1
|
Slein MD, Backes IM, Kelkar NS, Garland CR, Khanwalkar US, Sholukh AM, Johnston CM, Leib DA, Ackerman ME. Improving antibody-mediated protection against HSV infection by eliminating interactions with the viral Fc receptor gE/gI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624598. [PMID: 39605495 PMCID: PMC11601663 DOI: 10.1101/2024.11.20.624598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herpes simplex virus (HSV) encodes surface glycoproteins that are host defense evasion molecules, allowing the virus to escape immune clearance. In addition to their role in neuropathogenesis and cell-cell spread, glycoproteins E and I (gE/gI) form a viral Fc receptor (vFcR) for most subclasses and allotypes of human IgG and promote evasion of humoral immune responses. While monoclonal antibodies (mAbs) protect mice from neonatal HSV (nHSV) infections, the impact of the vFcR on mAb-mediated protection by binding to IgG is unknown. Using HSV-1 with intact and ablated gE-mediated IgG Fc binding, and Fc-engineered antibodies with modified ability to interact with gE/gI, we investigated the role of the vFcR in viral pathogenesis and mAb-mediated protection from nHSV. The gD-specific human mAb HSV8 modified to lack binding to gE exhibited enhanced neutralization and in vivo protection compared to its native IgG1 form. This improved protection by the engineered mAbs was dependent on the presence of the vFcR. Human IgG3 allotypes lacking vFcR binding also exhibited enhanced antiviral activity in vivo, suggesting that vaccines that robustly induce IgG3 responses could show enhanced protection. suggesting the value of vaccination strategies that robustly induce this subclass. Lastly, analysis of longitudinal responses to acute primary genital infection in humans raised the possibility that unlike most viruses, HSV may exhibited slow induction of IgG3. In summary, this study demonstrates that mAbs lacking the ability to interact with the vFcR can exhibit improved protection from HSV-offering new prospects for antibody-based interventions.
Collapse
Affiliation(s)
- Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | - Christine M. Johnston
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Departments of Medicine and Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104, USA
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Kallolimath S, Sun L, Palt R, Föderl-Höbenreich E, Hermle A, Voss L, Kleim M, Nimmerjahn F, Gach JS, Hitchcock L, Chen Q, Melnik S, Eminger F, Lux A, Steinkellner H. IgG1 versus IgG3: influence of antibody-specificity and allotypic variance on virus neutralization efficacy. Front Immunol 2024; 15:1490515. [PMID: 39512357 PMCID: PMC11540624 DOI: 10.3389/fimmu.2024.1490515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the unique advantages of IgG3 over other IgG subclasses, such as mediating enhanced effector functions and increased flexibility in antigen binding due to a long hinge region, the therapeutic potential of IgG3 remains largely unexplored. This may be attributed to difficulties in recombinant expression and the reduced plasma half-life of most IgG3 allotypes. Here, we report plant expression of two SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding. P5C3 and H4-IgG1 mAbs were subclass-switched to IgG3 formats, designed for efficient production and increased PK values, carrying three allotypic variations, referred to as -WT, -H, and -KVH. A total of eight mAbs were produced in glycoengineered plants that synthesize fucose-free complex N-glycans with great homogeneity. Antigen, IgG-FcγR immune complex and complement binding studies demonstrated similar activities of all mAbs. In accordance, P5C3 Abs showed minor alterations in SARS-CoV-2 neutralization (NT) and antibody-dependent cell-mediated virus inhibition (ADCVI). Clear functional differences were observed between H4 variants with superior ADCVI and NT potencies of H4 IgG3 H. Our comparative study demonstrates the production of an IgG3 variant carrying an Fc domain with equivalent or enhanced functions compared to IgG3-WT, but with the stability and PK values of IgG1. Our data also demonstrate that both allotypic variability and antibody specificity are important for fine-tuning of activities, an important information for the development of future therapeutics.
