulting in limitations regarding the interpretability and reproducibility of results. We here present MiDAS, a comprehensive R package for immunogenetic data transformation and statistical analysis. MiDAS recodes input data in the form of HLA alleles and KIR types into biologically meaningful variables, allowing HLA amino acid fine mapping, analyses of HLA evolutionary divergence as well as experimentally validated HLA-KIR interactions. Further, MiDAS enables comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS thus closes the gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to immune and disease biology. It is freely available under a MIT license.
Collapse
Affiliation(s)
- Maciej Migdal
- Roche Global IT Solution Centre (RGITSC), Warsaw, Poland
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - William F. Forrest
- Department of OMNI Bioinformatics, Genentech, South San Francisco, California, United States of America
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
- Department of Human Genetics, Genentech, South San Francisco, California, United States of America
| |
Collapse
|
30
|
Truong HV, Sgourakis NG. Dynamics of MHC-I molecules in the antigen processing and presentation pathway. Curr Opin Immunol 2021; 70:122-128. [PMID: 34153556 PMCID: PMC8622473 DOI: 10.1016/j.coi.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The endogenous antigen processing and presentation (APP) is a fundamental pathway found in jawed vertebrates, which allows for a set of epitope peptides sampled from the intracellular proteome to be assembled and displayed on class I proteins of the major histocompatibility complex (MHC-I). Peptide/MHC-I antigens enable different aspects of adaptive immunity to emerge, by providing a basis for recognition of self vs. non-self by T cells and Natural Killer (NK) cells. Pioneering studies of pMHC-I molecules and their higher-order protein complexes with molecular chaperones and membrane receptors have gleaned important insights into the peptide loading and antigen recognition mechanisms. While X-ray and cryoEM structures have provided us with static snapshots of different MHC-I assembly stages, complementary biophysical techniques have revealed that MHC-I molecules are highly mobile on a range of biologically relevant timescales, which bears importance for their assembly, peptide repertoire selection, membrane display and turnover. This review summarizes insights gained from experimental and simulation studies aimed at investigating MHC-I dynamics, and their functional implications.
Collapse
Affiliation(s)
- Hau V Truong
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Margolis DJ, Mitra N, Kim BS, Duke JL, Berna RA, Hoffstad OJ, Wasserman JR, Ferriola DA, Mosbruger TL, Wubbenhorst BS, Nathanson KL, Monos DS. HLA Class I Polymorphisms Influencing Both Peptide Binding and KIR Interactions Are Associated with Remission among Children with Atopic Dermatitis: A Longitudinal Study. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2038-2044. [PMID: 33863792 PMCID: PMC8062288 DOI: 10.4049/jimmunol.2001252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is a disease of immune dysregulation and skin barrier dysfunction with a relapsing, remitting course and has been associated with several different genetic risk variants. HLA represent a highly variable set of genes that code for cell surface protein molecules involved in the Ag-specific immune response, including the regulation or functioning of T cells, NK cells, and APCs. The purpose of this study was to evaluate associations between HLA class I polymorphisms and the progression of AD over time. We evaluated the associations of AD symptoms and HLA class I polymorphisms based on high-resolution two-field typing in a longitudinal cohort of children with AD (up to 10 y of follow-up). Seven hundred and ninety-two children were evaluated every 6 mo, resulting in 12,752 AD evaluations. Using generalized estimating equations and corrected p values, B*44:02 was found to be associated with AD remission (1.83 [1.35, 2.47]; p = 0.0015). The HLA-B residues at position 116 (d-aspartate) and 80 (T-threonine) were associated with remission (1.42 [1.13, 1.76], p = 0.003; corrected p = 0.028) and (1.45 [1.17, 1.80], p = 0.0008; corrected p = 0.0024), respectively. B80T is a killer-cell Ig-like receptor (KIR) site. Our findings reveal that two axes of immune response (T cell and NK cell) may influence disease progression. Identifying binding pocket changes in addition to other factors (e.g., allergens) that increase the risk or severity of AD can improve our understanding of the immunologic mechanisms associated with AD and may lead to personalized therapies for improving patient care.
