1
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
3
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
4
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
NKT cells adopt a glutamine-addicted phenotype to regulate their homeostasis and function. Cell Rep 2022; 41:111516. [DOI: 10.1016/j.celrep.2022.111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
|
6
|
Sadraei SI, Yousif G, Taimoory SM, Kosar M, Mehri S, Alolabi R, Igbokwe E, Toma J, Rahim MMA, Trant JF. The total synthesis of glycolipids from S. pneumoniae and a re‐evaluation of their immunological activity. Chembiochem 2022; 23:e202200361. [DOI: 10.1002/cbic.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | - Greg Yousif
- University of Windsor Chemistry and Biochemistry CANADA
| | - S. Maryamdokht Taimoory
- University of Windsor Chemistry and Biochemistry 401 Sunset Ave.Department of Chemistry and Biochemistry N9B3P4 Windsor CANADA
| | - Maryam Kosar
- University of Windsor Chemistry and Biochemistry CANADA
| | - Samaneh Mehri
- University of Windsor Chemistry and Biochemistry CANADA
| | | | | | - Jason Toma
- University of Windsor Biomedical Sciences CANADA
| | | | - John F. Trant
- University of Windsor Chemistry and Biochemistry 401 Sunset Ave. N9B 3P4 Windsor CANADA
| |
Collapse
|
7
|
Exploiting CD1-restricted T cells for clinical benefit. Mol Immunol 2021; 132:126-131. [PMID: 33582549 DOI: 10.1016/j.molimm.2020.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
CD1-restricted T cells were first described over 30 years ago along with the cloning of the CD1 family. Around the same time, invariant Natural Killer cells (iNKT) were identified based on invariant TCR-alpha chains with additional expression of natural killer (NK) cell markers. About 5 years later, iNKT were shown to react with CD1d. Since then, iNKT have been shown to be a major population of CD1d-restricted T cells in humans and many animals. Like NK cells, iNKT are innate lymphocytes with rapid and wide-ranging effector potential. These activities include cytotoxicity and an unusually broad and high-level cytokine production. The development of highly-specific methods of isolating, stimulating, expanding or depleting these relatively rare cells and controlling their potent activities has stimulated considerable interest in therapeutic targeting of iNKT cells. Potential applications include cancers, inflammatory, infectious and autoimmune among other diseases. To date, most trials have targeted various cancers, there are 2 published trials in viral hepatitis and one in sickle cell lung disease. Uniform safety, evidence of immunologic activity and increasingly clinical efficacy have been seen. Approaches to targeting iNKT cells in clinical development include highly specific natural glycolipid ligands presented by CD1d and chemical analogues thereof and monoclonal antibody-based targeting of iNKT cells. In the case of iNKT cell-based therapies, novel approaches include arming them with Chimeric Antigen Receptors (CARs) and recombinant TCRs (rTCR), gene editing and allogeneic use. Controlling the iTCR:CD1d molecular interaction and consequences is a unique and promising therapeutic technology.
Collapse
|
8
|
iNKT Cel Transfer: The Use of Cell Sorting Combined with Flow Cytometry Validation Approach. Methods Mol Biol 2021; 2388:113-122. [PMID: 34524666 DOI: 10.1007/978-1-0716-1775-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural killer T (NKT) cells are an innate-like T cell subset that recognize lipid antigens presented by CD1d-expressing antigen presenting cells (APCs), such as dendritic cells, macrophages, and B cells. They can be subdivided into two different subsets according to the variation in αβ TCR chains: type I and type II NKT cells. Type I, also called invariant NKT cells (iNKT), express restricted TCRs with an invariant α-chain (Vα24-Jα18 in humans and Vα14-Jα18 in mice) and limited β-chains. Here we have established a protocol in which iNKT cells are isolated from a donor wild-type mouse and transferred into iNKT KO (Jα18-/-) mouse. Below we will explore the methods for cell sorting of splenic iNKTs, iNKT cells transfer, and detection of transferred cells into the liver using flow cytometry technique.
