1
|
Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100274. [PMID: 39310303 PMCID: PMC11416519 DOI: 10.1016/j.crmicr.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution. Similarly, growing concerns about the sustainable future have fuelled the development of biopolymers, substances occurring in and/or produced by living organisms, as substitute for different synthetic and harmful polymers, especially petroleum-based plastics. Now, the components of agri-waste offer encouraging opportunities for the production of bioplastics through mechanical and microbial procedures. Even the microbial, both bacterial and fungal, system results in lower energy consumption and better eco-friendly alternatives. The review mainly concentrates on cataloging and understanding the bacterial 'input' in developing bioplastics from diverse agri-waste. Especially, the bacteria like Cupriavidus necator, Chromatium vinosum, and Pseudomonas aeruginosa produce short- and medium-chain length poly(3-hydroxyalkanote) (P3HB) polymers using starch (from corn and potato waste), and cellulose (from sugarcane bagasse, corn husks waste). Similarly, C. necator, and transformant Wautersia eutropha produce P3HB polymer using lipid-based components (such as palm oil waste). Important to note that, the synthesis of these polymers are interconnected with the bacterial general metabolic activities, for example Krebs cycle, glycolysis cycle, β-oxidation, calvin cycle, de novo fatty acid syntheses, etc. Altogether, the agri-waste is reasonably low-cost feed for the production of bioplastics using bacterial communities; and the whole process certainly provide an opportunity towards sustainable waste management strategy.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| |
Collapse
|
2
|
Yanagawa K, Kajikawa A, Sakakibara S, Kumeta H, Tomita H, Matsumoto K. Real-time NMR analysis of polyhydroxyalkanoate synthase reaction that synthesizes block copolymer comprising glycolate and 3-hydroxybutyrate. Biophys Chem 2023; 296:107001. [PMID: 36913888 DOI: 10.1016/j.bpc.2023.107001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The sequence-regulating polyhydroxyalkanoate (PHA) synthase PhaCAR spontaneously synthesizes the homo-random block copolymer, poly[3-hydroxybutyrate (3HB)]-b-poly[glycolate (GL)-ran-3HB]. In this study, a real-time in vitro chasing system was established using a high-resolution 800 MHz nuclear magnetic resonance (NMR) and 13C-labeled monomers to monitor the polymerization of GL-CoA and 3HB-CoA into this atypical copolymer. Consequently, PhaCAR initially consumed only 3HB-CoA and subsequently consumed both substrates. The structure of the nascent polymer was analyzed by extracting it with deuterated hexafluoro-isopropanol. In the primary reaction product, a 3HB-3HB dyad was detected, and GL-3HB linkages were subsequently formed. According to these results, the P(3HB) homopolymer segment is synthesized prior to the random copolymer segment. This is the first report of its kind which proposes the application of real-time NMR to a PHA synthase assay, paving the way for elucidating the mechanisms of PHA block copolymerization.
Collapse
Affiliation(s)
- Kengo Yanagawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Ayaka Kajikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Sayaka Sakakibara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan.
| |
Collapse
|
3
|
Angra V, Sehgal R, Gupta R. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities. MICROBIAL ECOLOGY 2023; 85:572-585. [PMID: 35333950 DOI: 10.1007/s00248-022-01995-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Along with the wide applications of conventional plastics, they have a large number of disadvantages like their non-biodegradable nature, dependency on fossil fuels and the release of large amounts of toxic materials in the environment. Therefore, to resolve these problems, a number of bioplastics are studied, out of which polyhydroxyalkanoates are considered as the best alternatives. Polyhydroxyalkanoates (PHAs) are produced by microorganisms as intracellular granules during stressful conditions. Though a wide range of organisms can naturally produce PHAs, only a few of them can be used for commercial production. Therefore, more diverse organisms that accumulate a considerable amount of PHAs and also reduce the production cost need to be exploited. Transgenic plants, recombinant bacteria, algae and extremophiles are some diverse organisms that produce a high amount of PHAs at a low cost. So, if potential organisms are used for PHA production, bioplastics will be able to completely replace petroleum-based polymers. Therefore, our review mainly focuses on production of PHAs using potential organisms so that amount of PHAs produced is high and cost-effective which would further help in the commercialization of PHAs.
Collapse
Affiliation(s)
- Vani Angra
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Rutika Sehgal
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India.
| |
Collapse
|
4
|
Sivashankari RM, Mierzati M, Miyahara Y, Mizuno S, Nomura CT, Taguchi S, Abe H, Tsuge T. Exploring Class I polyhydroxyalkanoate synthases with broad substrate specificity for polymerization of structurally diverse monomer units. Front Bioeng Biotechnol 2023; 11:1114946. [PMID: 36896015 PMCID: PMC9989198 DOI: 10.3389/fbioe.2023.1114946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) are key enzymes in PHA polymerization. PhaCs with broad substrate specificity are attractive for synthesizing structurally diverse PHAs. In the PHA family, 3-hydroxybutyrate (3HB)-based copolymers are industrially produced using Class I PhaCs and can be used as practical biodegradable thermoplastics. However, Class I PhaCs with broad substrate specificities are scarce, prompting our search for novel PhaCs. In this study, four new PhaCs from the bacteria Ferrimonas marina, Plesiomonas shigelloides, Shewanella pealeana, and Vibrio metschnikovii were selected via a homology search against the GenBank database, using the amino acid sequence of Aeromonas caviae PHA synthase (PhaCAc), a Class I enzyme with a wide range of substrate specificities, as a template. The four PhaCs were characterized in terms of their polymerization ability and substrate specificity, using Escherichia coli as a host for PHA production. All the new PhaCs were able to synthesize P(3HB) in E. coli with a high molecular weight, surpassing PhaCAc. The substrate specificity of PhaCs was evaluated by synthesizing 3HB-based copolymers with 3-hydroxyhexanoate, 3-hydroxy-4-methylvalerate, 3-hydroxy-2-methylbutyrate, and 3-hydroxypivalate monomers. Interestingly, PhaC from P. shigelloides (PhaCPs) exhibited relatively broad substrate specificity. PhaCPs was further engineered through site-directed mutagenesis, and the variant resulted in an enzyme with improved polymerization ability and substrate specificity.