Collapse
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA;
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA
| | - Brian S Kim
- Center for the Study of Itch and Sensory Disorders, Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jamie L Duke
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ron A Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ole J Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA
| | - Jenna R Wasserman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deborah A Ferriola
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tim L Mosbruger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bradley S Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Kathrine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 806] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
33
|
Al Naqbi H, Mawart A, Alshamsi J, Al Safar H, Tay GK. Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics 2021; 73:131-152. [PMID: 33528690 PMCID: PMC7946680 DOI: 10.1007/s00251-021-01204-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Since the discovery of human leukocyte antigens (HLAs), the function of major histocompatibility complex (MHC) gene families in a wide range of diseases have been the subject of research for decades. In particular, the associations of autoimmune disorders to allelic variants and candidate genes encoding the MHC are well documented. However, despite decades of research, the knowledge of MHC associations with human disease susceptibility have been predominantly studied in European origin, with limited understanding in different populations and ethnic groups. This is particularly evident in countries and ethnic populations of the Arabian Peninsula. Human MHC haplotypes, and its association with diseases, of the variable ethnic groups of this region are poorly studied. This review compiled published manuscripts that have reported a list of autoimmune diseases (insulin-dependent diabetes mellitus, systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, psoriasis vulgaris, and multiple sclerosis) associated with MHC class I and class II in the populations of the Arabian Peninsula, specifically Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, the United Arab Emirates, and Yemen. Data available was compared with other three ethnic groups, namely Caucasians, Asians, and Africans. The limited data available in the public domain on the association between MHC gene and autoimmune diseases highlight the challenges in the Middle Eastern region.
Collapse
Affiliation(s)
- Halima Al Naqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aurélie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
34
|
Wei X, Wang S, Li Z, Li Z, Qu Z, Wang S, Zou B, Liang R, Xia C, Zhang N. Peptidomes and Structures Illustrate Two Distinguishing Mechanisms of Alternating the Peptide Plasticity Caused by Swine MHC Class I Micropolymorphism. Front Immunol 2021; 12:592447. [PMID: 33717070 PMCID: PMC7952875 DOI: 10.3389/fimmu.2021.592447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
The micropolymorphism of major histocompatibility complex class I (MHC-I) can greatly alter the plasticity of peptide presentation, but elucidating the underlying mechanism remains a challenge. Here we investigated the impact of the micropolymorphism on peptide presentation of swine MHC-I (termed swine leukocyte antigen class I, SLA-I) molecules via immunopeptidomes that were determined by our newly developed random peptide library combined with the mass spectrometry (MS) de novo sequencing method (termed RPLD–MS) and the corresponding crystal structures. The immunopeptidomes of SLA-1*04:01, SLA-1*13:01, and their mutants showed that mutations of residues 156 and 99 could expand and narrow the ranges of peptides presented by SLA-I molecules, respectively. R156A mutation of SLA-1*04:01 altered the charge properties and enlarged the volume size of pocket D, which eliminated the harsh restriction to accommodate the third (P3) anchor residue of the peptide and expanded the peptide binding scope. Compared with 99Tyr of SLA-1*0401, 99Phe of SLA-1*13:01 could not form a conservative hydrogen bond with the backbone of the P3 residues, leading to fewer changes in the pocket properties but a significant decrease in quantitative of immunopeptidomes. This absent force could be compensated by the salt bridge formed by P1-E and 170Arg. These data illustrate two distinguishing manners that show how micropolymorphism alters the peptide-binding plasticity of SLA-I alleles, verifying the sensitivity and accuracy of the RPLD-MS method for determining the peptide binding characteristics of MHC-I in vitro and helping to more accurately predict and identify MHC-I restricted epitopes.
Collapse
Affiliation(s)
- Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Song Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suqiu Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baohua Zou
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Genebrier S, Elsermans V, Texeraud E, Bertrand G, Renac V. Characterization of the novel HLA-B*44:452 allele by next-generation sequencing. HLA 2020; 97:153-154. [PMID: 32783392 DOI: 10.1111/tan.14032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/01/2023]
Abstract
B*44:452 differs from B*44:02:01:01 by one nucleotide substitution at position 527 in exon 3.