Collapse
|
9
|
Wang Y, Bhave MS, Yagita H, Cardell SL. Natural Killer T-Cell Agonist α-Galactosylceramide and PD-1 Blockade Synergize to Reduce Tumor Development in a Preclinical Model of Colon Cancer. Front Immunol 2020; 11:581301. [PMID: 33193386 PMCID: PMC7606378 DOI: 10.3389/fimmu.2020.581301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Murine and human invariant natural killer T (iNKT) lymphocytes are activated by α-galactosylceramide (α-GalCer) presented on CD1d. α-GalCer was first described as a lipid that had strong anti-metastatic effects in a mouse melanoma model, and it has subsequently been shown to induce efficient iNKT cell dependent tumor immunity in several tumor models. We have shown that α-GalCer treatment leads to a weak reduction of polyp burden in the autochthonous ApcMin/+ mouse model for human colon cancer, however this treatment resulted in upregulation of the inhibitory receptor PD-1 on iNKT cells. While anti-PD-1 treatment can prevent immune-suppression in other cancer types, human colon cancer is generally resistant to this treatment. Here we have used the ApcMin/+ model to investigate whether a combined treatment with α-GalCer and PD-1 blockade results in improved effects on polyp development. We find that PD-1 expression was high on T cells in polyps and lamina propria (LP) of ApcMin/+ mice compared to polyp free Apc+/+ littermates. Anti-PD-1 treatment alone promoted Tbet expression in iNKT cells and CD4 T cells, but did not significantly reduce polyp numbers. However, the combined treatment with anti-PD-1 and α-GalCer had synergistic effects, resulting in highly significant reduction of polyp numbers in the small and large intestine. Addition of PD-1 blockade to α-GalCer treatment prevented loss of iNKT cells that were skewed towards a TH1-like iNKT1 phenotype specifically in polyps. It also resulted in TH1 skewing and increased granzyme B expression of CD4 T cells. Taken together this demonstrates that a combination of immune stimulation targeting iNKT cells and checkpoint blockade may be a promising approach to develop for improved tumor immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Madhura S Bhave
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Japan
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Exley MA, Gensollen T, Blumberg RS. A nano-engager for iNKT cells in cancer. NATURE CANCER 2020; 1:1032-1034. [PMID: 35122067 DOI: 10.1038/s43018-020-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Mark A Exley
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- University of Manchester, Manchester, UK.
- Imvax, Philadelphia, PA, USA.
- Agentus, Lexington, MA, USA.
| | - Thomas Gensollen
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, Ehrmann S, Ferreira M, Daix T, Jeannet R, François B, Dequin PF, Si-Tahar M, Baranek T, Paget C. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J Exp Med 2020; 217:152073. [PMID: 32886755 PMCID: PMC7472174 DOI: 10.1084/jem.20200872] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19-driven ARDS are poorly understood. Here, in blood and airways of severe COVID-19 patients, we serially analyzed unconventional T cells, a heterogeneous class of T lymphocytes (MAIT, γδT, and iNKT cells) with potent antimicrobial and regulatory functions. Circulating unconventional T cells of COVID-19 patients presented with a profound and persistent phenotypic alteration. In the airways, highly activated unconventional T cells were detected, suggesting a potential contribution in the regulation of local inflammation. Finally, expression of the CD69 activation marker on blood iNKT and MAIT cells of COVID-19 patients on admission was predictive of clinical course and disease severity. Thus, COVID-19 patients present with an altered unconventional T cell biology, and further investigations will be required to precisely assess their functions during SARS-CoV-2-driven ARDS.
Collapse
Affiliation(s)
- Youenn Jouan
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France.,Service de chirurgie cardiaque et de réanimation chirurgicale cardio-vasculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Antoine Guillon
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Loïc Gonzalez
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Yonatan Perez
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Chloé Boisseau
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Stephan Ehrmann
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Marion Ferreira
- Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de pneumologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Thomas Daix
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Robin Jeannet
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Bruno François
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Pierre-François Dequin
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Mustapha Si-Tahar
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thomas Baranek
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
12
|
