1
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
2
|
The Glycoside Hydrolase Family 35 β-galactosidase from Trichoderma reesei debranches xyloglucan oligosaccharides from tamarind and jatobá. Biochimie 2023; 211:16-24. [PMID: 36828153 DOI: 10.1016/j.biochi.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Trichoderma reesei (anamorph Hypocrea jecorina) produces an extracellular beta-galactosidase from Glycoside Hydrolase Family 35 (TrBga1). Hydrolysis of xyloglucan oligosaccharides (XGOs) by TrBga1 has been studied by hydrolysis profile analysis of both tamarind (Tamarindus indica) and jatobá (Hymenaea courbaril) seed storage xyloglucans using PACE and MALDI-ToF-MS for separation, quantification and identification of the hydrolysis products. The TrBga1 substrate preference for galactosylated oligosaccharides from both the XXXG- and XXXXG-series of jatobá xyloglucan showed that the doubly galactosylated oligosaccharides were the first to be hydrolyzed. Furthermore, the TrBga1 showed more efficient hydrolysis against non-reducing end dexylosylated oligosaccharides (GLXG/GXLG and GLLG). This preference may play a key role in xyloglucan degradation, since galactosyl removal alleviates steric hindrance for other enzymes in the xyloglucanolytic complex resulting in complete xyloglucan mobilization. Indeed, mixtures of TrBga1 with the α-xylosidase from Escherichia coli (YicI), which shows a preference towards non-galactosylated xyloglucan oligosaccharides, reveals efficient depolymerization when either enzyme is applied first. This understanding of the synergistic depolymerization contributes to the knowledge of plant cell wall structure, and reveals possible evolutionary mechanisms directing the preferences of debranching enzymes acting on xyloglucan oligosaccharides.
Collapse
|
3
|
TtCel7A: A Native Thermophilic Bifunctional Cellulose/Xylanase Exogluclanase from the Thermophilic Biomass-Degrading Fungus Thielavia terrestris Co3Bag1, and Its Application in Enzymatic Hydrolysis of Agroindustrial Derivatives. J Fungi (Basel) 2023; 9:jof9020152. [PMID: 36836267 PMCID: PMC9961574 DOI: 10.3390/jof9020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.
Collapse
|
4
|
Gavande PV, Nath P, Kumar K, Ahmed N, Fontes CMGA, Goyal A. Highly efficient, processive and multifunctional recombinant endoglucanase RfGH5_4 from Ruminococcus flavefaciens FD-1 v3 for recycling lignocellulosic plant biomasses. Int J Biol Macromol 2022; 209:801-813. [PMID: 35421411 DOI: 10.1016/j.ijbiomac.2022.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
Gene encoding endoglucanase, RfGH5_4 from R. flavefaciens FD-1 v3 was cloned, expressed in Escherichia coli BL21(DE3) cells and purified. RfGH5_4 showed molecular size 41 kDa and maximum activity at pH 5.5 and 55 °C. It was stable between pH 5.0-8.0, retaining 85% activity and between 5 °C-45 °C, retaining 75% activity, after 60 min. RfGH5_4 displayed maximum activity (U/mg) against barley β-D-glucan (665) followed by carboxymethyl cellulose (450), xyloglucan (343), konjac glucomannan (285), phosphoric acid swollen cellulose (86), beechwood xylan (21.7) and carob galactomannan (16), thereby displaying the multi-functionality. Catalytic efficiency (mL.mg-1 s-1) of RfGH5_4 against carboxymethyl cellulose (146) and konjac glucomannan (529) was significantly high. TLC and MALDI-TOF-MS analyses of RfGH5_4 treated hydrolysates of cellulosic and hemicellulosic polysaccharides displayed oligosaccharides of degree of polymerization (DP) between DP2-DP11. TLC, HPLC and Processivity-Index analyses revealed RfGH5_4 to be a processive endoglucanase as initially, for 30 min it hydrolysed cellulose to cellotetraose followed by persistent release of cellotriose and cellobiose. RfGH5_4 yielded sufficiently high Total Reducing Sugar (TRS, mg/g) from saccharification of alkali pre-treated sorghum (72), finger millet (62), sugarcane bagasse (38) and cotton (27) in a 48 h saccharification reaction. Thus, RfGH5_4 can be considered as a potential endoglucanase for renewable energy applications.
Collapse
Affiliation(s)
- Parmeshwar Vitthal Gavande
- Department of Biosciences and Bioengineering, Carbohydrate Enzyme Biotechnology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Nath
- Department of Biosciences and Bioengineering, Carbohydrate Enzyme Biotechnology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar
- Department of Biosciences and Bioengineering, Carbohydrate Enzyme Biotechnology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazneen Ahmed
- Department of Biosciences and Bioengineering, Carbohydrate Enzyme Biotechnology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; NZYTech - Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício, Lisbon, Portugal
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Carbohydrate Enzyme Biotechnology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Rykov SV, Selimzyanova AI, Nikolaeva AY, Lazarenko VA, Tsurin NV, Akentyev PI, Zverlov VV, Liebl W, Schwarz WH, Berezina OV. Unusual substrate specificity in GH family 12: structure-function analysis of glucanases Bgh12A and Xgh12B from Aspergillus cervinus, and Egh12 from Thielavia terrestris. Appl Microbiol Biotechnol 2022; 106:1493-1509. [PMID: 35129654 DOI: 10.1007/s00253-022-11811-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear β-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-β-linkages in (1,3;1,4)-β-D-glucooligosaccharides and had transglycosylase activity on (1,3)-β-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a β-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-β-linkages in (1,3;1,4)-β-D-glucooligosaccharides.
Collapse
Affiliation(s)
- Sergey V Rykov
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation.,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Alina I Selimzyanova
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation
| | - Alena Y Nikolaeva
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation
| | - Vladimir A Lazarenko
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation
| | - Nikita V Tsurin
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation
| | - Philipp I Akentyev
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation.,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Vladimir V Zverlov
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation. .,Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Oksana V Berezina
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation. .,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation.
| |
Collapse
|
6
|
Ando Y, Nakazawa H, Miura D, Otake M, Umetsu M. Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Sci Rep 2021; 11:21882. [PMID: 34750461 PMCID: PMC8575896 DOI: 10.1038/s41598-021-01331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
A fusion protein comprising an antibody and a cationic peptide, such as arginine-9 (R9), is a candidate molecule for efficient and cell-specific delivery of siRNA into cells in order to reduce the side effects of nucleic acid drugs. However, their expression in bacterial hosts, required for their development, often fails, impeding research progress. In this study, we separately prepared anti-EGFR nanobodies with the K-tag sequence MRHKGS at the C-terminus and R9 with the Q-tag sequence LLQG at the N-terminus, and enzymatically ligated them in vitro by microbial transglutaminase to generate Nanobody-R9, which is not expressed as a fused protein in E. coli. Nanobody-R9 was synthesized at a maximum binding efficiency of 85.1%, without changing the binding affinity of the nanobody for the antigen. Nanobody-R9 successfully delivered siRNA into the cells, and the cellular influx of siRNA increased with increase in the ratio of Nanobody-R9 to siRNA. We further demonstrated that the Nanobody-R9-siRNA complex, at a 30:1 ratio, induced an approximately 58.6% reduction in the amount of target protein due to RNAi in mRNA compared to lipofectamine.