Collapse
Affiliation(s)
- Steve Genebrier
- EFS Bretagne, Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire, Rennes, France.,CHU de Rennes, Pôle Biologie, Rennes, France
| | | | - Emeric Texeraud
- EFS Bretagne, Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire, Rennes, France
| | - Gerald Bertrand
- EFS Bretagne, Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire, Rennes, France
| | - Virginie Renac
- EFS Bretagne, Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire, Rennes, France
| |
Collapse
|
36
|
Kuiper JJW, Venema WJ. HLA-A29 and Birdshot Uveitis: Further Down the Rabbit Hole. Front Immunol 2020; 11:599558. [PMID: 33262772 PMCID: PMC7687429 DOI: 10.3389/fimmu.2020.599558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
HLA class I alleles constitute established risk factors for non-infectious uveitis and preemptive genotyping of HLA class I alleles is standard practice in the diagnostic work-up. The HLA-A29 serotype is indispensable to Birdshot Uveitis (BU) and renders this enigmatic eye condition a unique model to better understand how the antigen processing and presentation machinery contributes to non-infectious uveitis or chronic inflammatory conditions in general. This review will discuss salient points regarding the protein structure of HLA-A29 and how key amino acid positions impact the peptide binding preference and interaction with T cells. We discuss to what extent the risk genes ERAP1 and ERAP2 uniquely affect HLA-A29 and how the discovery of a HLA-A29-specific submotif may impact autoantigen discovery. We further provide a compelling argument to solve the long-standing question why BU only affects HLA-A29-positive individuals from Western-European ancestry by exploiting data from the 1000 Genomes Project. We combine novel insights from structural and immunopeptidomic studies and discuss the functional implications of genetic associations across the HLA class I antigen presentation pathway to refine the etiological basis of Birdshot Uveitis.
Collapse
Affiliation(s)
- Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Wouter J. Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
37
|
Genebrier S, Elsermans V, Nivet C, Chérel M, Renac V. Characterization of the novel
HLA‐C
*15:203
allele by next‐generation sequencing. HLA 2020; 96:739-740. [DOI: 10.1111/tan.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Steve Genebrier
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
- CHU de Rennes Pôle Biologie Rennes France
| | | | - Carl Nivet
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| | - Mathilde Chérel
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| | - Virginie Renac
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| |
Collapse
|
38
|
Genebrier S, Elsermans V, Nivet C, Chérel M, Renac V. Characterization of the novel
HLA‐A
*29:141
allele by next‐generation sequencing. HLA 2020; 96:719-720. [DOI: 10.1111/tan.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Genebrier
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
- CHU de Rennes Pôle Biologie Rennes France
| | | | - Carl Nivet
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| | - Mathilde Chérel
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| | - Virginie Renac
- EFS Bretagne Laboratoire d'Immunogénétique et Histocompatibilité Immunologie Plaquettaire Rennes France
| |
Collapse
|
39
|
The complex pattern of genetic associations of leprosy with HLA class I and class II alleles can be reduced to four amino acid positions. PLoS Pathog 2020; 16:e1008818. [PMID: 32776973 PMCID: PMC7440659 DOI: 10.1371/journal.ppat.1008818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Leprosy is a chronic disease caused by Mycobacterium leprae. Worldwide, more than 200,000 new patients are affected by leprosy annually, making it the second most common mycobacterial disease after tuberculosis. The MHC/HLA region has been consistently identified as carrying major leprosy susceptibility variants in different populations at times with inconsistent results. To establish the unambiguous molecular identity of classical HLA class I and class II leprosy susceptibility factors, we applied next-generation sequencing to genotype with high-resolution 11 HLA class I and class II genes in 1,155 individuals from a Vietnamese leprosy case-control sample. HLA alleles belonging to an extended haplotype from HLA-A to HLA-DPB1 were associated with risk to leprosy. This susceptibility signal could be reduced to the HLA-DRB1*10:01~ HLA-DQA1*01:05 alleles which were in complete linkage disequilibrium (LD). In addition, haplotypes containing HLA-DRB3~ HLA-DRB1*12:02 and HLA-C*07:06~ HLA-B*44:03~ HLA-DRB1*07:01 alleles were found as two independent protective factors for leprosy. Moreover, we replicated the previously associated HLA-DRB1*15:01 as leprosy risk factor and HLA-DRB1*04:05~HLA-DQA1*03:03 as protective alleles. When we narrowed the analysis to the single amino acid level, we found that the associations of the HLA alleles were largely captured by four independent amino acids at HLA-DRβ1 positions 57 (D) and 13 (F), HLA-B position 63 (E) and HLA-A position 19 (K). Hence, analyses at the amino acid level circumvented the ambiguity caused by strong LD of leprosy susceptibility HLA alleles and identified four distinct leprosy susceptibility factors. Despite global efforts to eliminate leprosy over the past 25 years, more than 200,000 new cases are reported annually, and leprosy still represents a major public health problem in endemic regions. Leprosy presents a strong link with the host genetic background. The most significant susceptibility factors are located in the MHC region and likely involve classical HLA genes. However, the molecular identity of the HLA class I/II-leprosy risk factor(s) has been a matter of longstanding scientific dispute. By conducting a comprehensive sequenced-based analysis of HLA class I and class II genes, we are able to provide a unifying view of the complex relationship of leprosy susceptibility and HLA alleles. In addition, we show that four amino acid polymorphisms in HLA-DRβ1, HLA-B and HLA-A are sufficient to explain the majority of leprosy-HLA associations which opens the way for select protein-HLA peptide binding studies.
