1
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and Biochemical Characterization of a Widespread Enterobacterial Peroxidase Encapsulin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415827. [PMID: 40167211 DOI: 10.1002/advs.202415827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. This work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
Affiliation(s)
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and biochemical characterization of a widespread enterobacterial peroxidase encapsulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625667. [PMID: 39651212 PMCID: PMC11623594 DOI: 10.1101/2024.11.27.625667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. Our work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
|
3
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nat Commun 2024; 15:2558. [PMID: 38519509 PMCID: PMC10960027 DOI: 10.1038/s41467-024-46880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation in a protein nanocompartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558302. [PMID: 37790520 PMCID: PMC10542125 DOI: 10.1101/2023.09.18.558302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
6
|
Li Y, Luo Q, Liu S, Su J, Chen J, Dong G, Wang Y. Transcriptome analysis of Shewanella xiamenensis co-incubated with internalized carbon dots in response to boosting Cr(VI)-bioreduction. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Chowdhury NP, Alberti L, Linder M, Müller V. Exploring Bacterial Microcompartments in the Acetogenic Bacterium Acetobacterium woodii. Front Microbiol 2020; 11:593467. [PMID: 33178174 PMCID: PMC7593272 DOI: 10.3389/fmicb.2020.593467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The strictly anaerobic acetogenic bacterium Acetobacterium woodii is metabolically diverse and grows on variety of substrates which includes H2 + CO2, sugars, alcohols and diols. It is unique in producing bacterial microcompartments (BMC) during growth on different substrates such as 1,2-propanediol, 2,3-butanediol, ethanol or fructose. In this study, we analyzed the genetic organization and expression of the BMC genes within the A. woodii genome, the previously described 18 gene pdu cluster as well as four other cluster potentially encoding one or two shell proteins. Expression analysis of respective gene clusters revealed that the pdu gene cluster is highly expressed during growth on 1,2-PD, 2,3-BD, ethanol and ethylene glycol. The promoter region upstream of the pduA gene was identified and used to establish a reporter gene assay based on chloramphenicol acetyl transferase as a reporter protein. The reporter gene assay confirmed the qPCR data and demonstrated that 1,2-PD is superior over ethanol and ethylene glycol as inducer. BMCs were enriched from cells grown on 2,3- BD and 1,2-PD and shown to have typical structure in electron micrographs. Biochemical analyses revealed several of the protein encoded by the pdu cluster to be part of the isolated BMCs. These data demonstrate a very unique situation in A. woodii in which apparently one BMC gene cluster in expressed during growth on different substrates.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lydia Alberti
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Mark Linder
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
8
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
9
|
Genetic Characterization of a Glycyl Radical Microcompartment Used for 1,2-Propanediol Fermentation by Uropathogenic Escherichia coli CFT073. J Bacteriol 2020; 202:JB.00017-20. [PMID: 32071097 DOI: 10.1128/jb.00017-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial microcompartments (MCPs) are widespread protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by confining toxic and/or volatile pathway intermediates. A major class of MCPs known as glycyl radical MCPs has only been partially characterized. Here, we show that uropathogenic Escherichia coli CFT073 uses a glycyl radical MCP for 1,2-propanediol (1,2-PD) fermentation. Bioinformatic analyses identified a large gene cluster (named grp for glycyl radical propanediol) that encodes homologs of a glycyl radical diol dehydratase, other 1,2-PD catabolic enzymes, and MCP shell proteins. Growth studies showed that E. coli CFT073 grows on 1,2-PD under anaerobic conditions but not under aerobic conditions. All 19 grp genes were individually deleted, and 8/19 were required for 1,2-PD fermentation. Electron microscopy and genetic studies showed that a bacterial MCP is involved. Bioinformatics combined with genetic analyses support a proposed pathway of 1,2-PD degradation and suggest that enzymatic cofactors are recycled internally within the Grp MCP. A two-component system (grpP and grpQ) is shown to mediate induction of the grp locus by 1,2-PD. Tests of the E. coli Reference (ECOR) collection indicate that >10% of E. coli strains ferment 1,2-PD using a glycyl radical MCP. In contrast to other MCP systems, individual deletions of MCP shell genes (grpE, grpH, and grpI) eliminated 1,2-PD catabolism, suggesting significant functional differences with known MCPs. Overall, the studies presented here are the first comprehensive genetic analysis of a Grp-type MCP.IMPORTANCE Bacterial MCPs have a number of potential biotechnology applications and have been linked to bacterial pathogenesis, cancer, and heart disease. Glycyl radical MCPs are a large but understudied class of bacterial MCPs. Here, we show that uropathogenic E. coli CFT073 uses a glycyl radical MCP for 1,2-PD fermentation, and we conduct a comprehensive genetic analysis of the genes involved. Studies suggest significant functional differences between the glycyl radical MCP of E. coli CFT073 and better-studied MCPs. They also provide a foundation for building a deeper general understanding of glycyl radical MCPs in an organism where sophisticated genetic methods are available.