Schäfer A, Hühr J, Schwaiger T, Dorhoi A, Mettenleiter TC, Blome S, Schröder C, Blohm U. Porcine Invariant Natural Killer T Cells: Functional Profiling and Dynamics in Steady State and Viral Infections. Front Immunol 2019; 10:1380. [PMID: 31316500 PMCID: PMC6611438 DOI: 10.3389/fimmu.2019.01380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pigs are important livestock and comprehensive understanding of their immune responses in infections is critical to improve vaccines and therapies. Moreover, similarities between human and swine physiology suggest that pigs are a superior animal model for immunological studies. However, paucity of experimental tools for a systematic analysis of the immune responses in pigs represent a major disadvantage. To evaluate the pig as a biomedical model and additionally expand the knowledge of rare immune cell populations in swine, we established a multicolor flow cytometry analysis platform of surface marker expression and cellular responses for porcine invariant Natural Killer T cells (iNKT). In humans, iNKT cells are among the first line defenders in various tissues, respond to CD1d-restricted antigens and become rapidly activated. Naïve porcine iNKT cells were CD3+/CD4−/CD8+ or CD3+/CD4−/CD8− and displayed an effector- or memory-like phenotype (CD25+/ICOS+/CD5hi/CD45RA−/CCR7 ± /CD27+). Based on their expression of the transcription factors T bet and the iNKT cell-specific promyelocytic leukemia zinc finger protein (PLZF), porcine iNKT cells were differentiated into functional subsets. Analogous to human iNKT cells, in vitro stimulation of porcine leukocytes with the CD1d ligand α-galactosylceramide resulted in rapid iNKT cell proliferation, evidenced by an increase in frequency and Ki-67 expression. Moreover, this approach revealed CD25, CD5, ICOS, and the major histocompatibility complex class II (MHC II) as activation markers on porcine iNKT cells. Activated iNKT cells also expressed interferon-γ, upregulated perforin expression, and displayed degranulation. In steady state, iNKT cell frequency was highest in newborn piglets and decreased with age. Upon infection with two viruses of high relevance to swine and humans, iNKT cells expanded. Animals infected with African swine fever virus displayed an increase of iNKT cell frequency in peripheral blood, regional lymph nodes, and lungs. During Influenza A virus infection, iNKT cell percentage increased in blood, lung lymph nodes, and broncho-alveolar lavage. Our in-depth characterization of porcine iNKT cells contributes to a better understanding of porcine immune responses, thereby facilitating the design of innovative interventions against infectious diseases. Moreover, we provide new evidence that endorses the suitability of the pig as a biomedical model for iNKT cell research.
Collapse
Affiliation(s)
- Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jane Hühr
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function. Proc Natl Acad Sci U S A 2019; 116:7439-7448. [PMID: 30910955 DOI: 10.1073/pnas.1901376116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular metabolism and signaling pathways are key regulators to determine conventional T cell fate and function, but little is understood about the role of cell metabolism for natural killer T (NKT) cell survival, proliferation, and function. We found that NKT cells operate distinct metabolic programming from CD4 T cells. NKT cells are less efficient in glucose uptake than CD4 T cells with or without activation. Gene-expression data revealed that, in NKT cells, glucose is preferentially metabolized by the pentose phosphate pathway and mitochondria, as opposed to being converted into lactate. In fact, glucose is essential for the effector functions of NKT cells and a high lactate environment is detrimental for NKT cell survival and proliferation. Increased glucose uptake and IFN-γ expression in NKT cells is inversely correlated with bacterial loads in response to bacterial infection, further supporting the significance of glucose metabolism for NKT cell function. We also found that promyelocytic leukemia zinc finger seemed to play a role in regulating NKT cells' glucose metabolism. Overall, our study reveals that NKT cells use distinct arms of glucose metabolism for their survival and function.
Collapse
|
14
|
Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 200:1543-1553. [PMID: 29463691 DOI: 10.4049/jimmunol.1701618] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Sepsis results in a deluge of pro- and anti-inflammatory cytokines, leading to lymphopenia and chronic immunoparalysis. Sepsis-induced long-lasting immunoparalysis is defined, in part, by impaired CD4 and CD8 αβ T cell responses in the postseptic environment. The dysfunction in T cell immunity affects naive, effector, and memory T cells and is not restricted to classical αβ T cells. Although sepsis-induced severe and transient lymphopenia is a contributory factor to diminished T cell immunity, T cell-intrinsic and -extrinsic factors/mechanisms also contribute to impaired T cell function. In this review, we summarize the current knowledge of how sepsis quantitatively and qualitatively impairs CD4 and CD8 T cell immunity of classical and nonclassical T cell subsets and discuss current therapeutic approaches being developed to boost the recovery of T cell immunity postsepsis induction.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Minneapolis VA Health Care System, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
15
|
Unveiling the regulation of NKT17 cell differentiation and function. Mol Immunol 2018; 105:55-61. [PMID: 30496977 DOI: 10.1016/j.molimm.2018.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T cells (iNKTs) are distinct from conventional T cells. iNKT cells express a semi-invariant T cell receptor (TCR) that can specifically recognize lipid antigens presented by CD1d, an MHC class I-like antigen-presenting molecule. Currently, iNKT cells are distinguished in three functionally distinct subsets. Each subset is defined by lineage-specifying factors: T-bet shapes the fate of NKT1 subset that mainly secretes IFNγ, Gata3 specifies the NKT2 subset that produces robustly IL-4 whereas RORγt seals the differentiation of NKT17 subset that secretes IL-17. In the present review, the focus is placed on the regulation of NKT17 specification and their function.