Collapse
|
40
|
Seshasubramanian V, Raghavan V, SathishKannan AD, Naganathan C, Ramachandran A, Arasu P, Rajendren P, John S, Mowry B, Rangaswamy T, Narayan S, Periathiruvadi S. Association of HLA-A, -B, -C, -DRB1 and -DQB1 alleles at amino acid level in individuals with schizophrenia: A study from South India. Int J Immunogenet 2020; 47:501-511. [PMID: 32697037 DOI: 10.1111/iji.12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Schizophrenia, a chronic severe psychiatric illness of unknown aetiology, has been shown to be associated with HLA alleles but at varied degree in different population. The present study has focussed on analysing the frequency of HLA class I and class II alleles in persons with schizophrenia from South India. METHODS Ninety seven individuals with schizophrenia and 103 age- and gender-matched controls were typed for HLA- A, B, C, DRB1 and DQB1 loci by next-generation sequencing in Illumina MiniSeq using MIA FORA NGS FLEX HLA typing kit. RESULTS The results showed that HLA-A*01:01:01, B*37:01:01 and C*01:02:01 were positively associated with schizophrenia while HLA-B*35:03:01 and DRB1*04:03:01 were negatively associated. Gender-specific associations revealed that DRB1*10:01:01 and DQB1*05:01:01 were positively associated while DQB1*03:02:01 was negatively associated with female subjects with schizophrenia. A*24:02:01~B*37:01:01~C*06:02:01~DRB1*10:01:01~DQB1*05:01:01 is the predominant haplotype in schizophrenia population when compared to healthy controls. Amino acid association in susceptible and protective alleles has shown that the presence of peptide in the peptide-binding groves of mature HLA-A protein (K, M, V, R and V at 44th, 67th, 150th, 156th and 158th position), HLA-B protein (D and S at 77th and 99th position) and HLA-C protein (M at 99th position) confer susceptibility to the disease, only in the absence of E (Glutamic acid) at 74th position in mature HLA-DRB1 protein. Interaction of amino acids in protective alleles namely B*35:01:01 and DRB1*04:03:01 has revealed that aspartic acid at 114th (D) position in mature HLA-B protein and glutamic acid (E) at 74th position of mature HLA-DRB1 protein have a combined effect in protecting against the disease. CONCLUSION The study has revealed the HLA association with schizophrenia in south Indian population. The amino acid interaction with the disease needs to be confirmed in a larger population.