Collapse
|
10
|
Chowdhury C, Bobik TA. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella. MICROBIOLOGY-SGM 2020; 165:1355-1364. [PMID: 31674899 DOI: 10.1099/mic.0.000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Juodeikis R, Lee MJ, Mayer M, Mantell J, Brown IR, Verkade P, Woolfson DN, Prentice MB, Frank S, Warren MJ. Effect of metabolosome encapsulation peptides on enzyme activity, coaggregation, incorporation, and bacterial microcompartment formation. Microbiologyopen 2020; 9:e1010. [PMID: 32053746 PMCID: PMC7221423 DOI: 10.1002/mbo3.1010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Metabolosomes, catabolic bacterial microcompartments (BMCs), are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multicomponent protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation before the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variations in enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self‐assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides.
Collapse
Affiliation(s)
- Rokas Juodeikis
- Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, UK
| | - Matthew J Lee
- Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, UK
| | - Matthias Mayer
- Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Bristol, UK.,Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | - Ian R Brown
- Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK.,Wolfson Bioimaging Facility, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK.,School of Chemistry, University of Bristol, Bristol, UK
| | | | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London, UK
| | - Martin J Warren
- Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
12
|
Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing Halanaerobium spp. Appl Environ Microbiol 2019; 85:e00018-19. [PMID: 30979840 PMCID: PMC6544827 DOI: 10.1128/aem.00018-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.
Collapse
Affiliation(s)
- Anne E Booker
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tea Meulia
- College of Food, Agricultural, and Environmental Sciences, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rebecca A Daly
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Joseph D Moore
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Kenneth Wunch
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Bari NK, Kumar G, Bhatt A, Hazra JP, Garg A, Ali ME, Sinha S. Nanoparticle Fabrication on Bacterial Microcompartment Surface for the Development of Hybrid Enzyme-Inorganic Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Naimat Kalim Bari
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Gaurav Kumar
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Aashish Bhatt
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ankush Garg
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Md. Ehesan Ali
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| |
Collapse
|
14
|
Mohajerani F, Hagan MF. The role of the encapsulated cargo in microcompartment assembly. PLoS Comput Biol 2018; 14:e1006351. [PMID: 30063715 PMCID: PMC6086489 DOI: 10.1371/journal.pcbi.1006351] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments are large, roughly icosahedral shells that assemble around enzymes and reactants involved in certain metabolic pathways in bacteria. Motivated by microcompartment assembly, we use coarse-grained computational and theoretical modeling to study the factors that control the size and morphology of a protein shell assembling around hundreds to thousands of molecules. We perform dynamical simulations of shell assembly in the presence and absence of cargo over a range of interaction strengths, subunit and cargo stoichiometries, and the shell spontaneous curvature. Depending on these parameters, we find that the presence of a cargo can either increase or decrease the size of a shell relative to its intrinsic spontaneous curvature, as seen in recent experiments. These features are controlled by a balance of kinetic and thermodynamic effects, and the shell size is assembly pathway dependent. We discuss implications of these results for synthetic biology efforts to target new enzymes to microcompartment interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
15
|
A Bacterial Microcompartment Is Used for Choline Fermentation by Escherichia coli 536. J Bacteriol 2018; 200:JB.00764-17. [PMID: 29507086 DOI: 10.1128/jb.00764-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 01/16/2023] Open
Abstract
Bacterial choline degradation in the human gut has been associated with cancer and heart disease. In addition, recent studies found that a bacterial microcompartment is involved in choline utilization by Proteus and Desulfovibrio species. However, many aspects of this process have not been fully defined. Here, we investigate choline degradation by the uropathogen Escherichia coli 536. Growth studies indicated E. coli 536 degrades choline primarily by fermentation. Electron microscopy indicated that a bacterial microcompartment was used for this process. Bioinformatic analyses suggested that the choline utilization (cut) gene cluster of E. coli 536 includes two operons, one containing three genes and a main operon of 13 genes. Regulatory studies indicate that the cutX gene encodes a positive transcriptional regulator required for induction of the main cut operon in response to choline supplementation. Each of the 16 genes in the cut cluster was individually deleted, and phenotypes were examined. The cutX, cutY, cutF, cutO, cutC, cutD, cutU, and cutV genes were required for choline degradation, but the remaining genes of the cut cluster were not essential under the conditions used. The reasons for these varied phenotypes are discussed.IMPORTANCE Here, we investigate choline degradation in E. coli 536. These studies provide a basis for understanding a new type of bacterial microcompartment and may provide deeper insight into the link between choline degradation in the human gut and cancer and heart disease. These are also the first studies of choline degradation in E. coli 536, an organism for which sophisticated genetic analysis methods are available. In addition, the cut gene cluster of E. coli 536 is located in pathogenicity island II (PAI-II536) and hence might contribute to pathogenesis.