Collapse
Affiliation(s)
- Yu Ando
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Daisuke Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Maho Otake
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
7
|
Enzymatic degradation of xyloglucans by Aspergillus species: a comparative view of this genus. Appl Microbiol Biotechnol 2021; 105:2701-2711. [PMID: 33760931 DOI: 10.1007/s00253-021-11236-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Aspergillus species are closely associated with humanity through fermentation, infectious disease, and mycotoxin contamination of food. Members of this genus produce various enzymes to degrade plant polysaccharides, including starch, cellulose, xylan, and xyloglucan. This review focus on the machinery of the xyloglucan degradation using glycoside hydrolases, such as xyloglucanases, isoprimeverose-producing oligoxyloglucan hydrolases, and α-xylosidases, in Aspergillus species. Some xyloglucan degradation-related glycoside hydrolases are well conserved in this genus; however, other enzymes are not. Cooperative actions of these glycoside hydrolases are crucial for xyloglucan degradation in Aspergillus species. KEY POINTS: •Xyloglucan degradation-related enzymes of Aspergillus species are reviewed. •Each Aspergillus species possesses a different set of glycoside hydrolases. •The machinery of xyloglucan degradation of A. oryzae is overviewed.
Collapse
|
8
|
Rykov SV, Kornberger P, Herlet J, Tsurin NV, Zorov IN, Zverlov VV, Liebl W, Schwarz WH, Yarotsky SV, Berezina OV. Novel endo-(1,4)-β-glucanase Bgh12A and xyloglucanase Xgh12B from Aspergillus cervinus belong to GH12 subgroup I and II, respectively. Appl Microbiol Biotechnol 2019; 103:7553-7566. [PMID: 31332485 DOI: 10.1007/s00253-019-10006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-β-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A. cervinus using primers designed for conservative regions of the corresponding subgroups and a genome walking approach. The recombinant enzymes were heterologously produced in Pichia pastoris, purified, and characterized. Bgh12A was an endo-(1,4)-β-glucanase (EC 3.2.1.4) hydrolyzing the unbranched soluble β-(1,4)-glucans and mixed linkage β-(1,3;1,4)-D-glucans. Bgh12A exhibited maximum activity on barley β-glucan (BBG), which amounted to 614 ± 30 U/mg of protein. The final products of BBG and lichenan hydrolysis were glucose, cellobiose, cellotriose, 4-O-β-laminaribiosyl-glucose, and a range of higher mixed-linkage gluco-oligosaccharides. In contrast, the activity of endo-xyloglucanase Xgh12B (EC 3.2.1.151) was restricted to xyloglucan, with 542 ± 39 U/mg protein. The enzyme cleaved the (1,4)-β-glycosidic bonds of the xyloglucan backbone at the unsubstituted glucose residues finally generating cellotetraose-based hepta-, octa, and nona-oligosaccharides. Bgh12A and Xgh12B had maximal activity at 55 °C, pH 5.0. At these conditions, the half-time of Xgh12B inactivation was 158 min, whereas the half-life of Bgh12A was 5 min. Recombinant P. pastoris strains produced up to 106 U/L of the target enzymes with at least 75% of recombinant protein in the total extracellular proteins. The Bgh12A and Xgh12B sequences show 43% identity. Strict differences in substrate specificity of Bgh12A and Xgh12B were in congruence with the presence of subgroup-specific structural loops and substrate-binding aromatic residues in the catalytic cleft of the enzymes. Individual composition of aromatic residues in the catalytic cleft defined variability in substrate selectivity within GH12 subgroups I and II.
Collapse
Affiliation(s)
- Sergey V Rykov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute», 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Petra Kornberger
- Department of Microbiology, Technical University Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jonathan Herlet
- Department of Microbiology, Technical University Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Nikita V Tsurin
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute», 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Ivan N Zorov
- Russian Academy of Sciences, Federal Research Centre "Fundamentals of Biotechnology", Leninsky prospect, 33, build. 2, Moscow, 119071, Russian Federation
| | - Vladimir V Zverlov
- Department of Microbiology, Technical University Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, Russian Federation, 123182
| | - Wolfgang Liebl
- Department of Microbiology, Technical University Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Wolfgang H Schwarz
- Department of Microbiology, Technical University Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Sergey V Yarotsky
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute», 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Oksana V Berezina
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute», 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545.
| |
Collapse
|
9
|
Matsuzawa T, Watanabe M, Kameda T, Kameyama A, Yaoi K. Cooperation between β-galactosidase and an isoprimeverose-producing oligoxyloglucan hydrolase is key for xyloglucan degradation in Aspergillus oryzae. FEBS J 2019; 286:3182-3193. [PMID: 30980597 DOI: 10.1111/febs.14848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
The galactosylation of xyloglucan blocks many of the enzymatic processes targeting this oligosaccharide. We found that the expression of a gene encoding Aspergillus oryzae β-galactosidase (LacA) is induced in the presence of xyloglucan oligosaccharides. With detailed analyses of the substrate specificity of purified recombinant LacA, we show that LacA cleaves galactopyranosyl residues from xyloglucan oligosaccharides, but not from xyloglucan polysaccharide, and plays a vital role in xyloglucan degradation. LacA acts cooperatively with the isoprimeverose-producing oligoxyloglucan hydrolase IpeA to hydrolyze xyloglucan oligosaccharides. Galactosylation of the xylopyranosyl side chain at the nonreducing end of oligoxyloglucan saccharides completely abolishes IpeA activity while LacA efficiently removes the galactopyranosyl residue. Conversely, an isoprimeverose unit at the nonreducing end of the main chain of xyloglucan oligosaccharides blocks LacA activity, while IpeA can still remove the isoprimeverose moiety. This is the first study reporting the cooperative action of β-galactosidase and isoprimeverose-producing oligoxyloglucan hydrolase on xyloglucan oligosaccharide degradation. Our findings shed light on the true role of LacA and the enzymatic coordination between β-galactosidase and other hydrolases on xyloglucan degradation.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
10
|
Liu Q, Li J, Zhao J, Wu J, Shao T. Enhancement of lignocellulosic degradation in high-moisture alfalfa via anaerobic bioprocess of engineered Lactococcus lactis with the function of secreting cellulase. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:88. [PMID: 31015862 PMCID: PMC6469111 DOI: 10.1186/s13068-019-1429-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Butyric fermentation and a substantial loss of dry matter (DM) often occur in alfalfa silage during the rainy season, which is not conducive to subsequent biofuel production. Currently, there have been negative effects on the combination of cellulases and lactic acid bacteria (LAB) on processing high-moisture alfalfa silage; however, transgenically engineered LAB strains that secrete cellulase have been proposed as an alternative approach to avoid the above problem. The objective of the present study was to construct engineered Lactococcus lactis strains with high-efficiency secretory-expressing cellulase genes from Trichoderma reesei and to investigate the effects of the combination of transgenically engineered L. lactis strains HT1/pMG36e-usp45-bgl1, HT1/pMG36e-usp45-cbh2, and HT1/pMG36e-usp45-egl3 (HT2) on fermentation quality, structural carbohydrate degradability and nonstructural carbohydrate fermentation kinetics of high-moisture alfalfa silage treated without additive as a negative control (Control), or/and with cellulase (EN), wild-type L. lactis subsp. lactis MG1363 (HT1) and the combination of HT1 and EN (HT1 + EN) as positive additive controls. RESULTS Engineered L. lactis strains were successfully constructed and efficiently secreted endoglucanase (1118 mU/mL), cellobiohydrolase (222 mU/mL), and β-glucosidase (131 mU/mL) and had high filter paper activity (236 mU/mL). Ensiling experiments verified that HT2 obtained the highest fermentation quality score (83.6) and most efficiently processed high-moisture alfalfa silage, demonstrated by a low pH (4.49) and ammonia-N content (106 g/kg nitrogen) and a high lactic acid content (67.1 g/kg DM) and without butyric acid. Change curves of structural carbohydrates revealed that HT2 degraded more lignocelluloses, demonstrated by the lowest contents of neutral detergent fibre, acid detergent fibre, cellulose and hemicellulose after ensiling for 60 days. Kinetic analysis showed that the most residual water-soluble carbohydrates, glucose, fructose and xylose generated by lignocellulose degradation were produced by HT2, followed by HT1 + EN. The HT2-treated silages had the highest DM recovery, had the fewest Clostridia spores, emitted a fragrance and were not sticky. CONCLUSION HT2 improved the conversion of lignocellulose to sugars and processed high-moisture alfalfa silage efficiently. This is a novel strategy that can be used to enhance lignocellulosic degradation in high-moisture alfalfa via a bioprocess with transgenically engineered L. lactis strains, which could enhance the development of alfalfa as a biomass feedstock and promote second-generation biofuel development in the rainy season.
Collapse
Affiliation(s)
- Qinhua Liu
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Jingxing Wu
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| |
Collapse
|
11
|
Wang K, Cao R, Wang M, Lin Q, Zhan R, Xu H, Wang S. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:48. [PMID: 30899328 PMCID: PMC6408826 DOI: 10.1186/s13068-019-1389-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulose and hemicellulose are the two largest components in lignocellulosic biomass. Enzymes with activities towards cellulose and xylan have attracted great interest in the bioconversion of lignocellulosic biomass, since they have potential in improving the hydrolytic performance and reducing the enzyme costs. Exploring glycoside hydrolases (GHs) with good thermostability and activities on xylan and cellulose would be beneficial to the industrial production of biofuels and bio-based chemicals. RESULTS A novel GH10 enzyme (XynA) identified from a xylanolytic strain Bacillus sp. KW1 was cloned and expressed. Its optimal pH and temperature were determined to be pH 6.0 and 65 °C. Stability analyses revealed that XynA was stable over a broad pH range (pH 6.0-11.0) after being incubated at 25 °C for 24 h. Moreover, XynA retained over 95% activity after heat treatment at 60 °C for 60 h, and its half-lives at 65 °C and 70 °C were about 12 h and 1.5 h, respectively. More importantly, in terms of substrate specificity, XynA exhibits hydrolytic activities towards xylans, microcrystalline cellulose (filter paper and Avicel), carboxymethyl cellulose (CMC), cellobiose, p-nitrophenyl-β-d-cellobioside (pNPC), and p-nitrophenyl-β-d-glucopyranoside (pNPG). Furthermore, the addition of XynA into commercial cellulase in the hydrolysis of pretreated corn stover resulted in remarkable increases (the relative increases may up to 90%) in the release of reducing sugars. Finally, it is worth mentioning that XynA only shows high amino acid sequence identity (88%) with rXynAHJ14, a GH10 xylanase with no activity on CMC. The similarities with other characterized GH10 enzymes, including xylanases and bifunctional xylanase/cellulase enzymes, are no more than 30%. CONCLUSIONS XynA is a novel thermostable GH10 xylanase with a wide substrate spectrum. It displays good stability in a broad range of pH and high temperatures, and exhibits activities towards xylans and a wide variety of cellulosic substrates, which are not found in other GH10 enzymes. The enzyme also has high capacity in saccharification of pretreated corn stover. These characteristics make XynA a good candidate not only for assisting cellulase in lignocellulosic biomass hydrolysis, but also for the research on structure-function relationship of bifunctional xylanase/cellulase.
Collapse
Affiliation(s)
- Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Meiling Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Qibin Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Sidi Wang
- College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| |
Collapse
|
12
|
Tan H, Miao R, Liu T, Yang L, Yang Y, Chen C, Lei J, Li Y, He J, Sun Q, Peng W, Gan B, Huang Z. A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb Biotechnol 2018; 11:381-398. [PMID: 29205864 PMCID: PMC5812240 DOI: 10.1111/1751-7915.13034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
A new cellulolytic strain of Chryseobacterium genus was screened from the dung of a cattle fed with cereal straw. A putative cellulase gene (cbGH5) belonging to glycoside hydrolase family 5 subfamily 46 (GH5_46) was identified and cloned by degenerate PCR plus genome walking. The CbGH5 protein was overexpressed in Pichia pastoris, purified and characterized. It is the first bifunctional cellulase-xylanase reported in GH5_46 as well as in Chryseobacterium genus. The enzyme showed an endoglucanase activity on carboxymethylcellulose of 3237 μmol min-1 mg-1 at pH 9, 90 °C and a xylanase activity on birchwood xylan of 1793 μmol min-1 mg-1 at pH 8, 90 °C. The activity level and thermophilicity are in the front rank of all the known cellulases and xylanases. Core hydrophobicity had a positive effect on the thermophilicity of this enzyme. When similar quantity of enzymatic activity units was applied on the straws of wheat, rice, corn and oilseed rape, CbGH5 could obtain 3.5-5.0× glucose and 1.2-1.8× xylose than a mixed commercial cellulase plus xylanase of Novozymes. When applied on spent mushroom substrates made from the four straws, CbGH5 could obtain 9.2-15.7× glucose and 3.5-4.3× xylose than the mixed Novozymes cellulase+xylanase. The results suggest that CbGH5 could be a promising candidate for industrial lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Hao Tan
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Renyun Miao
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Tianhai Liu
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Lufang Yang
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Yumin Yang
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Chunxiu Chen
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Jianrong Lei
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Yuhui Li
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- College of Life SciencesSichuan UniversityChengduChina
| | - Jiabei He
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- College of Life SciencesSichuan UniversityChengduChina
| | - Qun Sun
- College of Life SciencesSichuan UniversityChengduChina
| | - Weihong Peng
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Bingcheng Gan
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| | - Zhongqian Huang
- National‐local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
- Scientific Observing and Experimental Station of Agro‐microbial Resource and Utilization in Southwest ChinaMinistry of AgricultureChengduChina
| |
Collapse
|
13
|