Collapse
Affiliation(s)
- Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Roman Palt
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | | | - Antonia Hermle
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Voss
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Kleim
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Lauren Hitchcock
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Qiang Chen
- The Bio design Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Florian Eminger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| |
Collapse
|
3
|
Kelkar NS, Goldberg BS, Dufloo J, Bruel T, Schwartz O, Hessell AJ, Ackerman ME. Sex- and species-associated differences in complement-mediated immunity in humans and rhesus macaques. mBio 2024; 15:e0028224. [PMID: 38385704 PMCID: PMC10936177 DOI: 10.1128/mbio.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The complement system can be viewed as a "moderator" of innate immunity, "instructor" of humoral immunity, and "regulator" of adaptive immunity. While sex is known to affect humoral and cellular immune systems, its impact on complement in humans and rhesus macaques, a commonly used non-human primate model system, has not been well studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 72 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test for use with macaque samples, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between humans and rhesus, suggesting differential recognition of glycans and balance between classical and alternative activation pathways. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sex-associated differences. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand knowledge of sex-associated differences in the complement system in humans, identifying differences absent from rhesus macaques.IMPORTANCEThe complement system is a critical part of host defense to many bacterial, fungal, and viral infections. In parallel, rich epidemiological, clinical, and biomedical research evidence demonstrates that sex is an important biological variable in immunity, and many sex-specific differences in immune system are intimately tied with disease outcomes. This study focuses on the intersection of these two factors to define the impact of sex on complement pathway components and activities. This work expands our knowledge of sex-associated differences in the complement system in humans and also identifies the differences that appear to be absent in rhesus macaques, a popular non-human primate model. Whereas differences between species suggest potential limitations in the ability of macaque model to recapitulate human biology, knowledge of sex-based differences in humans has the potential to inform clinical research and practice.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Purcell RA, Aurelia LC, Esterbauer R, Allen LF, Bond KA, Williamson DA, Trevillyan JM, Trubiano JA, Juno JJ, Wheatley AK, Davenport MP, Nguyen THO, Kedzierska K, Kent SJ, Selva KJ, Chung AW. Immunoglobulin G genetic variation can confound assessment of antibody levels via altered binding to detection reagents. Clin Transl Immunology 2024; 13:e1494. [PMID: 38433763 PMCID: PMC10902689 DOI: 10.1002/cti2.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Amino acid variations across more than 30 immunoglobulin (Ig) allotypes may introduce structural changes that influence recognition by anti-Ig detection reagents, consequently confounding interpretation of antibody responses, particularly in genetically diverse cohorts. Here, we assessed a panel of commercial monoclonal anti-IgG1 clones for capacity to universally recognise two dominant IgG1 haplotypes (G1m-1,3 and G1m1,17). Methods Four commercial monoclonal anti-human IgG1 clones were assessed via ELISAs and multiplex bead-based assays for their ability to bind G1m-1,3 and G1m1,17 IgG1 variants. Detection antibodies were validated against monoclonal IgG1 allotype standards and tested for capacity to recognise antigen-specific plasma IgG1 from G1m-1,3 and G1m1,17 homozygous and heterozygous SARS-CoV-2 BNT162b2 vaccinated (n = 28) and COVID-19 convalescent (n = 44) individuals. An Fc-specific pan-IgG detection antibody corroborated differences between hinge- and Fc-specific anti-IgG1 responses. Results Hinge-specific anti-IgG1 clone 4E3 preferentially bound G1m1,17 compared to G1m-1,3 IgG1. Consequently, SARS-CoV-2 Spike-specific IgG1 levels detected in G1m1,17/G1m1,17 BNT162b2 vaccinees appeared 9- to 17-fold higher than in G1m-1,3/G1m-1,3 vaccinees. Fc-specific IgG1 and pan-IgG detection antibodies equivalently bound G1m-1,3 and G1m1,17 IgG1 variants, and detected comparable Spike-specific IgG1 levels between haplotypes. IgG1 responses against other human coronaviruses and influenza were similarly poorly detected by 4E3 anti-IgG1 in G1m-1,3/G1m-1,3 subjects. Conclusion Anti-IgG1 clone 4E3 confounds assessment of antibody responses in clinical cohorts owing to bias towards detection of G1m1,17 IgG1 variants. Validation of anti-Ig clones should include evaluation of binding to relevant antibody variants, particularly as the role of immunogenetics upon humoral immunity is increasingly explored in diverse populations.