Collapse
|
16
|
Benčina M, Mori J, Gaber R, Jerala R. Metabolic Channeling Using DNA as a Scaffold. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mojca Benčina
- National Institute of Chemistry; Department of Biotechnology; Hajdrihova 19 SI1000 Ljubljana Slovenia
- Centre of Excellence EN-FIST; Trg Osvobodilne fronte 13 SI1000 Ljubljana Slovenia
| | - Jerneja Mori
- National Institute of Chemistry; Department of Biotechnology; Hajdrihova 19 SI1000 Ljubljana Slovenia
- Centre of Excellence EN-FIST; Trg Osvobodilne fronte 13 SI1000 Ljubljana Slovenia
| | - Rok Gaber
- National Institute of Chemistry; Department of Biotechnology; Hajdrihova 19 SI1000 Ljubljana Slovenia
- Centre of Excellence EN-FIST; Trg Osvobodilne fronte 13 SI1000 Ljubljana Slovenia
| | - Roman Jerala
- National Institute of Chemistry; Department of Biotechnology; Hajdrihova 19 SI1000 Ljubljana Slovenia
- Centre of Excellence EN-FIST; Trg Osvobodilne fronte 13 SI1000 Ljubljana Slovenia
| |
Collapse
|
17
|
Chaijarasphong T, Savage DF. Sequestered: Design and Construction of Synthetic Organelles. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thawatchai Chaijarasphong
- Mahidol University; Faculty of Science, Department of Biotechnology; Rama VI Rd. Bangkok 10400 Thailand
| | - David F. Savage
- University of California; Department of Molecular and Cell Biology; 2151 Berkeley Way, Berkeley CA 94720 USA
- University of California; Department of Chemistry; 2151 Berkeley Way, Berkeley CA 94720 USA
| |
Collapse
|
18
|
The Wrappers of the 1,2-Propanediol Utilization Bacterial Microcompartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:333-344. [DOI: 10.1007/978-981-13-3065-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Slininger Lee MF, Jakobson CM, Tullman-Ercek D. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering. ACS Synth Biol 2017; 6:1880-1891. [PMID: 28585808 DOI: 10.1021/acssynbio.7b00042] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.
Collapse
Affiliation(s)
- Marilyn F. Slininger Lee
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Christopher M. Jakobson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Systems Biology, Stanford University, Stanford, California, 94305, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
20
|
Azuma Y, Zschoche R, Hilvert D. The C-terminal peptide of Aquifex aeolicus riboflavin synthase directs encapsulation of native and foreign guests by a cage-forming lumazine synthase. J Biol Chem 2017; 292:10321-10327. [PMID: 28515315 PMCID: PMC5481547 DOI: 10.1074/jbc.c117.790311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Encapsulation of specific enzymes in self-assembling protein cages is a hallmark of bacterial compartments that function as counterparts to eukaryotic organelles. The cage-forming enzyme lumazine synthase (LS) from Bacillus subtilis (BsLS), for example, encapsulates riboflavin synthase (BsRS), enabling channeling of lumazine from the site of its generation to the site of its conversion to vitamin B2 Elucidating the molecular mechanisms underlying the assembly of these supramolecular complexes could help inform new approaches for metabolic engineering, nanotechnology, and drug delivery. To that end, we investigated a thermostable LS from Aquifex aeolicus (AaLS) and found that it also forms cage complexes with the cognate riboflavin synthase (AaRS) when both proteins are co-produced in the cytosol of Escherichia coli A 12-amino acid-long peptide at the C terminus of AaRS serves as a specific localization sequence responsible for targeting the guest to the protein compartment. Sequence comparisons suggested that analogous peptide segments likely direct RS complexation by LS cages in other bacterial species. Covalent fusion of this peptide tag to heterologous guest molecules led to their internalization into AaLS assemblies both in vivo and in vitro, providing a firm foundation for creating tailored biomimetic nanocompartments for medical and biotechnological applications.
