1
|
Rommelaere S, Schüpfer F, Armand F, Hamelin R, Lemaitre B. An updated proteomic analysis of Drosophila haemolymph after bacterial infection. Fly (Austin) 2025; 19:2485685. [PMID: 40223358 PMCID: PMC12005426 DOI: 10.1080/19336934.2025.2485685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Using an in-depth Mass Spectrometry-based proteomics approach, we provide a comprehensive characterization of the hemolymphatic proteome of adult flies upon bacterial infection. We detected and quantified changes in abundance of several known immune regulators and effectors, including multiple antimicrobial peptides, peptidoglycan-binding proteins and serine proteases. Comparison to previously published transcriptomic analyses reveals a partial overlap with our dataset, indicating that many proteins released into the haemolymph upon infection may not be regulated at the transcript level. Among them, we identify a set of muscle-derived proteins released into the haemolymph upon infection. Finally, our analysis reveals that infection induces major changes in the abundance of proteins associated with mitochondrial respiration. This study uncovers a large number of previously undescribed proteins potentially involved in the immune response.
Collapse
Affiliation(s)
- Samuel Rommelaere
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, Lausanne, Switzerland
| | - Romain Hamelin
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Kaltenpoth M, Flórez LV, Vigneron A, Dirksen P, Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol 2025:10.1038/s41579-025-01164-z. [PMID: 40148601 DOI: 10.1038/s41579-025-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
| | - Laura V Flórez
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aurélien Vigneron
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
4
|
Shao ZL, Lan CP, Yu XP, Wang ZL. RNAi-mediated silencing of NlGRP3 augments the insecticidal virulence of Metarhizium anisopliae to the brown planthopper Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106141. [PMID: 39477594 DOI: 10.1016/j.pestbp.2024.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/07/2024]
Abstract
The rapid development of insecticide resistance reinforces the urgent need to develop eco-friendly strategies for controlling Nilaparvata lugens (brown planthopper, BPH), the most destructive insect pest of rice. Both entomopathogens and RNA interference (RNAi) provide attractive alternatives to chemical insecticides. In this study, we demonstrated the synergistic potential of the combination use of entomopathogen- and RNAi-mediated approaches to control BPH. The β-1, 3-glucan recognition protein (βGRP) encoding gene NlGRP3 was identified and its potential role in immune defense was characterized in BPH. The open reading frame (ORF) of NlGRP3 is 1740 bp in length, encoding a 65.8 kDa protein with conserved CBM39 and GH16 domains that typically existed in the βGRP family members. NlGRP3 was shown to be differentially expressed across developmental stages and highly transcribed in the immune responsive tissues haemolymph and fat body. Topical infection with a fungal entomopathogen Metarhizium anisopliae could significantly up-regulate its expression level. RNAi-mediated silencing of NlGRP3 resulted in significantly decreased survival rate and increased susceptibility to fungal challenge in the fifth-instar BPH nymphs. The greatly enhanced mortality of NlGRP3-silenced BPH following fungal infection might be in part directly due to the immune suppression by down-regulating expressions of antimicrobial peptide genes and the imbalance of the bacterial community harboring in BPH body. Our results highly demonstrated that suppressing the insect innate immune defense through RNAi targeting the immune-related genes could effectively strengthen the biocontrol efficacy of fungal entomopathogens, providing clues to the combination use of RNAi and entomopathogens as a promising approach for BPH control.