Collapse
Affiliation(s)
| | - Vijaya Raghavan
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | | | | | - Aparna Ramachandran
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Priya Arasu
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Preeti Rajendren
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Sujit John
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Brian Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia.,Queensland Centre for Mental Health Research, Brisbane, Qld, Australia
| | - Thara Rangaswamy
- Schizophrenia Research Foundation, Anna Nagar West Extension, Chennai, Tamil Nadu, India
| | - Saranya Narayan
- Jeenomics, Jeevan Stem Cell Foundation, Chennai, Tamil Nadu, India
| | | |
Collapse
|
41
|
Serçinoğlu O, Ozbek P. Sequence-structure-function relationships in class I MHC: A local frustration perspective. PLoS One 2020; 15:e0232849. [PMID: 32421728 PMCID: PMC7233585 DOI: 10.1371/journal.pone.0232849] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Class I Major Histocompatibility Complex (MHC) binds short antigenic peptides with the help of Peptide Loading Complex (PLC), and presents them to T-cell Receptors (TCRs) of cytotoxic T-cells and Killer-cell Immunglobulin-like Receptors (KIRs) of Natural Killer (NK) cells. With more than 10000 alleles, human MHC (Human Leukocyte Antigen, HLA) is the most polymorphic protein in humans. This allelic diversity provides a wide coverage of peptide sequence space, yet does not affect the three-dimensional structure of the complex. Moreover, TCRs mostly interact with HLA in a common diagonal binding mode, and KIR-HLA interaction is allele-dependent. With the aim of establishing a framework for understanding the relationships between polymorphism (sequence), structure (conserved fold) and function (protein interactions) of the human MHC, we performed here a local frustration analysis on pMHC homology models covering 1436 HLA I alleles. An analysis of local frustration profiles indicated that (1) variations in MHC fold are unlikely due to minimally-frustrated and relatively conserved residues within the HLA peptide-binding groove, (2) high frustration patches on HLA helices are either involved in or near interaction sites of MHC with the TCR, KIR, or tapasin of the PLC, and (3) peptide ligands mainly stabilize the F-pocket of HLA binding groove.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Recep Tayyip Erdogan University, Faculty of Engineering, Fener, Rize, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Faculty of Engineering, Goztepe, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
42
|
Balas A, Ramírez E, Trigo E, Cabañas R, Fiandor A, Arsuaga M, Lerma V, Sanz B, LuisVicario J, Herranz P, de Abajo F, Bellón T. HLA-A∗68, -A∗11:01, and -A∗29:02 alleles are strongly associated with benznidazole-induced maculopapular exanthema (MPE)/DRESS. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3198-3200.e3. [PMID: 32417447 DOI: 10.1016/j.jaip.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Balas
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - Elena Ramírez
- Clinical Pharmacology Department, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Elena Trigo
- Tropical Medicine and Travel Health Unit, Department of Internal Medicine, Hospital Universitario La Paz-Carlos III-Cantoblanco, Madrid, Spain
| | - Rosario Cabañas
- Allergy Department, Hospital Universitario La Paz-Carlos III-Cantoblanco, Madrid, Spain
| | - Ana Fiandor
- Allergy Department, Hospital Universitario La Paz-Carlos III-Cantoblanco, Madrid, Spain
| | - Marta Arsuaga
- Tropical Medicine and Travel Health Unit, Department of Internal Medicine, Hospital Universitario La Paz-Carlos III-Cantoblanco, Madrid, Spain
| | - Victoria Lerma
- Clinical Pharmacology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Beatriz Sanz
- Drug Hypersensitivity Laboratory, Institute for Health Research Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - José LuisVicario
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - Pedro Herranz
- Dermatology Department, Hospital Universitario La Paz-Carlos III-Cantoblanco, Madrid, Spain
| | - Francisco de Abajo
- Clinical Pharmacology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain; Department of Biomedical Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Teresa Bellón
- Drug Hypersensitivity Laboratory, Institute for Health Research Hospital Universitario La Paz (IdiPaz), Madrid, Spain.
| |
Collapse
|
43
|
Wang G, Kim TH, Li Z, Cortes A, Kim K, Bang SY, Leo P, Brown MA, Xu H. MHC associations of ankylosing spondylitis in East Asians are complex and involve non-HLA-B27 HLA contributions. Arthritis Res Ther 2020; 22:74. [PMID: 32272966 PMCID: PMC7146985 DOI: 10.1186/s13075-020-02148-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The association of HLA-B*27 with AS is amongst the strongest of any known association of a common variant with any human disease. Nonetheless, there is strong evidence indicating that other HLA-B alleles are involved in the disease. European ethnicity studies have demonstrated risk associations with HLA-B*40 and multiple other HLA-B, HLA-A, and HLA class II alleles, and demonstrated that in that ethnic group, the amino acid sequence at position 97 in HLA-B is the key determinant of HLA associations with AS. A recent study in Korean AS cases and controls additionally identified association at HLA-C*15:02. In the current study, we examined the MHC associations of AS in an expanded East Asian cohort. METHODS A total of 1637 Chinese, Taiwanese, and Korean AS cases meeting the modified New York Criteria for AS, and 1589 ethnically matched controls, were genotyped with the Illumina Immunochip, including a dense coverage of the MHC region. HLA genotypes and amino acid composition were imputed using the SNP2HLA programme using the Han-MHC reference panel based on the data of Han Chinese subjects (n = 9689), and association tested using logistic regression controlling for population stratification effects. RESULTS A strong association was seen with HLA-B*27 (odds ratio (OR) = 205.3, P = 5.76 × 10-244). Controlling for this association, the strongest risk association is seen with HLA-C*15 at genome-wide significant level (OR = 7.62, P = 9.30 × 10-19), and confirmed association is also seen with HLA-B*40 at suggestive level (OR = 1.65, P = 2.54 × 10-4). At amino acid level, the strongest association seen in uncontrolled analysis was with histidine at position 114 in HLA-B (P = 7.24 × 10-241), but conditional analyses suggest that the primary amino acid associations are with lysine at position 70 and asparagine at position 97. Restriction of the ERAP1 association with HLA-B27-positive AS, previously reported in European subjects, was confirmed in East Asians. CONCLUSIONS This study confirms in East Asians that the HLA associations of AS are multiple, including previously reported associations at HLA-B*27, HLA-B*40, and HLA-C*15, as well as novel association with HLA-DQB1*04. The HLA-B associations are driven by the amino acids at positions 70 and 97, in the B pocket of HLA-B.