Collapse
Affiliation(s)
| | - Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Christopher T Nomura
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
6
|
Thomas CM, Kumar D, Scheel RA, Ramarao B, Nomura CT. Production of Medium Chain Length polyhydroxyalkanoate copolymers from agro-industrial waste streams. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Satoh K, Kawakami T, Isobe N, Pasquier L, Tomita H, Zinn M, Matsumoto K. Versatile aliphatic polyester biosynthesis system for producing random and block copolymers composed of 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates using the sequence-regulating polyhydroxyalkanoate synthase PhaC AR. Microb Cell Fact 2022; 21:84. [PMID: 35568875 PMCID: PMC9107728 DOI: 10.1186/s12934-022-01811-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized by PHA synthases. Naturally occurring PHA copolymers possess a random monomer sequence. The development of PhaCAR, a unique sequence-regulating PHA synthase, has enabled the spontaneous biosynthesis of PHA block copolymers. PhaCAR synthesizes both a block copolymer poly(2-hydroxybutyrate)-b-poly(3-hydroxybutyrate) [P(2HB)-b-P(3HB)], and a random copolymer, poly(3HB-co-3-hydroxyhexanoate), indicating that the combination of monomers determines the monomer sequence. Therefore, in this study, we explored the substrate scope of PhaCAR and the monomer sequences of the resulting copolymers to identify the determinants of the monomer sequence. PhaCAR is a class I PHA synthase that is thought to incorporate long-main-chain hydroxyalkanoates (LMC HAs, > C3 in the main [backbone] chain). Thus, the LMC monomers, 4-hydroxy-2-methylbutyrate (4H2MB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx), as well as 2HB, 3HB, and 3-hydroxypropionate (3HP) were tested. RESULTS Recombinant Escherichia coli harboring PhaCAR, CoA transferase and CoA ligase genes was used for PHA production. The medium contained the monomer precursors, 2HB, 3HB, 3HP, 4H2MB, 5HV, and 6HHx, either individually or in combination. As a result, homopolymers were obtained only for 3HB and 3HP. Moreover, 3HB and 3HP were randomly copolymerized by PhaCAR. 3HB-based binary copolymers P(3HB-co-LMC HA)s containing up to 2.9 mol% 4H2MB, 4.8 mol% 5HV, or 1.8 mol% 6HHx were produced. Differential scanning calorimetry analysis of the copolymers indicated that P(3HB-co-LMC HA)s had a random sequence. In contrast, combining 3HP and 2HB induced the synthesis of P(3HP)-b-P(2HB). Similarly, P(2HB) segment-containing block copolymers P(3HB-co-LMC HA)-b-P(2HB)s were synthesized. Binary copolymers of LMC HAs and 2HB were not obtained, indicating that the 3HB or 3HP unit is essential to the polymer synthesis. CONCLUSION PhaCAR possesses a wide substrate scope towards 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates. 3HB or 3HP units are essential for polymer synthesis using PhaCAR. The presence of a 2HB monomer is key to synthesizing block copolymers, such as P(3HP)-b-P(2HB) and P(3HB-co-LMC HA)-b-P(2HB)s. The copolymers that did not contain 2HB units had a random sequence. This study's results provide insights into the mechanism of sequence regulation by PhaCAR and pave the way for designing PHA block copolymers.
Collapse
Affiliation(s)
- Keigo Satoh
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan
| | - Tomoya Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan
| | - Nagi Isobe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan
| | - Loïc Pasquier
- Department of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo, 060-8628, Japan.
| |
Collapse
|
8
|
Araceli FS, Juliana A R, Berenice VP, Fermin PG, Bruce A R. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase. J Biotechnol 2022; 349:25-31. [PMID: 35341893 DOI: 10.1016/j.jbiotec.2022.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Recombinant Cupriavidus necator H16/pMPJAS03, expressing a P. putida KT2440 enoyl-CoA hydratase (phaJ), was able to synthesize short-chain-length/ medium-chain-length (scl-mcl) PHA copolymers with a high content of mcl subunits using its native poly(3-hydroxyalkanoate) synthase. The cells were cultivated on fructose with canola oil or canola oil/decanoic acid (DA) mixtures in fed-batch fermentations. The recombinant C. necator H16 (without any synthase modification) produced a polymer composed of 3-hydroxybutyrate (3HB) with mcl-subunits, including 3-hydroxyhexanoate (3HHx), and about 300-fold more 3-hydroxyoctanoate (3HO) than the yields reported in previous studies, as well as a significant amount of 3-hydroxydecanoate (3HD). Increasing the DA content in the feed from 0 to 15% v/v increased the molar content of the 3HD subunits from 1.2 to 2.1mol%. The presence of larger monomers, such as 3HO and 3HD, decreased the crystallinity and melting temperature and modified the mechanical properties of the polymers. Thus, replacing either of the two gene products (phaJ or phaC1) required to produce PHA from CoA-3-hydroxy fatty acids with broader spectrum enzymes, is suitable for the production of commercially useful scl-mcl-PHA.