Collapse
Affiliation(s)
- Yusuke Azuma
- From the Laboratory of Organic Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| | - Reinhard Zschoche
- From the Laboratory of Organic Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| | - Donald Hilvert
- From the Laboratory of Organic Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core. J Bacteriol 2017; 199:JB.00785-16. [PMID: 28138097 DOI: 10.1128/jb.00785-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial microcompartments (MCPs) are extremely large proteinaceous organelles that consist of an enzymatic core encapsulated within a complex protein shell. A key question in MCP biology is the nature of the interactions that guide the assembly of thousands of protein subunits into a well-ordered metabolic compartment. In this report, we show that the N-terminal 37 amino acids of the PduB protein have a critical role in binding the shell of the 1,2-propanediol utilization (Pdu) microcompartment to its enzymatic core. Several mutations were constructed that deleted short regions of the N terminus of PduB. Growth tests indicated that three of these deletions were impaired MCP assembly. Attempts to purify MCPs from these mutants, followed by gel electrophoresis and enzyme assays, indicated that the protein complexes isolated consisted of MCP shells depleted of core enzymes. Electron microscopy substantiated these findings by identifying apparently empty MCP shells but not intact MCPs. Analyses of 13 site-directed mutants indicated that the key region of the N terminus of PduB required for MCP assembly is a putative helix spanning residues 6 to 18. Considering the findings presented here together with prior work, we propose a new model for MCP assembly.IMPORTANCE Bacterial microcompartments consist of metabolic enzymes encapsulated within a protein shell and are widely used to optimize metabolic process. Here, we show that the N-terminal 37 amino acids of the PduB shell protein are essential for assembly of the 1,2-propanediol utilization microcompartment. The results indicate that it plays a key role in binding the outer shell to the enzymatic core. We propose that this interaction might be used to define the relative orientation of the shell with respect to the core. This finding is of fundamental importance to our understanding of microcompartment assembly and may have application to engineering microcompartments as nanobioreactors for chemical production.
Collapse
|
22
|
Lian H, Zeldes BM, Lipscomb GL, Hawkins AB, Han Y, Loder AJ, Nishiyama D, Adams MWW, Kelly RM. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO 2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus. Biotechnol Bioeng 2016; 113:2652-2660. [PMID: 27315782 DOI: 10.1002/bit.26033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Abstract
Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO3- and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO2 into 3HP production in metabolically engineered P. furiosus, and hint at the important role that CA and BPL likely play in the native 3HP/4HB pathway in M. sedula. Biotechnol. Bioeng. 2016;113: 2652-2660. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hong Lian
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Aaron B Hawkins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Yejun Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Declan Nishiyama
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27587.
| |
Collapse
|
23
|
Held M, Kolb A, Perdue S, Hsu SY, Bloch SE, Quin MB, Schmidt-Dannert C. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Sci Rep 2016; 6:24359. [PMID: 27063436 PMCID: PMC4827028 DOI: 10.1038/srep24359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/29/2016] [Indexed: 01/17/2023] Open
Abstract
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Alexander Kolb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah Perdue
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah E Bloch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
24
|
Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:148-60. [PMID: 26662726 PMCID: PMC4718753 DOI: 10.1111/tpj.13098] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.
Collapse
Affiliation(s)
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - P. John Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Martin A. J. Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| |
Collapse
|
25
|
Moore TC, Escalante-Semerena JC. The EutQ and EutP proteins are novel acetate kinases involved in ethanolamine catabolism: physiological implications for the function of the ethanolamine metabolosome in Salmonella enterica. Mol Microbiol 2015; 99:497-511. [PMID: 26448059 DOI: 10.1111/mmi.13243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.
Collapse
Affiliation(s)
- Theodore C Moore
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | |
Collapse
|
26
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
27
|
Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol 2015; 98:193-207. [PMID: 26148529 PMCID: PMC4718714 DOI: 10.1111/mmi.13117] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 12/15/2022]
Abstract
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.