Collapse
Affiliation(s)
- Geng Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Adrian Cortes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, England.
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China. .,Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, China. .,Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
44
|
Mohammadi-Milasi F, Mahnam K, Shakhsi-Niaei M. In silico study of the association of the HLA-A*31:01 allele (human leucocyte antigen allele 31:01) with neuroantigenic epitopes of PLP (proteolipid protein), MBP (myelin basic protein) and MOG proteins (myelin oligodendrocyte glycoprotein) for studying the multiple sclerosis disease pathogenesis. J Biomol Struct Dyn 2020; 39:2526-2542. [PMID: 32242486 DOI: 10.1080/07391102.2020.1751291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The main pathologic hallmark of multiple sclerosis is a demyelinating plaque that contains a prominent immunologic response dominated by T cells of the immune system. PLP (proteolipid protein), MPB (myelin basic protein), and Myelin oligodendrocyte glycoprotein (MOG) proteins are important autoantigens for the demyelinating of CNS in multiple sclerosis. There is good evidence indicating that T CD8+ cells and MHC class I molecules play an important role in this disease. The HLA-A*31:01 allele of MHC class I is a member of HLA-A3 superfamily and there is no clear report concerning the relationship of this allele with MS. Feeling this gap, we studied the possible association of the HLA-A*31:01 with MS by prediction of neuroantigenic epitopes of human MBP, PLP, and MOG proteins of myelin sheath using in silico methods. PLP did not show any neuroantigenic epitope, but the two epitopes of MBP and seven epitopes of MOG for HLA-A*31:01 were determined via bioinformatics servers. In silico study of the nine epitope showed that MOG195-204 (LIICYNWLHR) peptide of the membrane-associated/cytoplasmic part of human MOG has suitable binding affinity to the HLA-A*31:01 allele as a potential neuroantigenic epitope. Further investigations of this peptide revealed that the binding of C-terminal residue of this peptide has a more significant effect on binding to this allele than the N-terminal part of the peptide. Altogether, this combination of "LIICYNWLHR/A*31:01 allele "may play an important role in MS pathogenesis and this complex is suggested for further studies such as T cell receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Karim Mahnam
- Departments of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran
| | - Mostafa Shakhsi-Niaei
- Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran.,Departments of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
45
|
Tran L, Theodorescu D. Determinants of Resistance to Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21051594. [PMID: 32111080 PMCID: PMC7084564 DOI: 10.3390/ijms21051594] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has drastically altered the landscape of cancer treatment. Since approval of the first ICI for the treatment of advanced melanoma in 2011, several therapeutic agents have been Food and Drug Administration (FDA)-approved for multiple cancers, and hundreds of clinical trials are currently ongoing. These antibodies disrupt T-cell inhibitory pathways established by tumor cells and thus re-activate the host’s antitumor immune response. While successful in many cancers, several types remain relatively refractory to treatment or patients develop early recurrence. Hence, there is a great need to further elucidate mechanisms of resistant disease and determine novel, effective, and tolerable combination therapies to enhance efficacy of ICIs.