Collapse
Affiliation(s)
- Flores-Sánchez Araceli
- Escuela de Ingeniería, Tecnológico de Monterrey, Campus Estado de México. Estado de México 52926, México; Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ramsay Juliana A
- Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Vergara-Porras Berenice
- Escuela de Ingeniería, Tecnológico de Monterrey, Campus Estado de México. Estado de México 52926, México
| | - Pérez-Guevara Fermin
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados (CINVESTAV). Ciudad de México 07360, México
| | - Ramsay Bruce A
- Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
9
|
Goto S, Miyahara Y, Taguchi S, Tsuge T, Hiroe A. Enhanced Production of (R)-3-Hydroxybutyrate Oligomers by Coexpression of Molecular Chaperones in Recombinant Escherichia coli Harboring a Polyhydroxyalkanoate Synthase Derived from Bacillus cereus YB-4. Microorganisms 2022; 10:microorganisms10020458. [PMID: 35208913 PMCID: PMC8878867 DOI: 10.3390/microorganisms10020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
The biodegradable polyester poly-(R)-3-hydroxybutyrate [P(3HB)] is synthesized by a polymerizing enzyme called polyhydroxyalkanoate (PHA) synthase and accumulates in a wide variety of bacterial cells. Recently, we demonstrated the secretory production of a (R)-3HB oligomer (3HBO), a low-molecular-weight P(3HB), by using recombinant Escherichia coli expressing PHA synthases. The 3HBO has potential value as an antibacterial substance and as a building block for various polymers. In this study, to construct an efficient 3HBO production system, the coexpression of molecular chaperones and a PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4) was examined. First, genes encoding enzymes related to 3HBO biosynthesis (phaRCYB4, phaA and phaB derived from Ralstonia eutropha H16) and two types of molecular chaperones (groEL, groES, and tig) were introduced into the E. coli strains BW25113 and BW25113ΔadhE. As a result, coexpression of the chaperones promoted the enzyme activity of PHA synthase (approximately 2–3-fold) and 3HBO production (approximately 2-fold). The expression assay of each chaperone and PHA synthase subunit (PhaRYB4 and PhaCYB4) indicated that the combination of the two chaperone systems (GroEL-GroES and TF) supported the folding of PhaRYB4 and PhaCYB4. These results suggest that the utilization of chaperone proteins is a valuable approach to enhance the formation of active PHA synthase and the productivity of 3HBO.
Collapse
Affiliation(s)
- Saki Goto
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
| | - Yuki Miyahara
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
| | - Takeharu Tsuge
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Correspondence:
| |
Collapse
|
10
|
Phan HT, Hosoe Y, Guex M, Tomoi M, Tomita H, Zinn M, Matsumoto K. Directed Evolution of Sequence-Regulating Polyhydroxyalkanoate Synthase to Synthesize a Medium-Chain-Length-Short-Chain-Length (MCL-SCL) Block Copolymer. Biomacromolecules 2022; 23:1221-1231. [PMID: 34991313 DOI: 10.1021/acs.biomac.1c01480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sequence-regulating polyhydroxyalkanoate synthase PhaCAR is a chimeric enzyme comprising PhaCs from Aeromonas caviae and Ralstonia eutropha (Cupriavidus necator). It spontaneously synthesizes a short-chain-length (SCL, ≤C5) block copolymer poly(2-hydroxybutyrate)-b-poly(3-hydroxybutyrate) [P(2HB)-b-P(3HB)] from a mixture of monomer substrates. In this study, directed evolution of PhaCAR was performed to increase its activity toward a medium-chain-length (MCL, C6-12) monomer, 3-hydroxyhexanoyl (3HHx)-coenzyme A (CoA). Random mutagenesis and selection based on P(3HB-co-3HHx) production in Escherichia coli found that beneficial mutations N149D and F314L increase the 3HHx fraction. The site-directed saturation mutagenesis at position 314, which is adjacent to the catalytic center C315, demonstrated that F314H synthesizes the P(3HHx) homopolymer. The F314H mutant exhibited increased activity toward 3HHx-CoA compared with the parent enzyme, whereas the activity toward 3HB-CoA decreased. The predicted tertiary structure of PhaCAR by AlphaFold2 provided insight into the mechanism of the beneficial mutations. In addition, this finding enabled the synthesis of a new PHA block copolymer, P(3HHx)-b-P(2HB). Solvent fractionation indicated the presence of a covalent linkage between the polymer segments. This novel MCL-SCL block copolymer considerably expands the range of the molecular design of PHA block copolymers.
Collapse
Affiliation(s)
- Hien Thi Phan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yumi Hosoe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Maureen Guex
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland
| | - Masayoshi Tomoi
- Course of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
11
|
Synthesis of Biobased Block Copolymers Using A Novel Methacrylated Methyl Salicylate and Poly(3‐Hydroxybutyrate). ChemistrySelect 2021. [DOI: 10.1002/slct.202102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Screening Method for Polyhydroxyalkanoate Synthase Mutants Based on Polyester Degree of Polymerization Using High-Performance Liquid Chromatography. Microorganisms 2021; 9:microorganisms9091949. [PMID: 34576844 PMCID: PMC8469876 DOI: 10.3390/microorganisms9091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
A high-throughput screening method based on the degree of polymerization (DP) of polyhydroxyalkanoate (PHA) was developed using high-performance liquid chromatography (HPLC). In this method, PHA production was achieved using recombinant Escherichia coli supplemented with benzyl alcohol as a chain terminal compound. The cultured cells containing benzyl alcohol-capped PHA were decomposed by alkaline treatment, and the peaks of the decomposed monomer and benzyl alcohol were detected using HPLC. The DP of PHA could be determined from the peak ratio of the decomposed monomer to terminal benzyl alcohol. The measured DP was validated by other instrumental analyses using purified PHA samples. Using this system, mutants of PHA synthase from Bacillus cereus YB-4 (PhaRCYB4) were screened, and some enzymes capable of producing PHA with higher DP than the wild-type enzyme were obtained. The PHA yields of two of these enzymes were equivalent to the yield of the wild-type enzyme. Therefore, this screening method is suitable for the selection of beneficial mutants that can produce high molecular weight PHAs.