Collapse
Affiliation(s)
- Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Brent P. Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
28
|
Chessher A, Breitling R, Takano E. Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomater Sci Eng 2015; 1:345-351. [DOI: 10.1021/acsbiomaterials.5b00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley Chessher
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
29
|
In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments. J Bacteriol 2015; 197:2412-21. [PMID: 25962913 DOI: 10.1128/jb.00215-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Bacterial microcompartments (MCPs) are a diverse family of protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of bacterial MCPs is to optimize metabolic pathways by confining toxic and/or volatile metabolic intermediates. About 20% of bacteria produce MCPs, and there are at least seven different types. Different MCPs vary in their encapsulated enzymes, but all have outer shells composed of highly conserved proteins containing bacterial microcompartment domains. Many organisms have genes encoding more than one type of MCP, but given the high homology among shell proteins, it is uncertain whether multiple MCPs can be functionally expressed in the same cell at the same time. In these studies, we examine the regulation of the 1,2-propanediol (1,2-PD) utilization (Pdu) and ethanolamine utilization (Eut) MCPs in Salmonella. Studies showed that 1,2-PD (shown to induce the Pdu MCP) represses transcription of the Eut MCP and that the PocR regulatory protein is required. The results indicate that repression of the Eut MCP by 1,2-PD is needed to prevent detrimental mixing of shell proteins from the Eut and Pdu MCPs. Coexpression of both MCPs impaired the function of the Pdu MCP and resulted in the formation of hybrid MCPs composed of Eut and Pdu MCP components. We also show that plasmid-based expression of individual shell proteins from the Eut MCP or the β-carboxysome impaired the function of Pdu MCP. Thus, the high conservation among bacterial microcompartment (BMC) domain shell proteins is problematic for coexpression of the Eut and Pdu MCPs and perhaps other MCPs as well. IMPORTANCE Bacterial MCPs are encoded by nearly 20% of bacterial genomes, and almost 40% of those genomes contain multiple MCP gene clusters. In this study, we examine how the regulation of two different MCP systems (Eut and Pdu) is integrated in Salmonella. Our findings indicate that 1,2-PD (shown to induce the Pdu MCP) represses the Eut MCP to prevent detrimental mixing of Eut and Pdu shell proteins. These findings suggest that numerous organisms which produce more than one type of MCP likely need some mechanism to prevent aberrant shell protein interactions.
Collapse
|
30
|
De la Fuente IM. Elements of the cellular metabolic structure. Front Mol Biosci 2015; 2:16. [PMID: 25988183 PMCID: PMC4428431 DOI: 10.3389/fmolb.2015.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022] Open
Abstract
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones CientíficasGranada, Spain
- Department of Mathematics, University of the Basque Country, UPV/Euskal Herriko UnibertsitateaLeioa, Spain
| |
Collapse
|
31
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
32
|
Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci U S A 2015; 112:2990-5. [PMID: 25713376 DOI: 10.1073/pnas.1423672112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. Here, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.
Collapse
|
33
|
Jorda J, Liu Y, Bobik TA, Yeates TO. Exploring bacterial organelle interactomes: a model of the protein-protein interaction network in the Pdu microcompartment. PLoS Comput Biol 2015; 11:e1004067. [PMID: 25646976 PMCID: PMC4315436 DOI: 10.1371/journal.pcbi.1004067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP. Many bacteria produce giant proteinaceous structures within their cells, which they use to carry out special metabolic reactions in their interior. Much has been learned recently about the individual components—shell proteins and encapsulated enzymes—that assemble together, thousands of subunits in all, to make these bacterial microcompartments or MCPs. However, in order to carry out their biological functions, these systems must be highly organized through specific protein-protein interactions, and such a higher level understanding of organization in MCP systems is lacking. In this study, we use genomic data and phylogenetic analysis to predict the network of interactions between the approximately 20 different kinds of proteins and enzymes present in the Pdu MCP. Then, we use computational docking to examine a subset of those that are predicted to involve enzymes bound to the interior surface of the shell proteins, and show that the results are consistent with recent experimental data. We further provide new experimental evidence for one of the predicted protein-protein interactions. This study expands our understanding of a complex system of proteins serving as a metabolic organelle in bacterial cells, and provides a foundation for further experimental investigations.