Collapse
|
16
|
Yang XD, Sun SC. Deubiquitinases as pivotal regulators of T cell functions. Front Med 2018; 12:451-462. [PMID: 30054854 PMCID: PMC6705128 DOI: 10.1007/s11684-018-0651-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
T cells efficiently respond to foreign antigens to mediate immune responses against infections but are tolerant to self-tissues. Defect in T cell activation is associated with severe immune deficiencies, whereas aberrant T cell activation contributes to the pathogenesis of diverse autoimmune and inflammatory diseases. An emerging mechanism that regulates T cell activation and tolerance is ubiquitination, a reversible process of protein modification that is counter-regulated by ubiquitinating enzymes and deubiquitinases (DUBs). DUBs are isopeptidases that cleave polyubiquitin chains and remove ubiquitin from target proteins, thereby controlling the magnitude and duration of ubiquitin signaling. It is now well recognized that DUBs are crucial regulators of T cell responses and serve as potential therapeutic targets for manipulating immune responses in the treatment of immunological disorders and cancer. This review will discuss the recent progresses regarding the functions of DUBs in T cells.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, Shi J, Zhao S, Zhang B, Cheng X, Sun SC. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun 2018; 9:2812. [PMID: 30022064 PMCID: PMC6052109 DOI: 10.1038/s41467-018-05097-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
The cytokine IL-15 mediates development and survival of immune cells, including natural killer T (NKT) cells, but the underlying mechanism of IL-15 function is incompletely understood. Here we show that IL-15 induces autophagy in NKT cells with a mechanism that involves a crucial signaling component, TBK-binding protein 1 (Tbkbp1). Tbkbp1 facilitates activation of the autophagy-initiating kinase Ulk1 through antagonizing the inhibitory action of mTORC1. This antagonization involves the recruitment of an mTORC1-opposing phosphatase to Ulk1. Tbkbp1 deficiency attenuates IL-15-stimulated NKT cell autophagy, and is associated with mitochondrial dysfunction, aberrant ROS production, defective Bcl2 expression and reduced NKT cell survival. Consequently, Tbkbp1-deficient mice have profound deficiency in NKT cells, especially IFN-γ-producing NKT1. We further show that Tbkbp1 regulates IL-15-stimulated autophagy and survival of NK cells. These findings suggest a mechanism of autophagy induction by IL-15, and establish Tbkbp1 as a regulator of NKT cell development and survival.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, 07100, Baoding, China
| | - Shuli Zhao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- General Clinical Research Center, Nanjing First hospital, Nanjing Medical University, Nanjing, Jiangsu, 210012, China
| | - Boxiang Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
19
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
20
|
Doherty DG, Melo AM, Moreno-Olivera A, Solomos AC. Activation and Regulation of B Cell Responses by Invariant Natural Killer T Cells. Front Immunol 2018; 9:1360. [PMID: 29967611 PMCID: PMC6015876 DOI: 10.3389/fimmu.2018.01360] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells play central roles in the activation and regulation of innate and adaptive immunity. Cytokine-mediated and CD1d-dependent interactions between iNKT cells and myeloid and lymphoid cells enable iNKT cells to contribute to the activation of multiple cell types, with important impacts on host immunity to infection and tumors and on the prevention of autoimmunity. Here, we review the mechanisms by which iNKT cells contribute to B cell maturation, antibody and cytokine production, and antigen presentation. Cognate interactions with B cells contribute to the rapid production of antibodies directed against conserved non-protein antigens resulting in rapid but short-lived innate humoral immunity. iNKT cells can also provide non-cognate help for the generation of antibodies directed against protein antigens, by promoting the activation of follicular helper T cells, resulting in long-lasting adaptive humoral immunity and B cell memory. iNKT cells can also regulate humoral immunity by promoting the development of autoreactive B cells into regulatory B cells. Depletions and functional impairments of iNKT cells are found in patients with infectious, autoimmune and malignant diseases associated with altered B cell function and in murine models of these conditions. The adjuvant and regulatory activities that iNKT cells have for B cells makes them attractive therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Derek G Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ana Moreno-Olivera