Collapse
Affiliation(s)
- Ruth A Purcell
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - L Carissa Aurelia
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Lilith F Allen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine A Bond
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Janine M Trevillyan
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
- Department of MedicineUniversity of MelbourneParkvilleVICAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia
- National Centre for Infections in CancerPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Jennifer J Juno
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | | | - Thi HO Nguyen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Kevin John Selva
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| |
Collapse
|
5
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Aurelia LC, Purcell RA, Chung AW. Identification of IgG1 and IgG3 Allotypes by PCR and Sanger Sequencing. Methods Mol Biol 2024; 2826:201-218. [PMID: 39017895 DOI: 10.1007/978-1-0716-3950-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The immunoglobulin heavy constant gamma (IGHG) gene cluster encoding immunoglobulin G (IgG) subclasses is highly polymorphic, resulting in amino acid variation along the antibody constant heavy chain referred to as allotypes. IGHG1 and IGHG3 are the two most polymorphic IgG subclasses in humans, with 4 classical IgG1 allotypes and 13 allotypes described for IgG3, though recent studies suggest greater allelic diversity, especially in underrepresented ethnic populations. Polymerase chain reaction (PCR) and Sanger sequencing of IGHG amplicons allow for the identification of the single nucleotide polymorphisms (SNPs) responsible for the observed amino acid substitutions. Here, we provide a detailed protocol for the amplification of IGHG1 and IGHG3 segments by PCR, sample preparation for Sanger sequencing, and analysis of sequencing data to identify SNPs associated with different IgG1 and IgG3 allotypes.
Collapse
Affiliation(s)
- L Carissa Aurelia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Tuyishime M, Spreng RL, Hueber B, Nohara J, Goodman D, Chan C, Barfield R, Beck WE, Jha S, Asdell S, Wiehe K, He MM, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Adhikary ND, Villinger F, Thomas R, Denny TN, Moody MA, Tomaras GD, Pollara J, Reeves RK, Ferrari G. Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques. Front Immunol 2023; 14:1260377. [PMID: 38124734 PMCID: PMC10732150 DOI: 10.3389/fimmu.2023.1260377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University, Durham, NC, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Brady Hueber
- Center for Human Systems Immunology, Durham, NC, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Cliburn Chan
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Richard Barfield
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Whitney E. Beck
- Department of Surgery, Duke University, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University, Durham, NC, United States
| | - Stephanie Asdell
- Department of Surgery, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Taylor Hoxie
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - R. Keith Reeves
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| |
Collapse
|
8
|
Damelang T, de Taeye SW, Rentenaar R, Roya-Kouchaki K, de Boer E, Derksen NIL, van Kessel K, Lissenberg-Thunnissen S, Rooijakkers SHM, Jongerius I, Mebius MM, Schuurman J, Labrijn AF, Vidarsson G, Rispens T. The Influence of Human IgG Subclass and Allotype on Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1725-1735. [PMID: 37843500 PMCID: PMC10656437 DOI: 10.4049/jimmunol.2300307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Steven W. de Taeye
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Rosa Rentenaar
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kasra Roya-Kouchaki
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Esther de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ninotska I. L. Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | | | | | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Bharadwaj P, Shrestha S, Pongracz T, Concetta C, Sharma S, Le Moine A, de Haan N, Murakami N, Riella LV, Holovska V, Wuhrer M, Marchant A, Ackerman ME. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep Med 2022; 3:100818. [PMID: 36384101 PMCID: PMC9729883 DOI: 10.1016/j.xcrm.2022.100818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Antibody-mediated rejection (AMR) is the leading cause of graft failure. While donor-specific antibodies (DSAs) are associated with a higher risk of AMR, not all patients with DSAs develop rejection, suggesting that the characteristics of alloantibodies determining their pathogenicity remain undefined. Using human leukocyte antigen (HLA)-A2-specific antibodies as a model, we apply systems serology tools to investigate qualitative features of immunoglobulin G (IgG) alloantibodies including Fc-glycosylation patterns and FcγR-binding properties. Levels of afucosylated anti-A2 antibodies are elevated in seropositive patients, especially those with AMR, suggesting potential cytotoxicity via FcγRIII-mediated mechanisms. Afucosylation of both glycoengineered monoclonal and naturally glycovariant polyclonal serum IgG specific to HLA-A2 drives potentiated binding to, slower dissociation from, and enhanced signaling through FcγRIII, a receptor widely expressed on innate effector cells, and greater cytotoxicity against HLA-A2+ cells mediated by natural killer (NK) cells. Collectively, these results suggest that afucosylated DSA may be a biomarker of AMR and contribute to pathogenesis.
Collapse
Affiliation(s)
- Pranay Bharadwaj
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Sweta Shrestha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Catalano Concetta
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium; Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgium
| | - Shilpee Sharma
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alain Le Moine
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgium
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Naoka Murakami
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonardo V Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Vanda Holovska
- HLA Laboratory, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB), Hôpital Erasme ULB, Brussels, Belgium
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|