Röder J, Fischer R, Commandeur U. Engineering Potato Virus X Particles for a Covalent Protein Based Attachment of Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702151. [PMID: 29125698 DOI: 10.1002/smll.201702151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Plant virus nanoparticles are often used to display functional amino acids or small peptides, thus serving as building blocks in application areas as diverse as nanoelectronics, bioimaging, vaccination, drug delivery, and bone differentiation. This is most easily achieved by expressing coat protein fusions, but the assembly of the corresponding virus particles can be hampered by factors such as the fusion protein size, amino acid composition, and post-translational modifications. Size constraints can be overcome by using the Foot and mouth disease virus 2A sequence, but the compositional limitations cannot be avoided without the introduction of time-consuming chemical modifications. SpyTag/SpyCatcher technology is used in the present study to covalently attach the Trichoderma reesei endoglucanase Cel12A to Potato virus X (PVX) nanoparticles. The formation of PVX particles is confirmed by western blot, and the ability of the particles to display Cel12A is demonstrated by enzyme-linked immunosorbent assays and transmission electron microscopy. Enzymatic assays show optimal reaction conditions of 50 °C and pH 6.5, and an increased substrate conversion rate compared to free enzymes. It is concluded that PVX displaying the SpyTag can serve as new scaffold for protein display, most notably for proteins with post-translational modifications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
14
|
Chu Y, Tu T, Penttinen L, Xue X, Wang X, Yi Z, Gong L, Rouvinen J, Luo H, Hakulinen N, Yao B, Su X. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. J Biol Chem 2017; 292:19315-19327. [PMID: 28974575 PMCID: PMC5702671 DOI: 10.1074/jbc.m117.807768] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Bifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme CbXyn10C/Cel48B from Caldicellulosiruptor bescii is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated. Herein, we discovered that the binding cleft of CbXyn10C would have at least six sugar-binding subsites by using isothermal titration calorimetry analysis of the inactive E140Q/E248Q mutant with xylo- and cello-oligosaccharides. This was confirmed by determining the catalytic efficiency of the wild-type enzyme on these oligosaccharides. The free form and complex structures of CbXyn10C with xylose- or glucose-configured oligosaccharide ligands were further obtained by crystallographic analysis and molecular modeling and docking. CbXyn10C was found to have a typical (β/α)8-TIM barrel fold and "salad-bowl" shape of GH10 enzymes. In complex structures with xylo-oligosaccharides, seven sugar-binding subsites were found, and many residues responsible for substrate interactions were identified. Site-directed mutagenesis indicated that 6 and 10 amino acid residues were key residues for xylan and cellulose hydrolysis, respectively. The most important residues are centered on subsites -2 and -1 near the cleavage site, whereas residues playing moderate roles could be located at more distal regions of the binding cleft. Manipulating the residues interacting with substrates in the distal regions directly or indirectly improved the activity of CbXyn10C on xylan and cellulose. Most of the key residues for cellulase activity are conserved across GH10 xylanases. Revisiting randomly selected GH10 enzymes revealed unreported cellulase activity, indicating that the dual function may be a more common phenomenon than has been expected.
Collapse
Affiliation(s)
- Yindi Chu
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Tu
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Leena Penttinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland
| | - Xianli Xue
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuolin Yi
- the Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, and
| | - Li Gong
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- the Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Juha Rouvinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland
| | - Huiying Luo
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nina Hakulinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland,
| | - Bin Yao
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China,
| | - Xiaoyun Su
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China,
| |
Collapse
|
15
|
Solution for promoting egl 3 gene of Trichoderma reesei high-efficiency secretory expression in Escherichia coli and Lactococcus lactis. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Akintola AI, Oyedeji O, Bakare MK, Adewale IO. Purification and characterization of thermostable cellulase from Enterobacter cloacae IP8 isolated from decayed plant leaf litter. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1349761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abayomi Isaac Akintola
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olaoluwa Oyedeji
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Mufutau Kolawole Bakare
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Isaac Olusanjo Adewale
- Department of Biochemistry and Molecular Biology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
17
|
Guo ZP, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, O’Donohue MJ. Conferring cellulose-degrading ability to Yarrowia lipolytica to facilitate a consolidated bioprocessing approach. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:132. [PMID: 28533816 PMCID: PMC5438512 DOI: 10.1186/s13068-017-0819-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/13/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most widely studied "nonconventional" oleaginous yeast species, is unable to grow on cellulose. Recently, we identified and overexpressed two endogenous β-glucosidases in Y. lipolytica, thus enabling this yeast to use cello-oligosaccharides as a carbon source for growth. Using this engineered yeast platform, we have now gone further toward building a fully cellulolytic Y. lipolytica for use in consolidated bioprocessing of cellulose. RESULTS Initially, different essential enzyme components of a cellulase cocktail (i.e,. cellobiohydrolases and endoglucanases) were individually expressed in Y. lipolytica in order to ascertain the viability of the strategy. Accordingly, the Trichoderma reesei endoglucanase I (TrEG I) and II (TrEG II) were secreted as active proteins in Y. lipolytica, with the secretion yield of EG II being twice that of EG I. Characterization of the purified His-tagged recombinant EG proteins (rhTrEGs) revealed that rhTrEG I displayed higher specific activity than rhTrEG II on both cellotriose and insoluble cellulosic substrates, such as Avicel, β-1, 3 glucan, β-1, 4 glucan, and PASC. Similarly, cellobiohydrolases, such as T. reesei CBH I and II (TrCBH I and II), and the CBH I from Neurospora crassa (NcCBH I) were successfully expressed in Y. lipolytica. However, the yield of the expressed TrCBH I was low, so work on this was not pursued. Contrastingly, rhNcCBH I was not only well expressed, but also highly active on PASC and more active on Avicel (0.11 U/mg) than wild-type TrCBH I (0.065 U/mg). Therefore, work was pursued using a combination of NcCBH I and TrCBH II. The quantification of enzyme levels in culture supernatants revealed that the use of a hybrid promoter instead of the primarily used TEF promoter procured four and eight times more NcCBH I and TrCBH II expressions, respectively. Finally, the coexpression of the previously described Y. lipolytica β-glucosidases, the CBH II, and EG I and II from T. reesei, and the N. crassa CBH I procured an engineered Y. lipolytica strain that was able to grow both on model cellulose substrates, such as highly crystalline Avicel, and on industrial cellulose pulp, such as that obtained using an organosolv process. CONCLUSIONS A Y. lipolytica strain coexpressing six cellulolytic enzyme components has been successfully developed. In addition, the results presented show how the recombinant strain can be optimized, for example, using artificial promoters to tailor expression levels. Most significantly, this study has provided a demonstration of how the strain can grow on a sample of industrial cellulose as sole carbon source, thus revealing the feasibility of Yarrowia-based consolidated bioprocess for the production of fuel and chemical precursors. Further, enzyme and strain optimization, coupled to appropriate process design, will undoubtedly lead to much better performances in the future.