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Andreas C Solomos
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Fujii SI, Yamasaki S, Sato Y, Shimizu K. Vaccine Designs Utilizing Invariant NKT-Licensed Antigen-Presenting Cells Provide NKT or T Cell Help for B Cell Responses. Front Immunol 2018; 9:1267. [PMID: 29915600 PMCID: PMC5995044 DOI: 10.3389/fimmu.2018.01267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Vaccines against a variety of infectious diseases have been developed and tested. Although there have been some notable successes, most are less than optimal or have failed outright. There has been discussion about whether either B cells or dendritic cells (DCs) could be useful for the development of antimicrobial vaccines with the production of high titers of antibodies. Invariant (i)NKT cells have direct antimicrobial effects as well as adjuvant activity, and iNKT-stimulated antigen-presenting cells (APCs) can determine the form of the ensuing humoral and cellular immune responses. In fact, upon activation by ligand, iNKT cells can stimulate both B cells and DCs as via either cognate or non-cognate help. iNKT-licensed DCs generate antigen-specific follicular helper CD4+ T cells, which in turn stimulate B cells, thus leading to long-term antigen-specific antibody production. Follicular helper iNKT cell-licensed B cells generally produce rapid, but short-term antibody. However, under some conditions in the presence of Th cells, the antibody production can be prolonged. With regards to humoral immunity, the quality and quantity of Ab produced depends on the APC type and the form of the vaccine. In terms of cellular immunity and, in particular, the induction of cytotoxic CD8+ T cells, iNKT-licensed DCs show prominent activity. In this review, we discuss differences in iNKT-stimulated APC types and the quality of the ensuing immune response, and also discuss their application in vaccine models to develop successful preventive immunotherapy against infectious diseases.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yusuke Sato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
22
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
23
|
Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proc Natl Acad Sci U S A 2018; 115:E1204-E1213. [PMID: 29351991 DOI: 10.1073/pnas.1716669115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MHC class I-like CD1 molecules have evolved to present lipid-based antigens to T cells. Differences in the antigen-binding clefts of the CD1 family members determine the conformation and size of the lipids that are presented, although the factors that shape CD1 diversity remain unclear. In mice, two homologous genes, CD1D1 and CD1D2, encode the CD1d protein, which is essential to the development and function of natural killer T (NKT) cells. However, it remains unclear whether both CD1d isoforms are equivalent in their antigen presentation capacity and functions. Here, we report that CD1d2 molecules are expressed in the thymus of some mouse strains, where they select functional type I NKT cells. Intriguingly, the T cell antigen receptor repertoire and phenotype of CD1d2-selected type I NKT cells in CD1D1-/- mice differed from CD1d1-selected type I NKT cells. The structures of CD1d2 in complex with endogenous lipids and a truncated acyl-chain analog of α-galactosylceramide revealed that its A'-pocket was restricted in size compared with CD1d1. Accordingly, CD1d2 molecules could not present glycolipid antigens with long acyl chains efficiently, favoring the presentation of short acyl chain antigens. These results indicate that the two CD1d molecules present different sets of self-antigen(s) in the mouse thymus, thereby impacting the development of invariant NKT cells.
Collapse
|
24
|
Wang Y, Cardell SL. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity-Suppression of Tumor Immunity in the Intestine. Front Immunol 2018; 8:1945. [PMID: 29375569 PMCID: PMC5767593 DOI: 10.3389/fimmu.2017.01945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1)/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
ORAI1 mutations abolishing store-operated Ca 2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. J Allergy Clin Immunol 2017; 142:1297-1310.e11. [PMID: 29155098 DOI: 10.1016/j.jaci.2017.10.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ channels is an essential signaling pathway in many cell types. Ca2+ release-activated Ca2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. OBJECTIVE We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. METHODS We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. RESULTS We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. CONCLUSION ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA).