Collapse
|
13
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
15
|
Liu CH, Chen HY, Chen YLL, Sheu DS. The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme Microb Technol 2020; 143:109719. [PMID: 33375979 DOI: 10.1016/j.enzmictec.2020.109719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
Pseudomonas sp. H9 (H9), an environmental strain isolated from a riverbank soil sample collected in southern Taiwan, is Gram-negative and shares a 99 % sequence identity to Pseudomonas putida KT2440 based on 16S rRNA gene analysis. H9 produced novel polyhydroxyalkanoates (PHA) including a hybrid PHA, comprised of 3-hydroxyvalerate (37 mol%) and medium-chain-length (MCL) monomers from valerate, as well as a 3-hydroxyhexanoate-dominant (93 mol%) MCL-PHA from hexanoate. Next-generation sequencing analysis showed H9 had a typical class II PHA operon, consisted of phaC1H9-phaZH9-phaC2H9, in which phaC1H9 was the sole active PHA synthase in H9. Deletion of phaC1H9 gene led to a complete loss of its PHA accumulation capability. Knockout of phaC2H9 gene, in contrast, affected neither bacterial growth nor PHA accumulation. When co-expressed with the phaAB genes of Ralstonia eutropha H16 in the PHA mutant strain Pseudomonas sp. H9ΔC1, phaC1H9 synthesized a hybrid PHA consisted of 3-hydroxybutyrate (3HB) (75 mol%) and MCL-monomers, confirmed in analyses using hot-acetone fractionation and 13C-NMR spectroscopy. As a novel PHA synthase, PhaC1H9 possesses a broad substrate specificity to synthesize a hybrid of SCL- and MCL-PHA, known to have many mechanical properties for potential applications.
Collapse
Affiliation(s)
- Chung-Hsien Liu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Houng-Yung Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yuh-Ling Lee Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
16
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
17
|
Guzik M, Witko T, Steinbüchel A, Wojnarowska M, Sołtysik M, Wawak S. What Has Been Trending in the Research of Polyhydroxyalkanoates? A Systematic Review. Front Bioeng Biotechnol 2020; 8:959. [PMID: 33014998 PMCID: PMC7513618 DOI: 10.3389/fbioe.2020.00959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, enormous progress has been achieved with regard to research on environmentally friendly polymers. One of the most prominent families of such biopolymers are bacterially synthesized polyhydroxyalkanoates (PHAs) that have been known since the 1920s. However, only as recent as the 1990s have extensive studies sprung out exponentially in this matter. Since then, different areas of exploration of these intriguing materials have been uncovered. However, no systematic review of undertaken efforts has been conducted so far. Therefore, we have performed an unbiased search of up-to-date literature to reveal trending topics in the research of PHAs over the past three decades by data mining of 2,227 publications. This allowed us to identify eight past and current trends in this area. Our study provides a comprehensive review of these trends and speculates where PHA research is heading.
Collapse
Affiliation(s)
- Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdalena Wojnarowska
- Department of Product Technology and Ecology, Cracow University of Economics, Kraków, Poland
| | - Mariusz Sołtysik
- Department of Management Process, Cracow University of Economics, Kraków, Poland
| | - Sławomir Wawak
- Department of Management Process, Cracow University of Economics, Kraków, Poland
| |
Collapse
|
18
|
Ward AC, Dubey P, Basnett P, Lika G, Newman G, Corrigan DK, Russell C, Kim J, Chakrabarty S, Connolly P, Roy I. Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Front Bioeng Biotechnol 2020; 8:1039. [PMID: 32984295 PMCID: PMC7493637 DOI: 10.3389/fbioe.2020.01039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic wound infections represent a significant burden to healthcare providers globally. Often, chronic wound healing is impeded by the presence of infection within the wound or wound bed. This can result in an increased healing time, healthcare cost and poor patient outcomes. Thus, there is a need for dressings that help the wound heal, in combination with early detection of wound infections to support prompt treatment. In this study, we demonstrate a novel, biocompatible wound dressing material, based on Polyhydroxyalkanoates, doped with graphene platelets, which can be used as an electrochemical sensing substrate for the detection of a common wound pathogen, Pseudomonas aeruginosa. Through the detection of the redox active secondary metabolite, pyocyanin, we demonstrate that a dressing can be produced that will detect the presence of pyocyanin across clinically relevant concentrations. Furthermore, we show that this sensor can be used to identify the presence of pyocyanin in a culture of P. aeruginosa. Overall, the sensor substrate presented in this paper represents the first step toward a new dressing with the capacity to promote wound healing, detect the presence of infection and release antimicrobial drugs, on demand, to optimized healing.