Collapse
Affiliation(s)
- Zhong-peng Guo
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Duquesne
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Bozonnet
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Gianluca Cioci
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alain Marty
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Michael Joseph O’Donohue
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
18
|
Ibrahim E, Jones KD, Taylor KE, Hosseney EN, Mills PL, Escudero JM. Molecular and biochemical characterization of recombinant cel12B, cel8C, and peh28 overexpressed in Escherichia coli and their potential in biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:52. [PMID: 28413443 PMCID: PMC5327597 DOI: 10.1186/s13068-017-0732-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The high crystallinity of cellulosic biomass myofibrils as well as the complexity of their intermolecular structure is a significant impediment for biofuel production. Cloning of celB-, celC-encoded cellulases (cel12B and cel8C) and peh-encoded polygalacturonase (peh28) from Pectobacterium carotovorum subsp. carotovorum (Pcc) was carried out in our previous study using Escherichia coli as a host vector. The current study partially characterizes the enzymes' molecular structures as well as their catalytic performance on different substrates which can be used to improve their potential for lignocellulosic biomass conversion. RESULTS β-Jelly roll topology, (α/α)6 antiparallel helices and right-handed β-helices were the folds identified for cel12B, cel8C, and peh28, respectively, in their corresponding protein model structures. Purifications of 17.4-, 6.2-, and 6.0-fold, compared to crude extract, were achieved for cel12B and cel8C, and peh28, respectively, using specific membrane ultrafiltrations and size-exclusion chromatography. Avicel and carboxymethyl cellulose (CMC) were substrates for cel12B, whereas for cel8C catalytic activity was only shown on CMC. The enzymes displayed significant synergy on CMC but not on Avicel when tested for 3 h at 45 °C. No observed β-glucosidase activities were identified for cel8C and cel12B when tested on p-nitrophenyl-β-d-glucopyranoside. Activity stimulation of 130% was observed when a recombinant β-glucosidase from Pcc was added to cel8C and cel12B as tested for 3 h at 45 °C. Optimum temperature and pH of 45 °C and 5.4, respectively, were identified for all three enzymes using various substrates. Catalytic efficiencies (kcat/Km) were calculated for cel12B and cel8C on CMC as 0.141 and 2.45 ml/mg/s respectively, at 45 °C and pH 5.0 and for peh28 on polygalacturonic acid as 4.87 ml/mg/s, at 40 °C and pH 5.0. Glucose and cellobiose were the end-products identified for cel8C, cel12B, and β-glucosidase acting together on Avicel or CMC, while galacturonic acid and other minor co-products were identified for peh28 action on pectin. CONCLUSIONS This study provides some insight into which parameters should be optimized when application of cel8C, cel12B, and peh28 to biomass conversion is the goal.
Collapse
Affiliation(s)
- Eman Ibrahim
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Kim D. Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
| | - Keith E. Taylor
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Ebtesam N. Hosseney
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Patrick L. Mills
- Department of Chemical Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
| | - Jean M. Escudero
- Department of Basic Science, St. Louis College of Pharmacy, St. Louis, MO 63110-1088 USA
| |
Collapse
|
19
|
Loc NH, Ngoc LMT, Quang HT, Huy ND, Luong NN. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2015-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTwo genes coding endo-β-1,4-glucanases were cloned from Trichoderma asperellum PQ34 which was isolated from Thua Thien Hue province, Vietnam. The expression of these genes in Pichia pastoris produced two enzymes with molecular masses of approximately 46 kDa (about 42 kDa of enzymes and 4 kDa of signal peptide). The effects of induction time and temperature, inducer concentration, and culture medium on the endo-β-1,4-glucanase activity were investigated. The results showed that the highest total activities of two endo-β-1,4-glucanases were approximately 4.7 × 10
Collapse
|
20
|
Akazawa SI, Ikarashi Y, Yarimizu J, Yokoyama K, Kobayashi T, Nakazawa H, Ogasawara W, Morikawa Y. Characterization of two endoglucanases for the classification of the earthworm, Eisenia fetida Waki. Biosci Biotechnol Biochem 2015; 80:55-66. [PMID: 26295166 DOI: 10.1080/09168451.2015.1075860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Eisenia fetida and Eisenia andrei are vermicomposting species that are used as model animals for testing chemical material toxicology. Eisenia spp. are grown commercially in various fields in Japan. However, these two species have not been classified because it is difficult to distinguish them morphologically; thus, all bred earthworms are called E. fetida. However, it has been proposed that these two species have different expression regulation mechanisms. Here, we classified a sample of earthworms purchased from several farms, confirming that both E. fetida and E. andrei are present in Japanese earthworm breeding programs. We also characterized two highly active endoglucanases (EfEG1 and EfEG2) from the E. fetida Waki strain, which contained strong fibrinolytic enzymes for improving human health. We confirmed that EfEG1 is 1371 bp long and belongs to GHF9. Thus, E. fetida Waki may have commercial application for biomass utilization and as a dietary health supplement.
Collapse
Affiliation(s)
- Shin-ichi Akazawa
- a Department of Materials Engineering , National Institute of Technology, Nagaoka College , Nagaoka , Japan
| | - Yuki Ikarashi
- a Department of Materials Engineering , National Institute of Technology, Nagaoka College , Nagaoka , Japan
| | - Jun Yarimizu
- a Department of Materials Engineering , National Institute of Technology, Nagaoka College , Nagaoka , Japan
| | - Keisuke Yokoyama
- a Department of Materials Engineering , National Institute of Technology, Nagaoka College , Nagaoka , Japan
| | - Tomoya Kobayashi
- a Department of Materials Engineering , National Institute of Technology, Nagaoka College , Nagaoka , Japan
| | - Hikaru Nakazawa
- b Department of Bioengineering , Nagaoka University of Technology , Nagaoka , Japan
| | - Wataru Ogasawara
- b Department of Bioengineering , Nagaoka University of Technology , Nagaoka , Japan
| | - Yasushi Morikawa
- b Department of Bioengineering , Nagaoka University of Technology , Nagaoka , Japan
| |
Collapse
|
21
|
Hong SM, Sung HS, Kang MH, Kim CG, Lee YH, Kim DJ, Lee JM, Kusakabe T. Characterization of Cryptopygus antarcticus endo-β-1,4-glucanase from Bombyx mori expression systems. Mol Biotechnol 2015; 56:878-89. [PMID: 24848382 DOI: 10.1007/s12033-014-9767-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endo-β-1,4-glucanase (CaCel) from Antarctic springtail, Cryptopygus antarcticus, a cellulase with high activity at low temperature, shows potential industrial use. To obtain sufficient active cellulase for characterization, CaCel gene was expressed in Bombyx mori-baculovirus expression systems. Recombinant CaCel (rCaCel) has been expressed in Escherichia coli (Ec-CaCel) at temperatures below 10°C, but the expression yield was low. Here, rCaCel with a silkworm secretion signal (Bm-CaCel) was successfully expressed and secreted into pupal hemolymph and purified to near 90% purity by Ni-affinity chromatography. The yield and specific activity of rCaCel purified from B. mori were estimated at 31 mg/l and 43.2 U/mg, respectively, which is significantly higher than the CaCel yield obtained from E. coli (0.46 mg/l and 35.8 U/mg). The optimal pH and temperature for the rCaCels purified from E. coli and B. mori were 3.5 and 50°C. Both rCaCels were active at a broad range of pH values and temperatures, and retained more than 30% of their maximal activity at 0°C. Oligosaccharide structural analysis revealed that Bm-CaCel contains elaborated N- and O-linked glycans, whereas Ec-CaCel contains putative O-linked glycans. Thermostability of Bm-CaCel from B. mori at 60°C was higher than that from E. coli, probably due to glycosylation.