Collapse
|
26
|
Exley MA, Wilson SB, Balk SP. Isolation and Functional Use of Human NKT Cells. ACTA ACUST UNITED AC 2017; 119:14.11.1-14.11.20. [PMID: 29091262 DOI: 10.1002/cpim.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit details methods for the isolation, in vitro expansion, and functional characterization of human iNKT cells. The term 'iNKT' derives from the fact that a large fraction of murine and some human NK marker+ T cells ('NKT') recognize the MHC class I-like CD1d protein and use an identical 'invariant' TCRα chain, which is generated in humans by precise Vα24 and Jα18 rearrangements with either no N-region diversity or subsequent trimming to identical or nearly identical amino acid sequence (hence, 'iNKT' cells). iNKT are mostly CD4+ or CD4-CD8- ('double negative'), although a few CD8+ iNKT can be found in some humans. Basic Protocol 1 and Alternate Protocol 1 use multi-color FACS analysis to identify and quantitate rare iNKT cells from human samples. Basic Protocol 2 describes iNKT cell purification. Alternate Protocol 2 describes a method for high-speed FACS sorting of iNKT cells. Basic Protocol 3 explains functional analysis of iNKT. Alternate Protocol 3 employs a cell sorting approach to isolate iNKT cell clones. A support protocol for secondary stimulation and rapid expansion of iNKT cells is also included. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mark A Exley
- Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Manchester Collaborative Centre for Inflammation Research, Manchester, United Kingdom
| | - S Brian Wilson
- Diabetes Center of Excellence, University of Florida, Gainesville, Florida
| | - Steven P Balk
- Cancer Biology Program, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Stax AM, Tuengel J, Girardi E, Kitano N, Allan LL, Liu V, Zheng D, Panenka WJ, Guillaume J, Wong CH, van Calenbergh S, Zajonc DM, van den Elzen P. Autoreactivity to Sulfatide by Human Invariant NKT Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:97-106. [PMID: 28526683 DOI: 10.4049/jimmunol.1601976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like lymphocytes that recognize lipid Ags presented by CD1d. The prototypical Ag, α-galactosylceramide, strongly activates human and mouse iNKT cells, leading to the assumption that iNKT cell physiology in human and mouse is similar. In this article, we report the surprising finding that human, but not mouse, iNKT cells directly recognize myelin-derived sulfatide presented by CD1d. We propose that sulfatide is recognized only by human iNKT cells because of the unique positioning of the 3-O-sulfated β-galactose headgroup. Surface plasmon resonance shows that the affinity of human CD1d-sulfatide for the iNKT cell receptor is relatively low compared with CD1d-α-galactosylceramide (KD of 19-26 μM versus 1 μM). Apolipoprotein E isolated from human cerebrospinal fluid carries sulfatide that can be captured by APCs and presented by CD1d to iNKT cells. APCs from patients with metachromatic leukodystrophy, who accumulate sulfatides due to a deficiency in arylsulfatase-A, directly activate iNKT cells. Thus, we have identified sulfatide as a self-lipid recognized by human iNKT cells and propose that sulfatide recognition by innate T cells may be an important pathologic feature of neuroinflammatory disease and that sulfatide in APCs may contribute to the endogenous pathway of iNKT cell activation.
Collapse
Affiliation(s)
- Annelein M Stax
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jessica Tuengel
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Naoki Kitano
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Lenka L Allan
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Victor Liu
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Dongjun Zheng
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - William J Panenka
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; and
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Peter van den Elzen
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
28
|
Kaczmarek R, Pasciak M, Szymczak-Kulus K, Czerwinski M. CD1: A Singed Cat of the Three Antigen Presentation Systems. Arch Immunol Ther Exp (Warsz) 2017; 65:201-214. [PMID: 28386696 PMCID: PMC5434122 DOI: 10.1007/s00005-017-0461-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Contrary to general view that the MHC Class I and II are the kapellmeisters of recognition and response to antigens, there is another big player in that part of immunity, represented by CD1 glycoproteins. In contrast to MHC Class I or II, which present peptides, CD1 molecules present lipids. Humans express five CD1 proteins (CD1a-e), four of which (CD1a-d) are trafficked to the cell surface, where they may display lipid antigens to T-cell receptors. This interaction may lead to both non-cognate and cognate T cell help to B cells, the latter eliciting anti-lipid antibody response. All CD1 proteins can bind a broad range of structurally different exogenous and endogenous lipids, but each shows a preference to one or more lipid classes. This unorthodox binding behavior is the result of elaborate architectures of CD1 binding clefts and distinct intracellular trafficking routes. Together, these features make CD1 system a versatile player in immune response, sitting at the crossroads of innate and adaptive immunity. While CD1 system may be involved in numerous infectious, inflammatory, and autoimmune diseases, its involvement may lead to opposite outcomes depending on different pathologies. Despite these ambiguities and complexity, CD1 system draws growing attention and continues to show glimmers of therapeutic potential. In this review, we summarize the current knowledge about CD1 proteins, their structures, lipid-binding profiles, and roles in immunity, and evaluate the role of CD1 proteins in eliciting humoral immune response.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mariola Pasciak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marcin Czerwinski
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland. .,Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland.
| |
Collapse
|
29
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|