Collapse
Affiliation(s)
- Andrew C. Ward
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Prachi Dubey
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Granit Lika
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Gwenyth Newman
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Damion K. Corrigan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | | - Jongrae Kim
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricia Connolly
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ipsita Roy,
| |
Collapse
|
19
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
20
|
Moriya H, Takita Y, Matsumoto A, Yamahata Y, Nishimukai M, Miyazaki M, Shimoi H, Kawai SJ, Yamada M. Cobetia sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front Bioeng Biotechnol 2020; 8:974. [PMID: 32984275 PMCID: PMC7479843 DOI: 10.3389/fbioe.2020.00974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
We isolated the Cobetia sp. strains IU 180733JP01 (5-11-6-3) and 190790JP01 (5-25-4-2) from seaweeds and showed that both strains accumulate poly(3-hydroxybutyrate) [P(3HB)] homopolymer in a nitrogen-limiting mineral salt medium containing alginate as a sole carbon source. Genome sequence analysis of the isolated strains showed that they have putative genes which encode enzymes relevant to alginate assimilation and P(3HB) synthesis, and the putative alginate-assimilating genes formed a cluster. Investigation of the optimum culture conditions for high accumulation of P(3HB) showed that when the 5-11-6-3 strain was cultured in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and 3% (w/v) alginate as a sole carbon source for 2 days, the P(3HB) content and P(3HB) production reached 62.1 ± 3.4 wt% and 3.11 ± 0.16 g/L, respectively. When the 5-25-4-2 strain was cultured in a nitrogen-limiting mineral salt medium (pH 4.0) containing 5% NaCl and 3% (w/v) alginate for 2 days, the P(3HB) content and P(3HB) production reached 56.9 ± 2.1 wt% and 2.67 ± 0.11 g/L, respectively. Moreover, the 5-11-6-3 strain also produced P(3HB) in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and freeze-dried and crushed waste Laminaria sp., which is classified into brown algae and contains alginate abundantly. The resulting P(3HB) content and P(3HB) productivity were 13.5 ± 0.13 wt% and 3.99 ± 0.15 mg/L/h, respectively. Thus, we demonstrated the potential application of the isolated strains to a simple P(3HB) production process from seaweeds without chemical hydrolysis and enzymatic saccharification.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuto Takita
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Akira Matsumoto
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuki Yamahata
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Hitoshi Shimoi
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Sung-Jin Kawai
- New Field Pioneering Division, New Value Creation Center, Toyota Boshoku Corporation, Kariya, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
- Education and Research on Sanriku Fishery Industry Department, Organization for Revitalization of the Sanriku Region and Regional Development, Iwate University, Morioka, Japan
| |
Collapse
|
21
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
22
|
Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T. Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 2019; 128:203-208. [DOI: 10.1016/j.jbiosc.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
|
23
|
Higuchi-Takeuchi M, Numata K. Acetate-Inducing Metabolic States Enhance Polyhydroxyalkanoate Production in Marine Purple Non-sulfur Bacteria Under Aerobic Conditions. Front Bioeng Biotechnol 2019; 7:118. [PMID: 31192201 PMCID: PMC6546801 DOI: 10.3389/fbioe.2019.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters that a variety of microorganisms accumulate as carbon and energy storage molecules under starvation conditions in the presence of excess carbon. Anoxygenic photosynthetic bacteria exhibit a variety of growth styles and high PHA production activity. Here, we characterized PHA production by four marine purple non-sulfur bacteria strains (Rhodovulum sulfidophilum, Rhodovulum euryhalinum, Rhodovulum imhoffii, and Rhodovulum visakhapatnamense) under different growth conditions. Unlike the well-studied PHA-producing bacteria, nutrient limitation is not appropriate for PHA production in marine purple non-sulfur bacteria. We found that marine purple non-sulfur bacteria did not accumulate PHA under aerobic conditions in the presence of malate and pyruvate. Interestingly, PHA accumulation was observed upon the addition of acetate under aerobic conditions but was not observed upon the addition of reductants, suggesting that an acetate-dependent pathway is involved in PHA accumulation. Gene expression analysis revealed that the expression of isocitrate dehydrogenase in the tricarboxylic acid (TCA) cycle decreased under aerobic conditions and increased with the addition of acetate, indicating that TCA cycle activity is involved in PHA production under aerobic conditions. We also found that expression of PdhRrs, which belongs to the GntR family of transcription regulators, in Rhodovulum sulfidophilum was upregulated upon the addition of acetate. Taken together, the results show that the changes in the metabolic state upon the addition of acetate, possibly regulated by PdhR, are important for PHA production under aerobic conditions in marine purple non-sulfur bacteria.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| |
Collapse
|
24
|
Elsayed NS, Aboshanab KM, Yassien MA, Hassouna NH. New insight into poly (3-hydroxybutyrate) production by Azomonas macrocytogenes isolate KC685000: large scale production, kinetic modeling, recovery and characterization. Mol Biol Rep 2019; 46:3357-3370. [PMID: 30997598 DOI: 10.1007/s11033-019-04798-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
About 24 h incubation of Azomonas (A.) macrocytogenes isolate KC685000 in 14L fermenter produced 22% poly (3-hydroxybutyrate) (PHB) per cell dry weight (CDW) biopolymer using 1 vvm aeration, 10% inoculum size, and initial pH of 7.2. To control the fermentation process, Logistic and Leudeking-Piret models were used to describe the cell growth and PHB production, respectively. These two models were in good agreement with the experimental data confirming the growth associated nature of PHB production. The best method for recovery of PHB was chemical digestion using sodium hypochlorite alone. The characterization of the produced polymer was carried out using FT-IR, 1HNMR spectroscopy, gel permeation chromatography and transmission electron microscope. The analysis of the nucleotide sequences of PHA synthase enzyme revealed class III identity. The putative tertiary structure of PHA synthase enzyme was analyzed using Modular Approach to Structural class prediction software, Tied Mixture Hidden Markov Model server, and Swiss model software. It was deduced that PHA synthases' structural class was multidomain protein (α/β) containing a conserved cysteine residue and lipase box as characteristic features of α/β hydrolase super family. Taken together, all the results of molecular characterization and transmission electron microscope images supported that the PHB formation was attained by the micelle model. To the best of our knowledge, this is the first report on production of growth associated PHB polymer using A. macrocytogenes isolate KC685000, and its class III PHA synthase.
Collapse
Affiliation(s)
- Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt.