Collapse
Affiliation(s)
- Zhu-Long Shao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Chen-Ping Lan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
5
|
Mishra SR, Mandal T, Sahu S, Mishra M, Senapati RN, Singh V. Biocompatible Fluorescent Graphene Oxide Quantum Dots for Imaging of Drosophila melanogaster. ACS OMEGA 2024; 9:38916-38924. [PMID: 39310168 PMCID: PMC11411514 DOI: 10.1021/acsomega.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Developing reliable biocompatible bioimaging agents is paramount for diagnosing critical diseases and disorders early through oral ingestion of fluorescent probes to image living organisms. Here, we prepared fluorescent, water-dispersed graphene oxide quantum dots via pyrolysis of a Glycyrrhiza glabra root in the water medium using a cost-effective and environmentally benign method to enable Drosophila melanogaster, an organism analogous to the human genome, to be imaged alive. The prepared graphene oxide quantum dots demonstrated a 2.6 nm diameter and 0.36 nm graphitic spacing with carboxylic acid, carbonyl, and hydroxyl functionalities. The selected area electron diffraction image analysis reveals a series of bright circular patterns that confirm the crystalline nature of the graphene oxide quantum dots. Raman and X-ray diffraction analyses also validate the crystallinity nature of prepared materials. The graphene oxide quantum dots exhibited blue fluorescence under ultraviolet-light irradiation with excitation-dependent emission properties from blue to red emission. The synthesized graphene oxide quantum dots consistently fluoresce in the larva-fed graphene oxide quantum dots without exhibiting toxicity. The current study evaluates the toxic effect of synthesized fluorescent graphene quantum dots by examining several screening and staining methods on D. melanogaster, a fruit fly, as a model.
Collapse
Affiliation(s)
- Shiv Rag Mishra
- Environment
Emission and CRM Section, CSIR-Central Institute
of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand 828108, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Tuhin Mandal
- Environment
Emission and CRM Section, CSIR-Central Institute
of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand 828108, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surajita Sahu
- Department
of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Monalisa Mishra
- Department
of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rabi Narayan Senapati
- Environment
Emission and CRM Section, CSIR-Central Institute
of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand 828108, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vikram Singh
- Environment
Emission and CRM Section, CSIR-Central Institute
of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand 828108, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Chen J, Lin G, Ma K, Li Z, Liégeois S, Ferrandon D. A specific innate immune response silences the virulence of Pseudomonas aeruginosa in a latent infection model in the Drosophila melanogaster host. PLoS Pathog 2024; 20:e1012252. [PMID: 38833496 PMCID: PMC11178223 DOI: 10.1371/journal.ppat.1012252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.
Collapse
Affiliation(s)
- Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guiying Lin
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
7
|
Miao Z, Xiong C, Wang Y, Shan T, Jiang H. Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104108. [PMID: 38552808 PMCID: PMC11443596 DOI: 10.1016/j.ibmb.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Mpamhanga CD, Kounatidis I. The utility of Drosophila melanogaster as a fungal infection model. Front Immunol 2024; 15:1349027. [PMID: 38550600 PMCID: PMC10973011 DOI: 10.3389/fimmu.2024.1349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Invasive fungal diseases have profound effects upon human health and are on increase globally. The World Health Organization (WHO) in 2022 published the fungal priority list calling for improved public health interventions and advance research. Drosophila melanogaster presents an excellent model system to dissect host-pathogen interactions and has been proved valuable to study immunopathogenesis of fungal diseases. In this review we highlight the recent advances in fungal-Drosophila interplay with an emphasis on the recently published WHO's fungal priority list and we focus on available tools and technologies.