Collapse
Affiliation(s)
- Sun Mee Hong
- Research and Development Department, Gyeongbuk Institute for Marine Bioindustry, Uljin, 767-813, Republic of Korea,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation. PLoS One 2015; 10:e0122122. [PMID: 25836973 PMCID: PMC4383378 DOI: 10.1371/journal.pone.0122122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/19/2015] [Indexed: 11/19/2022] Open
Abstract
Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes.
Collapse
|
23
|
The N-Terminal GH10 Domain of a Multimodular Protein from Caldicellulosiruptor bescii Is a Versatile Xylanase/β-Glucanase That Can Degrade Crystalline Cellulose. Appl Environ Microbiol 2015; 81:3823-33. [PMID: 25819971 DOI: 10.1128/aem.00432-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
The genome of the thermophilic bacterium Caldicellulosiruptor bescii encodes three multimodular enzymes with identical C-terminal domain organizations containing two consecutive CBM3b modules and one glycoside hydrolase (GH) family 48 (GH48) catalytic module. However, the three proteins differ much in their N termini. Among these proteins, CelA (or C. bescii Cel9A [CbCel9A]/Cel48A) with a GH9/CBM3c binary partner in the N terminus has been shown to use a novel strategy to degrade crystalline cellulose, which leads to its outstanding cellulose-cleaving activity. Here we show that C. bescii Xyn10C (CbXyn10C), the N-terminal GH10 domain from CbXyn10C/Cel48B, can also degrade crystalline cellulose, in addition to heterogeneous xylans and barley β-glucan. The data from substrate competition assays, mutational studies, molecular modeling, and docking point analyses point to the existence of only one catalytic center in the bifunctional xylanase/β-glucanase. The specific activities of the recombinant CbXyn10C on Avicel and filter paper were comparable to those of GH9/CBM3c of the robust CelA expressed in Escherichia coli. Appending one or two cellulose-binding CBM3bs enhanced the activities of CbXyn10C in degrading crystalline celluloses, which were again comparable to those of the GH9/CBM3c-CBM3b-CBM3b truncation mutant of CelA. Since CbXyn10C/Cel48B and CelA have similar domain organizations and high sequence homology, the endocellulase activity observed in CbXyn10C leads us to speculate that CbXyn10C/Cel48B may use the same strategy that CelA uses to hydrolyze crystalline cellulose, thus helping the excellent crystalline cellulose degrader C. bescii acquire energy from the environment. In addition, we also demonstrate that CbXyn10C may be an interesting candidate enzyme for biotechnology due to its versatility in hydrolyzing multiple substrates with different glycosidic linkages.
Collapse
|
24
|
Hu J, Gourlay K, Arantes V, Van Dyk JS, Pribowo A, Saddler JN. The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. CHEMSUSCHEM 2015; 8:901-7. [PMID: 25607348 DOI: 10.1002/cssc.201403335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/12/2014] [Indexed: 05/18/2023]
Abstract
Effective enzymatic hydrolysis of insoluble cellulose requires the synergistic action of a suite of cellulase components. Most previous studies have only assessed cellulase synergism on model cellulosic substrates. When the actions of individual and combinations of cellulases (Cel7A, Cel6A, Cel7B, Cel5A) were assessed on various pretreated lignocellulosic substrates, Cel7A was shown to be the major contributor to overall cellulose hydrolysis, with the other enzymes synergistically enhancing its hydrolytic efficiency, at least partially, by facilitating Cel7A desorption (assessed by a double-sandwich enzyme-linked immunosorbent assay). When the influences of various substrate physicochemical characteristics on the effectiveness of enzyme synergism were assessed, a strong relationship was observed between cellulose accessibility (as determined by the cellulose binding module technique) and the degree of synergism, with greater synergy observed on the more disorganized/accessible cellulose surface.
Collapse
Affiliation(s)
- Jinguang Hu
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver BC (Canada)
| | | | | | | | | | | |
Collapse
|
25
|
Chokhawala HA, Roche CM, Kim TW, Atreya ME, Vegesna N, Dana CM, Blanch HW, Clark DS. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol 2015; 15:11. [PMID: 25879765 PMCID: PMC4347658 DOI: 10.1186/s12896-015-0118-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/28/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60-70°C. RESULTS A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50-70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes. CONCLUSION Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.
Collapse
Affiliation(s)
- Harshal A Chokhawala
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | - Christine M Roche
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | - Tae-Wan Kim
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| | - Meera E Atreya
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Neeraja Vegesna
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721301, India.
| | - Craig M Dana
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | - Harvey W Blanch
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | - Douglas S Clark
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
26
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC PLANT BIOLOGY 2015; 15:54. [PMID: 25849300 PMCID: PMC4340609 DOI: 10.1186/s12870-015-0443-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The development of transgenic plants as a production platform for biomass-degrading enzymes is a promising tool for an economically feasible allocation of enzymes processing lignocellulose. Previous research has already identified a major limitation of in planta production such as interference with the structure and integrity of the plant cell wall resulting in a negative influence on plant growth and development. RESULTS Here, we describe the in planta expression of endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei with differential intracellular targeting and evaluate its impact on the tobacco cell wall composition. Targeting of the enzyme to the apoplast leads to distinct changes in cell polysaccharides such as glucose level in the matrix polysaccharides (MPS). These effects are combined with severe changes in plant development. Retention of TrCel5A in the endoplasmic reticulum (ER) could avoid visible effects on plant growth under the chosen conditions, but exhibits changes in the composition of the MPS. CONCLUSIONS These results give new insights into the complex interaction of heterologous cellulase expression with cell wall development and it outlines novel promising strategies to engineer plant cell walls for improved biomass processing.
Collapse
Affiliation(s)
- Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Markus Günl
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Björn Usadel
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Greene ER, Himmel ME, Beckham GT, Tan Z. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Adv Carbohydr Chem Biochem 2015; 72:63-112. [PMID: 26613815 DOI: 10.1016/bs.accb.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.