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| | - Nadia H Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
25
|
Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S. PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Appl Microbiol Biotechnol 2018; 103:1131-1141. [DOI: 10.1007/s00253-018-9538-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
|
26
|
Mezzolla V, D'Urso OF, Poltronieri P. Role of PhaC Type I and Type II Enzymes during PHA Biosynthesis. Polymers (Basel) 2018; 10:910. [PMID: 30960835 PMCID: PMC6403647 DOI: 10.3390/polym10080910] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
PHA synthases (PhaC) are grouped into four classes based on the kinetics and mechanisms of reaction. The grouping of PhaC enzymes into four classes is dependent on substrate specificity, according to the preference in forming short-chain-length (scl) or medium-chain-length (mcl) polymers: Class I, Class III and Class IV produce scl-PHAs depending on propionate, butyrate, valerate and hexanoate precursors, while Class II PhaC synthesize mcl-PHAs based on the alkane (C6 to C14) precursors. PHA synthases of Class I, in particular PhaCCs from Chromobacterium USM2 and PhaCCn/RePhaC1 from Cupriavidus necator/Ralstonia eutropha, have been analysed and the crystal structures of the C-domains have been determined. PhaCCn/RePhaC1 was also studied by X-ray absorption fine-structure (XAFS) analysis. Models have been proposed for dimerization, catalysis mechanism, substrate recognition and affinity, product formation, and product egress route. The assays based on amino acid substitution by mutagenesis have been useful to validate the hypothesis on the role of amino acids in catalysis and in accommodation of bulky substrates, and for the synthesis of PHB copolymers and medium-chain-length PHA polymers with optimized chemical properties.
Collapse
Affiliation(s)
- Valeria Mezzolla
- Department of Biological and Environmental Science and Technologies, University of Salento, Ecotekne, 73100 Lecce, Italy.
| | - Oscar Fernando D'Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Ecotekne, 73100 Lecce, Italy.
| | - Palmiro Poltronieri
- CNR, Agrofood Department, Institute of Sciences of Food Productions (ISPA-CNR), 73100 Lecce, Italy.
| |
Collapse
|
27
|
Constantinides C, Basnett P, Lukasiewicz B, Carnicer R, Swider E, Majid QA, Srinivas M, Carr CA, Roy I. In Vivo Tracking and 1H/ 19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate/Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25056-25068. [PMID: 29965724 PMCID: PMC6338235 DOI: 10.1021/acsami.8b06096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
Medium-chain length polyhydroxyalkanoates (MCL-PHAs) have demonstrated exceptional properties for cardiac tissue engineering (CTE) applications. Despite prior work on MCL-PHA/polycaprolactone (PCL) blends, optimal scaffold production and use as an alternative delivery route for controlled release of seeded cardiac progenitor cells (CPCs) in CTE applications in vivo has been lacking. We present herein applicability of MCL-PHA/PCL (95/5 wt %) blends fabricated as thin films with an improved performance compared to the neat MCL-PHA. Polymer characterization confirmed the chemical structure and composition of the synthesized scaffolds, while thermal, wettability, and mechanical properties were also investigated and compared in neat and porous counterparts. In vitro cytocompatibility studies were performed using perfluorocrown-ether-nanoparticle-labeled murine CPCs and studied using confocal microscopy and 19F magnetic resonance spectroscopy and magnetic resonance imaging (MRI). Seeded scaffolds were implanted and studied in the postmortem murine heart in situ and in two additional C57BL/6 mice in vivo (using single-layered and double-layered scaffolds) and imaged immediately after and at 7 days postimplantation. Superior MCL-PHA/PCL scaffold performance has been demonstrated compared to MCL-PHA through experimental comparisons of (a) morphological data using scanning electron microscopy and (b) contact angle measurements attesting to improved CPC adhesion, (c) in vitro confocal microscopy showing increased SC proliferative capacity, and (d) mechanical testing that elicited good overall responses. In vitro MRI results justify the increased seeding density, increased in vitro MRI signal, and improved MRI visibility in vivo, in the double-layered compared to the single-layered scaffolds. Histological evaluations [bright-field, cytoplasmic (Atto647) and nuclear (4',6-diamidino-2-phenylindole) stains] performed in conjunction with confocal microscopy imaging attest to CPC binding within the scaffold, subsequent release and migration to the neighboring myocardium, and increased retention in the murine myocardium in the case of the double-layered scaffold. Thus, MCL-PHA/PCL blends possess tremendous potential for controlled delivery of CPCs and for maximizing possible regeneration in myocardial infarction.
Collapse
Affiliation(s)
- Christakis Constantinides
- Radcliffe Department
of Medicine, Wellcome Trust Centre for Human Genetics, Department
of Cardiovascular Medicine, University of
Oxford, Roosevelt Drive,
Old Road Campus, Headington, Oxford OX3 7BN, U.K.
| | - Pooja Basnett
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| | - Barbara Lukasiewicz
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| | - Ricardo Carnicer
- Radcliffe Department
of Medicine, Wellcome Trust Centre for Human Genetics, Department
of Cardiovascular Medicine, University of
Oxford, Roosevelt Drive,
Old Road Campus, Headington, Oxford OX3 7BN, U.K.
| | - Edyta Swider
- Radboud University
Medical Center (Radboud UMC), Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), 278, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | - Qasim A. Majid
- Department
of Myocardial Function, National Heart and
Lung Institute, Imperial College London, London W12 0NN, U.K.
| | - Mangala Srinivas
- Radboud University
Medical Center (Radboud UMC), Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), 278, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | - Carolyn A. Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, U.K.
| | - Ipsita Roy
- Applied Biotechnology
Research Group, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K.
| |
Collapse
|
28
|
Kutralam-Muniasamy G, Peréz-Guevara F. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. World J Microbiol Biotechnol 2018; 34:79. [DOI: 10.1007/s11274-018-2460-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/28/2022]
|
29
|
Li D, Lv L, Chen JC, Chen GQ. Controlling microbial PHB synthesis via CRISPRi. Appl Microbiol Biotechnol 2017; 101:5861-5867. [PMID: 28620688 DOI: 10.1007/s00253-017-8374-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.