Collapse
Affiliation(s)
- Julien Jorda
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
| | - Yu Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Todd O. Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
35
|
Kim EY, Jakobson CM, Tullman-Ercek D. Engineering transcriptional regulation to control Pdu microcompartment formation. PLoS One 2014; 9:e113814. [PMID: 25427074 PMCID: PMC4245221 DOI: 10.1371/journal.pone.0113814] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022] Open
Abstract
Bacterial microcompartments (MCPs) show great promise for the organization of engineered metabolic pathways within the bacterial cytoplasm. This subcellular organelle is composed of a protein shell of 100-200 nm diameter that natively encapsulates multi-enzyme pathways. The high energy cost of synthesizing the thousands of protein subunits required for each MCP demands precise regulation of MCP formation for both native and engineered systems. Here, we study the regulation of the propanediol utilization (Pdu) MCP, for which growth on 1,2-propanediol induces expression of the Pdu operon for the catabolism of 1,2-propanediol. We construct a fluorescence-based transcriptional reporter to investigate the activation of the Ppdu promoter, which drives the transcription of 21 pdu genes. Guided by this reporter, we find that MCPs can be expressed in strains grown in rich media, provided that glucose is not present. We also characterize the response of the Ppdu promoter to a transcriptional activator of the pdu operon, PocR, and find PocR to be a necessary component of Pdu MCP formation. Furthermore, we find that MCPs form normally upon the heterologous expression of PocR even in the absence of the natural inducer 1,2-propanediol and in the presence of glucose, and that Pdu MCPs formed in response to heterologous PocR expression can metabolize 1,2-propanediol in vivo. We anticipate that this technique of overexpressing a key transcription factor may be used to study and engineer the formation, size, and/or number of MCPs for the Pdu and related MCP systems.
Collapse
Affiliation(s)
- Edward Y. Kim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
| | - Christopher M. Jakobson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
| | - Danielle Tullman-Ercek
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
37
|
Lin MT, Occhialini A, Andralojc JP, Devonshire J, Hines KM, Parry MAJ, Hanson MR. β-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1-12. [PMID: 24810513 PMCID: PMC4080790 DOI: 10.1111/tpj.12536] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/15/2014] [Indexed: 05/18/2023]
Abstract
The photosynthetic efficiency of C3 plants suffers from the reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) with O2 instead of CO2 , leading to the costly process of photorespiration. Increasing the concentration of CO2 around Rubisco is a strategy used by photosynthetic prokaryotes such as cyanobacteria for more efficient incorporation of inorganic carbon. Engineering the cyanobacterial CO2 -concentrating mechanism, the carboxysome, into chloroplasts is an approach to enhance photosynthesis or to compartmentalize other biochemical reactions to confer new capabilities on transgenic plants. We have chosen to explore the possibility of producing β-carboxysomes from Synechococcus elongatus PCC7942, a model freshwater cyanobacterium. Using the agroinfiltration technique, we have transiently expressed multiple β-carboxysomal proteins (CcmK2, CcmM, CcmL, CcmO and CcmN) in Nicotiana benthamiana with fusions that target these proteins into chloroplasts, and that provide fluorescent labels for visualizing the resultant structures. By confocal and electron microscopic analysis, we have observed that the shell proteins of the β-carboxysome are able to assemble in plant chloroplasts into highly organized assemblies resembling empty microcompartments. We demonstrate that a foreign protein can be targeted with a 17-amino-acid CcmN peptide to the shell proteins inside chloroplasts. Our experiments establish the feasibility of introducing carboxysomes into chloroplasts for the potential compartmentalization of Rubisco or other proteins.
Collapse
Affiliation(s)
- Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | | | - John P. Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Kevin M. Hines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Martin A. J. Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
38
|
Alanine scanning mutagenesis identifies an asparagine-arginine-lysine triad essential to assembly of the shell of the Pdu microcompartment. J Mol Biol 2014; 426:2328-45. [PMID: 24747050 DOI: 10.1016/j.jmb.2014.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 01/18/2023]
Abstract
Bacterial microcompartments (MCPs) are the simplest organelles known. They function to enhance metabolic pathways by confining several related enzymes inside an all-protein envelope called the shell. In this study, we investigated the factors that govern MCP assembly by performing scanning mutagenesis on the surface residues of PduA, a major shell protein of the MCP used for 1,2-propanediol degradation. Biochemical, genetic, and structural analysis of 20 mutants allowed us to determine that PduA K26, N29, and R79 are crucial residues that stabilize the shell of the 1,2-propanediol MCP. In addition, we identify two PduA mutants (K37A and K55A) that impair MCP function most likely by altering the permeability of its protein shell. These are the first studies to examine the phenotypic effects of shell protein structural mutations in an MCP system. The findings reported here may be applicable to engineering protein containers with improved stability for biotechnology applications.