Collapse
|
29
|
Shu Z, Wang Y, An L, Yao L. The Slowdown of the Endoglucanase Trichoderma reesei Cel5A-Catalyzed Cellulose Hydrolysis Is Related to Its Initial Activity. Biochemistry 2014; 53:7650-8. [DOI: 10.1021/bi501059n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhiyu Shu
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yefei Wang
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liaoyuan An
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Lishan Yao
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
30
|
Wang K, Luo H, Shi P, Huang H, Bai Y, Yao B. A highly-active endo-1,3-1,4-β-glucanase from thermophilic Talaromyces emersonii CBS394.64 with application potential in the brewing and feed industries. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Ostafe R, Prodanovic R, Lloyd Ung W, Weitz DA, Fischer R. A high-throughput cellulase screening system based on droplet microfluidics. BIOMICROFLUIDICS 2014; 8:041102. [PMID: 25379082 PMCID: PMC4189127 DOI: 10.1063/1.4886771] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/20/2014] [Indexed: 05/06/2023]
Abstract
A new ultra-high-throughput screening assay for the detection of cellulase activity was developed based on microfluidic sorting. Cellulase activity is detected using a series of coupled enzymes leading to the formation of a fluorescent product that can be detected on a chip. Using this method, we have achieved up to 300-fold enrichments of the active population of cells and greater than 90% purity after just one sorting round. In addition, we proved that we can sort the cellulase-expressing cells from mixtures containing less than 1% active cells.
Collapse
Affiliation(s)
| | | | - W Lloyd Ung
- Department of Physics, School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
32
|
Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:14. [PMID: 24472375 PMCID: PMC3922861 DOI: 10.1186/1754-6834-7-14] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/14/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei. RESULTS We have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes. CONCLUSIONS Transcriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mari J Valkonen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Ann Westerholm-Parvinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Nina Aro
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| |
Collapse
|
33
|
Boonvitthya N, Bozonnet S, Burapatana V, O'Donohue MJ, Chulalaksananukul W. Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol 2013; 54:158-69. [PMID: 22638966 DOI: 10.1007/s12033-012-9557-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequences encoding the genes for endoglucanase II and cellobiohydrolase II from the fungus Trichoderma reesei QM9414 were successfully cloned and expressed in Yarrowia lipolytica under the control of the POX2 or TEF promoters, and using either the native or preproLip2 secretion signals. The expression level of both recombinant enzymes was compared with that obtained using Pichia pastoris, under the control of the AOX1 promoter to evaluate the utility of Y. lipolytica as a host strain for recombinant EGII and CBHII production. Extracellular endoglucanase activity was similar between TEF-preoproLip2-eglII expressed in Y. lipolytica and P. pastoris induced by 0.5 % (v/v) methanol, but when recombinant protein expression in P. pastoris was induced with 3 % (v/v) methanol, the activity was increased by about sevenfold. In contrast, the expression level of cellobiohydrolase from the TEF-preproLip2-cbhII cassette was higher in Y. lipolytica than in P. pastoris. Transformed Y. lipolytica produced up to 15 mg/l endoglucanase and 50 mg/l cellobiohydrolase, with the specific activity of both proteins being greater than their homologs produced by P. pastoris. Partial characterization of recombinant endoglucanase II and cellobiohydrolase II expressed in both yeasts revealed their optimum pH and temperature, and their pH and temperature stabilities were identical and hyperglycosylation had little effect on their enzymatic activity and properties.
Collapse
|
34
|
Characterization and High Level Expression of Acidic Endoglucanase in Pichia pastoris. Appl Biochem Biotechnol 2013; 172:2253-65. [DOI: 10.1007/s12010-013-0672-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
35
|
Eibinger M, Bubner P, Ganner T, Plank H, Nidetzky B. Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. FEBS J 2013; 281:275-90. [DOI: 10.1111/febs.12594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Austria
| | - Patricia Bubner
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Austria
| | - Thomas Ganner
- Institute for Electron Microscopy and Fine Structure Research; Graz University of Technology; Austria
- Center for Electron Microscopy; Graz University of Technology; Austria
| | - Harald Plank
- Institute for Electron Microscopy and Fine Structure Research; Graz University of Technology; Austria
- Center for Electron Microscopy; Graz University of Technology; Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Austria
| |
Collapse
|
36
|
Tishkov VI, Gusakov AV, Cherkashina AS, Sinitsyn AP. Engineering the pH-optimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie 2013; 95:1704-10. [PMID: 23774299 DOI: 10.1016/j.biochi.2013.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022]
Abstract
Endo-1,4-β-glucanase from Penicillium verruculosum (PvEGIII) belongs to family 12 of glycoside hydrolases (GH12). Analysis of the enzyme 3D model structure showed that the amino acid residue Asp98 may directly affect the pH-profile of enzyme activity since it is located at the distance of hydrogen bond formation from Glu203 that plays the role of a general acid in catalysis. The gene encoding the PvEGIII was cloned into Escherichia coli. After the deletion of two introns, a plasmid construction was obtained allowing the PvEGIII expression in E. coli. Using site-directed mutagenesis, the Asp98Asn mutant of the PvEGIII was obtained. Both the wild type and mutant PvEGIIIs were expressed in E. coli with a yield of up to 1 g/L and then isolated in a highly purified form. The enzyme specific activity against soluble carboxymethylcellulose was not changed after a single amino acid substitution. However, the pH-optimum of activity of the mutant PvEGIII was shifted from pH 4.0 to 5.1, compared to the wild type enzyme. The shift in the enzyme pH-optimum to more neutral pH was also observed on insoluble cellulose, in the process of enzymatic depigmentation of denim fabric. Similar situation featuring the effect of the Asp/Asn residue, located near the Glu catalytic residue, on the enzyme activity pH-profile has previously been described for xylanases of the GH11 family. Thus, the glycoside hydrolases belonging to the GH11 and GH12 families function by a rather similar mechanism of catalysis.
Collapse
Affiliation(s)
- Vladimir I Tishkov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/11, Moscow 119991, Russia
| | | | | | | |
Collapse
|
37
|
Karnaouri AC, Topakas E, Christakopoulos P. Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol Biotechnol 2013; 98:231-42. [DOI: 10.1007/s00253-013-4895-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
|
38
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:53. [PMID: 23587418 PMCID: PMC3643885 DOI: 10.1186/1754-6834-6-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/12/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. RESULTS Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. CONCLUSION We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants.
Collapse
Affiliation(s)
- Holger Klose
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, Aachen, 52074, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| |
Collapse
|
39
|
Ostafe R, Prodanovic R, Commandeur U, Fischer R. Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 2012; 435:93-8. [PMID: 23146590 DOI: 10.1016/j.ab.2012.10.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
We have developed a novel, ultra-high-throughput screening assay for the detection of cellulase activity based on fluorescence-activated cell sorting (FACS) and double emulsion technology. Cellulase activity is detected using a series of coupled enzymes, including hexose oxidase (HOx), which generates hydrogen peroxide from the reducing sugars released by cellulases in the presence of any natural or artificial substrate. The assay can be adapted to suit a microtiter plate format, but the highest throughput is achieved by using FACS to screen high-complexity cellulase clone libraries. Using this approach, we achieved a 12-fold enrichment of positive (cellulase-expressing) cells in cellulase reference libraries after just one sorting round.