Collapse
Affiliation(s)
- Linda Tran
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Health System, 8700 Beverly Blvd., OCC Mezz C2002, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-310-423-8431
| |
Collapse
|
46
|
Di Rienzo L, Milanetti E, Alba J, D'Abramo M. Quantitative Characterization of Binding Pockets and Binding Complementarity by Means of Zernike Descriptors. J Chem Inf Model 2020; 60:1390-1398. [PMID: 32050068 PMCID: PMC7997106 DOI: 10.1021/acs.jcim.9b01066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we describe the application of the Zernike formalism to quantitatively characterize the binding pockets of two sets of biologically relevant systems. Such an approach, when applied to molecular dynamics trajectories, is able to pinpoint the subtle differences between very similar molecular regions and their impact on the local propensity to ligand binding, allowing us to quantify such differences. The statistical robustness of our procedure suggests that it is very suitable to describe protein binding sites and protein-ligand interactions within a rigorous and well-defined framework.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Josephine Alba
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
47
|
Bohórquez MD, Ordoñez D, Suárez CF, Vicente B, Vieira C, López-Abán J, Muro A, Ordóñez I, Patarroyo MA. Major Histocompatibility Complex Class II (DRB3) Genetic Diversity in Spanish Morucha and Colombian Normande Cattle Compared to Taurine and Zebu Populations. Front Genet 2020; 10:1293. [PMID: 31998362 PMCID: PMC6965167 DOI: 10.3389/fgene.2019.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Bovine leukocyte antigens (BoLA) have been used as disease markers and immunological traits in cattle due to their primary role in pathogen recognition by the immune system. A higher MHC allele diversity in a population will allow presenting a broader peptide repertoire. However, loss of overall diversity due to domestication process can decrease a population's peptide repertoire. Within the context of zebu and taurine cattle populations, BoLA-DRB3 genetic diversity in Spanish Morucha and Colombian Normande cattle was analyzed and an approach to estimate functional diversity was performed. Sequence-based typing was used for identifying 29, 23, 27, and 28 alleles in Spanish Morucha, Nariño-, Boyacá-, and Cundinamarca-Normande cattle, respectively. These breeds had remarkably low heterozygosity levels and the Hardy-Weinberg principle revealed significant heterozygote deficiency. FST and DA genetic distance showed that Colombian Normande populations had greater variability than other phenotypically homogeneous breeds, such as Holstein. It was also found that Spanish Morucha cattle were strongly differentiated from other cattle breeds. Spanish Morucha had greater divergence in the peptide-binding region regarding other cattle breeds. However, peptide-binding region covariation indicated that the potential peptide repertoire seemed equivalent among cattle breeds. Despite the genetic divergence observed, the extent of the potential peptide repertoire in the cattle populations studied appears to be similar and thus their pathogen recognition potential should be equivalent, suggesting that functional diversity might persist in the face of bottlenecks imposed by domestication and breeding.
Collapse
Affiliation(s)
- Michel David Bohórquez
- Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Diego Ordoñez
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Carlos Fernando Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Carmen Vieira
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Iván Ordóñez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
48
|
Shimizu C, Kim J, Eleftherohorinou H, Wright VJ, Hoang LT, Tremoulet AH, Franco A, Hibberd ML, Takahashi A, Kubo M, Ito K, Tanaka T, Onouchi Y, Coin LJM, Levin M, Burns JC, Shike H. HLA-C variants associated with amino acid substitutions in the peptide binding groove influence susceptibility to Kawasaki disease. Hum Immunol 2019; 80:731-738. [PMID: 31122742 PMCID: PMC10793643 DOI: 10.1016/j.humimm.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
Abstract
Kawasaki disease (KD) is a pediatric vasculitis caused by an unknown trigger in genetically susceptible children. The incidence varies widely across genetically diverse populations. Several associations with HLA Class I alleles have been reported in single cohort studies. Using a genetic approach, from the nine single nucleotide variants (SNVs) associated with KD susceptibility in children of European descent, we identified SNVs near the HLA-C (rs6906846) and HLA-B genes (rs2254556) whose association was replicated in a Japanese descent cohort (rs6906846 p = 0.01, rs2254556 p = 0.005). The risk allele (A at rs6906846) was also associated with HLA-C*07:02 and HLA-C*04:01 in both US multi-ethnic and Japanese cohorts and HLA-C*12:02 only in the Japanese cohort. The risk A-allele was associated with eight non-conservative amino acid substitutions (amino acid positions); Asp or Ser (9), Arg (14), Ala (49), Ala (73), Ala (90), Arg (97), Phe or Ser (99), and Phe or Ser (116) in the HLA-C peptide binding groove that binds peptides for presentation to cytotoxic T cells (CTL). This raises the possibility of increased affinity to a "KD peptide" that contributes to the vasculitis of KD in genetically susceptible children.