Collapse
Affiliation(s)
| | - Ilias Kounatidis
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
9
|
Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Shahanaz, Srinivasa N, Yele Y. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Front Immunol 2023; 14:1169152. [PMID: 37691928 PMCID: PMC10491481 DOI: 10.3389/fimmu.2023.1169152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Multicellular organisms are constantly subjected to pathogens that might be harmful. Although insects lack an adaptive immune system, they possess highly effective anti-infective mechanisms. Bacterial phagocytosis and parasite encapsulation are some forms of cellular responses. Insects often defend themselves against infections through a humoral response. This phenomenon includes the secretion of antimicrobial peptides into the hemolymph. Specific receptors for detecting infection are required for the recognition of foreign pathogens such as the proteins that recognize glucans and peptidoglycans, together referred to as PGRPs and βGRPs. Activation of these receptors leads to the stimulation of signaling pathways which further activates the genes encoding for antimicrobial peptides. Some instances of such pathways are the JAK-STAT, Imd, and Toll. The host immune response that frequently accompanies infections has, however, been circumvented by diseases, which may have assisted insects evolve their own complicated immune systems. The role of ncRNAs in insect immunology has been discussed in several notable studies and reviews. This paper examines the most recent research on the immune regulatory function of ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-encoded miRNAs and lncRNAs, and provides an overview of the important insect signaling pathways and effector mechanisms activated by diverse pathogen invaders.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- ICAR-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur, Bihar, India
| | - R. M. Nikhil
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR)-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Gaurav Singh
- The Directorate of Research, Maharana Pratap Horticultural University, Karnal, Haryana, India
| | - P. V. Dinesh Kumar
- Department of Plant Pathology University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Gujarat, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - P. P. Singh
- Department of Entomology, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - U. Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Pushpa Singh
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Varun Saini
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shahanaz
- Department of Entomology, College of Horticulture Mojerla, Sri Konda Laxman Telengana State Horticultural University, Wanaparthy, Telengana, India
| | - N. Srinivasa
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Yogesh Yele
- School of Crop Health Management Research, Council of Agricultural Research-National Institute of Biotic Stress Management (ICAR)- National Institute of Biotic Stress Management, Raipur, India
| |
Collapse
|
10
|
Mouawad C, Awad MK, Liegeois S, Ferrandon D, Sanchis-Borja V, El Chamy L. The NF-κB factor Relish is essential for the epithelial defenses protecting against δ-endotoxin dependent effects of Bacillus thuringiensis israelensis infection in the Drosophila model. Res Microbiol 2023; 174:104089. [PMID: 37348743 DOI: 10.1016/j.resmic.2023.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Bacillus thuringiensis israelensis is largely regarded as the most selective, safe and ecofriendly biopesticide used for the control of insect vectors of human diseases. Bti enthomopathogenicity relies on the Cry and Cyt δ-endotoxins, produced as crystalline inclusions during sporulation. Insecticidal selectivity of Bti is mainly ascribed to the binding of the Cry toxins to receptors in the gut of target insects. However, the contribution of epithelial defenses in limiting Bti side effects in non-target species remains largely unexplored. Here, taking advantage of the genetically tractable Drosophila melanogaster model and its amenability for deciphering highly conserved innate immune defenses, we unravel a central role of the NF-κB factor Relish in the protection against the effects of ingested Bti spores in a non-susceptible host. Intriguingly, our data indicate that the Bti-induced Relish response is independent of its canonical activation downstream of peptidoglycan sensing and does not involve its longstanding role in the regulation of antimicrobial peptides encoding genes. In contrast, our data highlight a novel enterocyte specific function of Relish that is essential for preventing general septicemia following Bti oral infections strictly when producing δ-endotoxins. Altogether, our data provide novel insights into Bti-hosts interactions of prominent interest for the optimization and sustainability of insects' biocontrol strategies.
Collapse
Affiliation(s)
- Carine Mouawad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| | - Mireille Kallassy Awad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| | - Samuel Liegeois
- Université de Strasbourg, Strasbourg, France; Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France.
| | - Dominique Ferrandon
- Université de Strasbourg, Strasbourg, France; Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France.
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Laure El Chamy
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| |
Collapse
|
11
|
Bournonville L, Askri D, Arafah K, Voisin SN, Bocquet M, Bulet P. Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. Int J Mol Sci 2023; 24:ijms24054658. [PMID: 36902086 PMCID: PMC10003634 DOI: 10.3390/ijms24054658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Pollinators, including Bombus terrestris, are crucial for maintaining biodiversity in ecosystems and for agriculture. Deciphering their immune response under stress conditions is a key issue for protecting these populations. To assess this metric, we analyzed the B. terrestris hemolymph as an indicator of their immune status. Hemolymph analysis was carried out using mass spectrometry, MALDI molecular mass fingerprinting was used for its effectiveness in assessing the immune status, and high-resolution mass spectrometry was used to measure the impact of experimental bacterial infections on the "hemoproteome". By infecting with three different types of bacteria, we observed that B. terrestris reacts in a specific way to bacterial attacks. Indeed, bacteria impact survival and stimulate an immune response in infected individuals, visible through changes in the molecular composition of their hemolymph. The characterization and label-free quantification of proteins involved in specific signaling pathways in bumble bees by bottom-up proteomics revealed differences in protein expression between the non-experimentally infected and the infected bees. Our results highlight the alteration of pathways involved in immune and defense reactions, stress, and energetic metabolism. Lastly, we developed molecular signatures reflecting the health status of B. terrestris to pave the way for diagnosis/prognosis tools in response to environmental stress.