Collapse
|
39
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
40
|
Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway. Cell 2013; 155:1131-40. [DOI: 10.1016/j.cell.2013.10.044] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/30/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
41
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Rae BD, Long BM, Badger MR, Price GD. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013; 77:357-79. [PMID: 24006469 PMCID: PMC3811607 DOI: 10.1128/mmbr.00061-12] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
43
|
Yeates TO, Jorda J, Bobik TA. The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 2013; 23:290-9. [PMID: 23920492 DOI: 10.1159/000351347] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacterial microcompartments are large proteinaceous structures that act as metabolic organelles in many bacterial cells. A shell or capsid, which is composed of a few thousand protein subunits, surrounds a series of sequentially acting enzymes and controls the diffusion of substrates and products into and out of the lumen. The carboxysome and the propanediol utilization microcompartment represent two well-studied systems among seven or more distinct types that can be delineated presently. Recent structural studies have highlighted a number of sophisticated mechanisms that underlie the function of bacterial microcompartment shell proteins. This review updates our understanding of bacterial microcompartment shells, how they are assembled, and how they carry out their functions in molecular transport and enzyme organization.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Calif. 90095-1569, USA.
| | | | | |
Collapse
|
44
|
Held M, Quin MB, Schmidt-Dannert C. Eut bacterial microcompartments: insights into their function, structure, and bioengineering applications. J Mol Microbiol Biotechnol 2013; 23:308-20. [PMID: 23920494 DOI: 10.1159/000351343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based polyhedral organelles which serve to encapsulate and organize enzymes involved in key metabolic pathways. The sequestration of these pathways not only improves the overall reaction efficiency; it can also harbor toxic or volatile pathway intermediates, which would otherwise be detrimental to the cell. Genomic and phylogenetic analyses reveal the presence of these unique organelles in a diverse range of bacterial species, highlighting their evolutionary importance and the essential role that they play in bacterial cell survival. Functional and structural analyses of BMCs involved in ethanolamine utilization are developing our understanding of the self-assembly and encapsulation mechanisms employed by these protein supercomplexes. This knowledge will open up exciting new avenues of research with a range of potential engineering and biotechnological applications.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minn., USA
| | | | | |
Collapse
|
45
|
|
46
|
Robertson WD, Bovell AM, Warncke K. Cobinamide production of hydrogen in a homogeneous aqueous photochemical system, and assembly and photoreduction in a (βα)8 protein. J Biol Inorg Chem 2013; 18:701-13. [PMID: 23807763 PMCID: PMC3737076 DOI: 10.1007/s00775-013-1015-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022]
Abstract
Components of a protein-integrated, earth-abundant metal macrocycle catalyst, with the purpose of H2 production from aqueous protons under green conditions, are characterized. The cobalt-corrin complex, cobinamide, is demonstrated to produce H2 (4.4 ± 1.8 × 10(-3) turnover number per hour) in a homogeneous, photosensitizer/sacrificial electron donor system in pure water at neutral pH. Turnover is proposed to be limited by the relatively low population of the gateway cobalt(III) hydride species. A heterolytic mechanism for H2 production from the cobalt(II) hydride is proposed. Two essential requirements for assembly of a functional protein-catalyst complex are demonstrated for interaction of cobinamide with the (βα)8 TIM barrel protein, EutB, from the adenosylcobalamin-dependent ethanolamine ammonia lyase from Salmonella typhimurium: (1) high-affinity equilibrium binding of the cobinamide (dissociation constant 2.1 × 10(-7) M) and (2) in situ photoreduction of the cobinamide-protein complex to the Co(I) state. Molecular modeling of the cobinamide-EutB interaction shows that these features arise from specific hydrogen-bond and apolar interactions of the protein with the alkylamide substituents and the ring of the corrin, and accessibility of the binding site to the solution. The results establish cobinamide-EutB as a platform for design and engineering of a robust H2 production metallocatalyst that operates under green conditions and uses the advantages of the protein as a tunable medium and material support.