Collapse
Affiliation(s)
- Dan Li
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Nano and Micro-Mechanics, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab for Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1636-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol 2016; 33:565-574. [PMID: 26409776 DOI: 10.1016/j.tibtech.2015.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters synthesized by bacteria. PHA diversity, as reflected by its monomers, homopolymers, random and block copolymers, as well as functional polymers, can now be generated by engineering the three basic synthesis pathways including the acetoacetyl-CoA pathway, in situ fatty acid synthesis, and/or β-oxidation cycles, as well as PHA synthase specificity. It is now possible to tailor the PHA structures via genome editing or process engineering. The increasing PHA diversity and maturing PHA production technology should lead to more focused research into their low-cost and/or high-value applications.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| | - Ivan Hajnal
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wu
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianwen Ye
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
33
|
Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 2015; 99:9349-60. [PMID: 26362682 DOI: 10.1007/s00253-015-6947-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.
Collapse
|
34
|
Mahansaria R, Choudhury JD, Mukherjee J. Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them. Extremophiles 2015; 19:1041-54. [DOI: 10.1007/s00792-015-0775-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
|
35
|
Chen C, Cao R, Shrestha R, Ward C, Katz BB, Fischer CJ, Tomich JM, Li P. Trapping of intermediates with substrate analog HBOCoA in the polymerizations catalyzed by class III polyhydroxybutyrate (PHB) synthase from Allochromatium vinosum. ACS Chem Biol 2015; 10:1330-1339. [PMID: 25686368 DOI: 10.1021/cb5009958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.
Collapse
Affiliation(s)
| | | | | | - Christina Ward
- University of Saint Mary, Leavenworth, Kansas 66048, United States
| | | | - Christopher J. Fischer
- Department
of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | | | | |
Collapse
|
36
|
Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, Matsui M. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol 2014; 14:318. [PMID: 25539583 PMCID: PMC4326521 DOI: 10.1186/s12866-014-0318-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Background Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. Results A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHBˉ4 (PHB-negative mutant). Conclusions A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0318-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Choon Pin Foong
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan. .,Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Nyok-Sean Lau
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan. .,Centre for Chemical Biology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Shigeru Deguchi
- R&D Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.
| | - Takashi Toyofuku
- R&D Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.
| | - Todd D Taylor
- Laboratory for Integrated Bioinformatics, Core for Precise Measuring and Modeling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan.
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia. .,Centre for Chemical Biology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
37
|
Zhang W, Chen C, Cao R, Maurmann L, Li P. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications. Chembiochem 2014; 16:156-166. [PMID: 25394180 DOI: 10.1002/cbic.201402380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 11/06/2022]
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Kansas State Univerity, Manhattan, KS 66506 (USA)
| | - Chao Chen
- Department of Chemistry, Kansas State Univerity, Manhattan, KS 66506 (USA)
| | - Ruikai Cao
- Department of Chemistry, Kansas State Univerity, Manhattan, KS 66506 (USA)
| | - Leila Maurmann
- Department of Chemistry, Kansas State Univerity, Manhattan, KS 66506 (USA)
| | - Ping Li
- Department of Chemistry, Kansas State Univerity, Manhattan, KS 66506 (USA)
| |
Collapse
|
38
|
Tariq A, Hameed A, Bokhari H, Masood F. Is atomic rearrangement of type IV PHA synthases responsible for increased PHA production? J Biomol Struct Dyn 2014; 33:1225-38. [PMID: 25077376 DOI: 10.1080/07391102.2014.941401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Type IV PHA synthase is a key enzyme responsible for catalyzing the formation of non-toxic, biocompatible, and biodegradable short-chain-length polyhydroxyalkanoates (scl-PHA) under the growth-limiting conditions in the members of the genus Bacillus. RESULTS The comparative in vitro and in silico analysis of the phaC subunit of type IV PHA synthases among Bacillus cereus FA11, B. cereus FC11, and B. cereus FS1 was done in our study to determine its structural and functional properties. Conserved domain analysis demonstrated that phaC subunit belongs to the alpha/beta (α/β) hydrolase fold. The catalytic triad comprising of cysteine (Cys), histidine (His), and aspartate (Asp) was found to be present at the active site. A shorter inter-atomic distance was found between the carboxyl (-COO) group of Asp and amino (NH2) group of His. Furthermore, slightly long inter-atomic distances between sulfhydryl (SH) group of Cys and NH2 group of His may be pointing toward the broader substrate specificity of type IV PHA synthases. However, a shorter distance between the SH group of Cys and NH2 group of His in case of B. cereus FC11 leads to a higher enzymatic activity and maximum PHA yield (49.26%). CONCLUSION The in silico study verifies that the close proximity between SH group of Cys and NH2 group of His in phaC subunit of type IV PHA synthases can be crucial for synthesis of scl-PHA. However, the catalytic activity of type IV PHA synthases declines as the distance between the sulfur (S) atom of the SH group of Cys and the nitrogen (N) atom of NH2 group of His increases.
Collapse
Affiliation(s)
- Aamira Tariq
- a Department of Biosciences , COMSATS Institute of Information Technology (CIIT) , Islamabad , Pakistan
| | | | | | | |
Collapse
|
39
|
Salamanca-Cardona L, Ashe CS, Stipanovic AJ, Nomura CT. Enhanced production of polyhydroxyalkanoates (PHAs) from beechwood xylan by recombinant Escherichia coli. Appl Microbiol Biotechnol 2013; 98:831-42. [DOI: 10.1007/s00253-013-5398-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/29/2022]
|
40
|
|
41
|
Agnew DE, Pfleger BF. Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem Eng Sci 2013; 103:58-67. [DOI: 10.1016/j.ces.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Composition diversity and nutrition conditions for accumulation of polyhydroxyalkanoate (PHA) in a bacterial community from activated sludge. Appl Microbiol Biotechnol 2013; 97:9377-87. [DOI: 10.1007/s00253-013-5165-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/28/2022]
|
43
|
Directed evolution and structural analysis of NADPH-dependent Acetoacetyl Coenzyme A (Acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Appl Environ Microbiol 2013; 79:6134-9. [PMID: 23913421 DOI: 10.1128/aem.01768-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.