Collapse
Affiliation(s)
- Lorène Bournonville
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Department of Molecular and Cellular Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dalel Askri
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Karim Arafah
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Sébastien N. Voisin
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- Michel Bocquet, Apimedia, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Philippe Bulet
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-50-43-25-21
| |
Collapse
|
12
|
Babišová K, Mentelová L, Geisseová TK, Beňová-Liszeková D, Beňo M, Chase BA, Farkaš R. Apocrine secretion in the salivary glands of Drosophilidae and other dipterans is evolutionarily conserved. Front Cell Dev Biol 2023; 10:1088055. [PMID: 36712974 PMCID: PMC9880899 DOI: 10.3389/fcell.2022.1088055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Apocrine secretion is a transport and secretory mechanism that remains only partially characterized, even though it is evolutionarily conserved among all metazoans, including humans. The excellent genetic model organism Drosophila melanogaster holds promise for elucidating the molecular mechanisms regulating this fundamental metazoan process. Two prerequisites for such investigations are to clearly define an experimental system to investigate apocrine secretion and to understand the evolutionarily and functional contexts in which apocrine secretion arose in that system. To this end, we recently demonstrated that, in D. melanogaster, the prepupal salivary glands utilize apocrine secretion prior to pupation to deliver innate immune and defense components to the exuvial fluid that lies between the metamorphosing pupae and its chitinous case. This finding provided a unique opportunity to appraise how this novel non-canonical and non-vesicular transport and secretory mechanism is employed in different developmental and evolutionary contexts. Here we demonstrate that this apocrine secretion, which is mechanistically and temporarily separated from the exocytotic mechanism used to produce the massive salivary glue secretion (Sgs), is shared across Drosophilidae and two unrelated dipteran species. Screening more than 30 species of Drosophila from divergent habitats across the globe revealed that apocrine secretion is a widespread and evolutionarily conserved cellular mechanism used to produce exuvial fluid. Species with longer larval and prepupal development than D. melanogaster activate apocrine secretion later, while smaller and more rapidly developing species activate it earlier. In some species, apocrine secretion occurs after the secretory material is first concentrated in cytoplasmic structures of unknown origin that we name "collectors." Strikingly, in contrast to the widespread use of apocrine secretion to provide exuvial fluid, not all species use exocytosis to produce the viscid salivary glue secretion that is seen in D. melanogaster. Thus, apocrine secretion is the conserved mechanism used to realize the major function of the salivary gland in fruitflies and related species: it produces the pupal exuvial fluid that provides an active defense against microbial invasion during pupal metamorphosis.
Collapse
Affiliation(s)
- Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Terézia Klaudia Geisseová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bruce A. Chase
- Department of Biology, University of Nebraska, Omaha, NE, United States
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Robert Farkaš,
| |
Collapse
|
13
|
Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, Brakhage A, Li Z, Liégeois S, Ferrandon D. The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins. EMBO Rep 2023; 24:e56036. [PMID: 36322050 PMCID: PMC9827548 DOI: 10.15252/embr.202256036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.