Collapse
Affiliation(s)
- Wesley D Robertson
- Department of Physics, N201 Mathematics and Science Center, Emory University, 400 Dowman Drive, Atlanta, GA 30322-2430, USA
| | | | | |
Collapse
|
47
|
Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 2013; 195:3309-19. [PMID: 23687278 DOI: 10.1128/jb.00207-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus OS-B', a thermophilic unicellular cyanobacterium, recently isolated from the microbial mats in Octopus Spring (Yellowstone National Park), induces a suite of genes, including phosphatases and transporters, in response to phosphorus (P) starvation. Here we describe two different approaches to examine the ability of Synechococcus OS-B' to synthesize and break down polyphosphate (poly P), a key storage compound in many prokaryotes. First, we developed a transformation protocol to create mutants in the polyphosphate kinase (ppk), the major enzyme responsible for the synthesis of poly P. The ppk mutant exhibited a pleiotropic phenotype with defects in poly P accumulation, aberrant levels of Pho regulon transcripts, growth defects, and changes in cell size and exopolysaccharide levels, among others. Second, we measured transcripts of ppk and ppx (encoding the polyphosphatase) directly from mat samples and found that the levels varied dramatically over a diel cycle. We also used Western blot analysis to quantify levels of PPK and PPX and found that these enzymes differentially accumulated during the diel cycle. Levels of polyphosphate kinase peaked at night, while polyphosphatase levels were highest during the early morning hours. We hypothesize that the opposing activities of these two enzymes allow cells to store and utilize poly P to optimize growth over a diel cycle.
Collapse
|
48
|
De la Fuente IM, Cortes JM, Pelta DA, Veguillas J. Attractor metabolic networks. PLoS One 2013; 8:e58284. [PMID: 23554883 PMCID: PMC3598861 DOI: 10.1371/journal.pone.0058284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. METHODOLOGY/PRINCIPAL FINDINGS In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. CONCLUSIONS/SIGNIFICANCE We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Quantitative Biomedicine Unit, BioCruces Health Research Institute, Barakaldo, Basque Country, Spain.
| | | | | | | |
Collapse
|
49
|
Petit E, LaTouf WG, Coppi MV, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. PLoS One 2013; 8:e54337. [PMID: 23382892 PMCID: PMC3557285 DOI: 10.1371/journal.pone.0054337] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background Clostridium phytofermentans, an anaerobic soil bacterium, can directly convert plant biomass into biofuels. The genome of C. phytofermentans contains three loci with genes encoding shell proteins of bacterial microcompartments (BMC), organelles composed entirely of proteins. Methodology and Principal Findings One of the BMC loci has homology to a BMC-encoding locus implicated in the conversion of fucose to propanol and propionate in a human gut commensal, Roseburia inulinivorans. We hypothesized that it had a similar role in C. phytofermentans. When C. phytofermentans was grown on fucose, the major products identified were ethanol, propanol and propionate. Transmission electron microscopy of fucose- and rhamnose-grown cultures revealed polyhedral structures, presumably BMCs. Microarray analysis indicated that during growth on fucose, operons coding for the BMC locus, fucose dissimilatory enzymes, and an ATP-binding cassette transporter became the dominant transcripts. These data are consistent with fucose fermentation producing a 1,2-propanediol intermediate that is further metabolized in the microcompartment encoded in the BMC locus. Growth on another deoxyhexose sugar, rhamnose, resulted in the expression of the same BMC locus and similar fermentation products. However, a different set of dissimilatory enzymes and transport system genes were induced. Quite surprisingly, growth on fucose or rhamnose also led to the expression of a diverse array of complex plant polysaccharide-degrading enzymes. Conclusions/Significance Based on physiological, genomic, and microarray analyses, we propose a model for the fermentation of fucose and rhamnose in C. phytofermentans that includes enzymes encoded in the same BMC locus. Comparative genomic analysis suggests that this BMC may be present in other clostridial species.
Collapse
Affiliation(s)
- Elsa Petit
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - W. Greg LaTouf
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Maddalena V. Coppi
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Thomas A. Warnick
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Devin Currie
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Igor Romashko
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Supriya Deshpande
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kelly Haas
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Jesús G. Alvelo-Maurosa
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Colin Wardman
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Danny J. Schnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Susan B. Leschine
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Jeffrey L. Blanchard
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Jorda J, Lopez D, Wheatley NM, Yeates TO. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 2013. [PMID: 23188745 DOI: 10.1002/pro.2196] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B(12) -independent, glycyl radical-based degradation of 1,2-propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester.
Collapse
Affiliation(s)
- Julien Jorda
- UCLA-DOE Institute for Genomics and Proteomics, 611 Charles Young Dr East, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|