Collapse
Affiliation(s)
- Chisato Shimizu
- Department of Pediatrics, University California San Diego, La Jolla, CA, USA.
| | - Jihoon Kim
- Division of Biomedical Informatics, Department of Medicine, University California San Diego, La Jolla, CA, USA
| | - Hariklia Eleftherohorinou
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Victoria J Wright
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | | | - Adriana H Tremoulet
- Department of Pediatrics, University California San Diego, La Jolla, CA, USA; Department of Cardiology, Rady Childrens' Hospital San Diego, San Diego, CA, USA
| | - Alessandra Franco
- Department of Pediatrics, University California San Diego, La Jolla, CA, USA
| | | | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Onouchi
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Michael Levin
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Jane C Burns
- Department of Pediatrics, University California San Diego, La Jolla, CA, USA; Department of Cardiology, Rady Childrens' Hospital San Diego, San Diego, CA, USA
| | - Hiroko Shike
- Department of Pathology, HLA Laboratory, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
49
|
Tedeschi V, Alba J, Paladini F, Paroli M, Cauli A, Mathieu A, Sorrentino R, D'Abramo M, Fiorillo MT. Unusual Placement of an EBV Epitope into the Groove of the Ankylosing Spondylitis-Associated HLA-B27 Allele Allows CD8+ T Cell Activation. Cells 2019; 8:cells8060572. [PMID: 31212633 PMCID: PMC6627668 DOI: 10.3390/cells8060572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 02/02/2023] Open
Abstract
The human leukocyte antigen HLA-B27 is a strong risk factor for Ankylosing Spondylitis (AS), an immune-mediated disorder affecting axial skeleton and sacroiliac joints. Additionally, evidence exists sustaining a strong protective role for HLA-B27 in viral infections. These two aspects could stem from common molecular mechanisms. Recently, we have found that the HLA-B*2705 presents an EBV epitope (pEBNA3A-RPPIFIRRL), lacking the canonical B27 binding motif but known as immunodominant in the HLA-B7 context of presentation. Notably, 69% of B*2705 carriers, mostly patients with AS, possess B*2705-restricted, pEBNA3A-specific CD8+ T cells. Contrarily, the non-AS-associated B*2709 allele, distinguished from the B*2705 by the single His116Asp polymorphism, is unable to display this peptide and, accordingly, B*2709 healthy subjects do not unleash specific T cell responses. Herein, we investigated whether the reactivity towards pEBNA3A could be a side effect of the recognition of the natural longer peptide (pKEBNA3A) having the classical B27 consensus (KRPPIFIRRL). The stimulation of PBMC from B*2705 positive patients with AS in parallel with both pEBNA3A and pKEBNA3A did not allow to reach an unambiguous conclusion since the differences in the magnitude of the response measured as percentage of IFNγ-producing CD8+ T cells were not statistically significant. Interestingly, computational analysis suggested a structural shift of pEBNA3A as well as of pKEBNA3A into the B27 grooves, leaving the A pocket partially unfilled. To our knowledge this is the first report of a viral peptide: HLA-B27 complex recognized by TCRs in spite of a partially empty groove. This implies a rethinking of the actual B27 immunopeptidome crucial for viral immune-surveillance and autoimmunity.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Josephine Alba
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Fabiana Paladini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Marino Paroli
- Division of Clinical Immunology and Rheumatology, Department of Biotechnology and Medical Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and AOU of Cagliari, Monserrato, 09042 Cagliari, Italy.
| | - Alessandro Mathieu
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and AOU of Cagliari, Monserrato, 09042 Cagliari, Italy.
| | - Rosa Sorrentino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
50
|
Balas A, Alenda R, Moreno-Hidalgo MA, García-Sánchez F, Vicario JL. Genomic sequences of five novel HLA class I alleles: A*30:129, B*08:195, B*51:01:62, C*01:147 and C*12:195:02. HLA 2018; 92:46-47. [PMID: 29692004 DOI: 10.1111/tan.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/28/2022]
Abstract
Five new HLA class I alleles are described, A*30:129, B*08:195, B*51:01:62, C*01:147 and C*12:195:02.
Collapse
Affiliation(s)
- A Balas
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - R Alenda
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - M A Moreno-Hidalgo
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - F García-Sánchez
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - J L Vicario
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| |
Collapse
|