Collapse
Affiliation(s)
- Rui Xu
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Yanyan Lou
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Antonin Tidu
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209CNRS UMR 5309GrenobleFrance
- Platform BioPark ArchampsArchampsFrance
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
| | - Franck Martin
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Axel Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Zi Li
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Samuel Liégeois
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Dominique Ferrandon
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| |
Collapse
|
14
|
Zhang W, Xie M, Eleftherianos I, Mohamed A, Cao Y, Song B, Zang LS, Jia C, Bian J, Keyhani NO, Xia Y. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. J Adv Res 2022:S2090-1232(22)00194-1. [PMID: 36064181 DOI: 10.1016/j.jare.2022.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/10/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Odorant-binding proteins (OBPs) are a class of small molecular weight soluble proteins that exist as expanded gene families in all insects, acting as ligand carriers mediating olfaction and other physiological processes. During fungal infection, a subset of insect OBPs were shown to be differentially expressed. OBJECTIVES We tested whether the altered expression of insect OBPs during pathogenic infection plays a role in behavioral or immune interactions between insect hosts and their pathogens. METHODS A wide range of techniques including RNAi-directed knockdown, heterologous protein expression, electrophysiological/behavioral analyses, transcriptomics, gut microbiome analyses, coupled with tandem mass spectrometry ion monitoring, were used to characterize the function of a locust OBP in host behavioral and immune responses. RESULTS The entomopathogenic fungus Metarhizium anisopliae produces the volatile compound phenylethyl alcohol (PEA) that causes behavioral avoidance in locusts. This is mediated by the locust odorant binding protein 11 (LmOBP11). Expression of LmOBP11 is induced by M. anisopliae infection and PEA treatment. LmOBP11 participates in insect detection of the fungal-produced PEA and avoidance of PEA-contaminated food, but the upregulation of LmOBP11 upon M. anisopliae infection negatively affects the insect immune responses to ultimately benefit successful mycosis by the pathogen. RNAi knockdown of LmOBP11 increases the production of antimicrobial peptides and enhances locust resistance to M. anisopliae infection, while reducing host antennal electrophysiological responses to PEA and locust avoidance of PEA treated food. Also, transcriptomic and gut microbiome analyses reveal microbiome dysbiosis and changes in host genes involved in behavior and immunity. These results are consistent with the elevated expression of LmOBP11 leading to enhanced volatile detection and suppression of immune responses. CONCLUSION These findings suggest a crosstalk between olfaction and immunity, indicating manipulation of host OBPs as a novel target exploited by fungal pathogens to alter immune activation and thus promote the successful infection of the host.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Mushan Xie
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Yueqing Cao
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Lian-Sheng Zang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chen Jia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing Bian
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Yuxian Xia
- School of Life Science, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
15
|
Excreted secreted products from the parasitic nematode Steinernema carpocapsae manipulate the Drosophila melanogaster immune response. Sci Rep 2022; 12:14237. [PMID: 35987963 PMCID: PMC9392720 DOI: 10.1038/s41598-022-18722-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode (EPN) that rapidly infects and kills a wide range of insect hosts and has been linked to host immunosuppression during the initial stages of infection. The lethal nature of S. carpocapsae infections has previously been credited to its symbiotic bacteria; however, it has become evident that the nematodes are able to effectively kill their hosts independently through their excretion/secretion products (ESPs). Here we examined how the adult Drosophila melanogaster immune system is modulated in response to S. carpocapsae ESPs in an attempt to ascertain individual pathogenic contributions of the isolated compound. We found that the S. carpocapsae ESPs decrease the survival of D. melanogaster adult flies, they induce the expression of certain antimicrobial peptide-encoding genes, and they cause significant reduction in phenoloxidase enzyme activity and delay in the melanization response in males flies. We also report that S. carpocapsae ESPs affect hemocyte numbers in both male and female individuals. Our results indicate the manipulative role of EPN ESPs and reveal sex-specific differences in the host response against nematode infection factors. These findings are beneficial as they promote our understanding of the molecular basis of nematode pathogenicity and the parasite components that influence nematode-host interactions.
Collapse
|
16
|
Buckley KM, Yoder JA. The evolution of innate immune receptors: investigating the diversity, distribution, and phylogeny of immune recognition across eukaryotes. Immunogenetics 2022; 74:1-4. [PMID: 34910229 PMCID: PMC8671053 DOI: 10.1007/s00251-021-01243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|