Collapse
|
44
|
Characterization of site-specific mutations in a short-chain-length/medium-chain-length polyhydroxyalkanoate synthase: in vivo and in vitro studies of enzymatic activity and substrate specificity. Appl Environ Microbiol 2013; 79:3813-21. [PMID: 23584780 DOI: 10.1128/aem.00564-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaC(Cs)) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaC(Cs) for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C(4) and C(5)) or MCL (C(6)) substrates substantiates the fundamental classification of PHA synthases.
Collapse
|
45
|
Lau NS, Sudesh K. Revelation of the ability of Burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express 2012; 2:41. [PMID: 22877240 PMCID: PMC3434029 DOI: 10.1186/2191-0855-2-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/10/2022] Open
Abstract
The nutrition-versatility of Burkholderia sp. strain USM (JCM 15050) has initiated the studies on the use of this bacterium for polyhydroxyalkanoate (PHA) production. To date, the Burkholderia sp. has been reported to synthesize 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxy-4-methylvalerate monomers. In this study, the PHA biosynthetic genes of this strain were successfully cloned and characterized. The PHA biosynthetic cluster of this strain consisted of a PHA synthase (phaC), β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB) and PHA synthesis regulator (phaR). The translated products of these genes revealed identities to corresponding proteins of Burkholderia vietnamiensis (99–100 %) and Cupriavidus necator H16 (63–89%). Heterologous expression of phaCBs conferred PHA synthesis to the PHA-negative Cupriavidus necator PHB¯4, confirming that phaCBs encoded functionally active protein. PHA synthase activity measurements revealed that the crude extracts of C. necator PHB¯4 transformant showed higher synthase activity (243 U/g) compared to that of wild-types Burkholderia sp. (151 U/g) and C. necator H16 (180 U/g). Interestingly, the transformant C. necator PHB¯4 harbouring Burkholderia sp. PHA synthase gene accumulated poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 4-hydroxybutyrate monomer as high as up to 87 mol% from sodium 4-hydroxybutyrate. The wild type Burkholderia sp. did not have the ability to produce this copolymer.
Collapse
|
46
|
Pillai CKS. Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Des Monomers Polym 2012. [DOI: 10.1163/138577210x12634696333190] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- C. K. S. Pillai
- a Chemical Sciences and Technology Division, Regional Research Laboratory (Now NIIST), Thiruvanananthapuram-695 019, India
| |
Collapse
|
47
|
Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16. J Bacteriol 2012; 194:2620-9. [PMID: 22408158 DOI: 10.1128/jb.06543-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The thermophile Cupriavidus sp. strain S-6 accumulated polyhydroxybutyrate (PHB) from glucose at 50°C. A 9.0-kbp EcoRI fragment cloned from the genomic DNA of Cupriavidus sp. S-6 enabled Escherichia coli XL1-Blue to synthesize PHB at 45°C. Nucleotide sequence analysis showed a pha locus in the clone. The thermophilic polyhydroxyalkanoate (PHA) synthase (PhaC(Csp)) shared 81% identity with mesophilic PhaC of Cupriavidus necator H16. The diversity between these two strains was found dominantly on their N and C termini, while the middle regions were highly homologous (92% identity). We constructed four chimeras of mesophilic and thermophilic phaC genes to explore the mutations related to its thermostability. Among the chimeras, only PhaC(H16β), which was PhaC(H16) bearing 30 point mutations derived from the middle region of PhaC(Csp), accumulated a high content of PHB (65% [dry weight]) at 45°C. The chimera phaC(H16)(β) and two parental PHA synthase genes were overexpressed in E. coli BLR(DE3) cells and purified. At 30°C, the specific activity of the chimera PhaC(H16β) (172 ± 17.8 U/mg) was 3.45-fold higher than that of the parental enzyme PhaC(H16) (50 ± 5.2 U/mg). At 45°C, the half-life of the chimera PhaC(H16β) (11.2 h) was 127-fold longer than that of PhaC(H16) (5.3 min). Furthermore, the chimera PhaC(H16β) accumulated 1.55-fold (59% [dry weight]) more PHA content than the parental enzyme PhaC(H16) (38% [dry weight]) at 37°C. This study reveals a limited number of point mutations which enhance not only thermostability but also PhaC(H16) activity. The highly thermostable and active PHA synthase will provide advantages for its promising applications to in vitro PHA synthesis and recombinant E. coli PHA fermentation.
Collapse
|
48
|
Adsorption of [meso-tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4–) onto chitosan in aqueous solution. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-011-0696-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Nduko JM, Matsumoto K, Taguchi S. Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1105.ch014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- John Masani Nduko
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Ken’ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
50
|
Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol 2011; 154:255-60. [PMID: 21640144 DOI: 10.1016/j.jbiotec.2011.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 11/22/2022]
Abstract
In order to evaluate the mechanical properties of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] and its correlation with the LA fraction, P(LA-co-3HB)s with a variety of LA fractions were prepared using recombinant Escherichia coli expressing the LA-polymerizing enzyme and monomer supplying enzymes. The LA-overproducing mutant E. coli JW0885 with a pflA gene disruption was used for the LA-enriched polymer production. The LA fraction was also varied by jar-fermentor based fine-regulation of the anaerobic status of the culture conditions, resulting in LA fractions ranging from 4 to 47 mol%. In contrary to the opaque P(3HB) film, the copolymer films attained semitransparency depending on the LA fraction. Young's modulus values of the P(LA-co-3HB)s (from 148 to 905 MPa) were lower than those of poly(lactic acid) (PLA) (1020 MPa) and P(3HB) (1079 MPa). In addition, the value of elongation at break of the copolymer with 29 mol% LA reached 150%. In conclusion, P(LA-co-3HB)s were found to be a comparatively pliable and flexible material, differing from both of the rigid homopolymers.
Collapse
|