Collapse
Affiliation(s)
- Raluca Ostafe
- Institute of Molecular Biotechnology, RWTH Aachen University, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
40
|
Liu M, Yu H. Cocktail production of an endo-β-xylanase and a β-glucosidase from Trichoderma reesei QM 9414 in Escherichia coli. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Purification, gene cloning and characterization of an acidic β-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries. J Biosci Bioeng 2012; 114:379-84. [DOI: 10.1016/j.jbiosc.2012.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
|
42
|
Samanta S, Basu A, Halder UC, Sen SK. Characterization of Trichoderma reesei endoglucanase ii expressed heterologously in Pichia pastoris for better biofinishing and biostoning. J Microbiol 2012; 50:518-25. [DOI: 10.1007/s12275-012-1207-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
|
43
|
Wang J, Quirk A, Lipkowski J, Dutcher JR, Hill C, Mark A, Clarke AJ. Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9664-9672. [PMID: 22646051 DOI: 10.1021/la301030f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The biodegradation of cellulose involves the enzymatic action of cellulases (endoglucanases), cellobiohydrolases (exoglucanases), and β-glucosidases that act synergistically. The rate and efficiency of enzymatic hydrolysis of crystalline cellulose in vitro decline markedly with time, limiting the large-scale, cost-effective production of cellulosic biofuels. Several factors have been suggested to contribute to this phenomenon, but there is considerable disagreement regarding the relative importance of each. These earlier investigations were hampered by the inability to observe the disruption of crystalline cellulose and its subsequent hydrolysis directly. Here, we show the application of high-resolution atomic force microscopy to observe the swelling of a single crystalline cellulose fiber and its-hydrolysis in real time directly as catalyzed by a single cellulase, the industrially important cellulase 7B from Trichoderma reesei. Volume changes, the root-mean-square roughness, and rates of hydrolysis of the surfaces of single fibers were determined directly from the images acquired over time. Hydrolysis dominated the early stage of the experiment, and swelling dominated the later stage. The high-resolution images revealed that the combined action of initial hydrolysis followed by swelling exposed individual microfibrils and bundles of microfibrils, resulting in the loosening of the fiber structure and the exposure of microfibrils at the fiber surface. Both the hydrolysis and swelling were catalyzed by the native cellulase; under the same conditions, its isolated carbohydrate-binding module did not cause changes to crystalline cellulose. We anticipate that the application of our AFM-based analysis on other cellulolytic enzymes, alone and in combination, will provide significant insight into the process of cellulose biodegradation and greatly facilitate its application for the efficient and economical production of cellulosic ethanol.
Collapse
Affiliation(s)
- Jingpeng Wang
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Dimarogona M, Topakas E, Olsson L, Christakopoulos P. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. BIORESOURCE TECHNOLOGY 2012; 110:480-7. [PMID: 22342036 DOI: 10.1016/j.biortech.2012.01.116] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/02/2023]
Abstract
An enzyme belonging to the glycoside hydrolase family 61 from the thermophilic fungus Sporotrichum thermophile, was functionally expressed in the methylotrophic yeast Pichia pastoris under the transcriptional control of the alcohol oxidase (AOX1) promoter. The enzyme hydrolyzed barley β-glucan, carboxymethyl cellulose, lichenan, wheat arabinoxylan and birchwood xylan showing optimal activity at pH 8 and 65°C. A 2:1 mixture of Celluclast 1.5L and StCel61a was capable of increasing the degree of spruce conversion by 42%. The use of substrates with varying lignin content permitted the detection of a dependence of the enhancing capacity of StCel61a on the radical scavenging capacity of the different lignocellulosics. In the presence of a reductant, StCel61a boosted the efficiency of a mixture of purified cellulases (EGII, CBHI, β-GLUC) by 20%. The synergistic activity exhibited by StCel61a and its dependence on reducing substances provide guidelines for process design towards the production of economically viable bioethanol.
Collapse
Affiliation(s)
- Maria Dimarogona
- BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15700 Athens, Greece
| | | | | | | |
Collapse
|
45
|
Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B. A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol 2011; 93:1601-8. [PMID: 22080343 PMCID: PMC3275749 DOI: 10.1007/s00253-011-3674-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/06/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022]
Abstract
Recent demands for the production of biofuels from lignocellulose led to an increased interest in engineered cellulases from Trichoderma reesei or other fungal sources. While the methods to generate such mutant cellulases on DNA level are straightforward, there is often a bottleneck in their production since a correct posttranslational processing of these enzymes is needed to obtain highly active enzymes. Their production and subsequent enzymatic analysis in the homologous host T. reesei is, however, often disturbed by the concomitant production of other endogenous cellulases. As a useful alternative, we tested the production of cellulases in T. reesei in a genetic background where cellulase formation has been impaired by deletion of the major cellulase transcriptional activator gene xyr1. Three cellulase genes (cel7a, cel7b, and cel12a) were expressed under the promoter regions of the two highly expressed genes tef1 (encoding translation elongation factor 1-alpha) or cdna1 (encoding the hypothetical protein Trire2:110879). When cultivated on D: -glucose as carbon source, the Δxyr1 strain secreted all three cellulases into the medium. Related to the introduced gene copy number, the cdna1 promoter appeared to be superior to the tef1 promoter. No signs of proteolysis were detected, and the individual cellulases could be assayed over a background essentially free of other cellulases. Hence this system can be used as a vehicle for rapid and high-throughput testing of cellulase muteins in a homologous background.
Collapse
Affiliation(s)
- Fatma Uzbas
- Biological Sciences and Bioengineering, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | - Ugur Sezerman
- Biological Sciences and Bioengineering, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | - Lukas Hartl
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 166-5, 1060 Vienna, Austria
| | - Christian P. Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 166-5, 1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 166-5, 1060 Vienna, Austria
| |
Collapse
|
46
|
Lee TM, Farrow MF, Arnold FH, Mayo SL. A structural study of Hypocrea jecorina Cel5A. Protein Sci 2011; 20:1935-40. [PMID: 21898652 DOI: 10.1002/pro.730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/11/2022]
Abstract
Interest in generating lignocellulosic biofuels through enzymatic hydrolysis continues to rise as nonrenewable fossil fuels are depleted. The high cost of producing cellulases, hydrolytic enzymes that cleave cellulose into fermentable sugars, currently hinders economically viable biofuel production. Here, we report the crystal structure of a prevalent endoglucanase in the biofuels industry, Cel5A from the filamentous fungus Hypocrea jecorina. The structure reveals a general fold resembling that of the closest homolog with a high-resolution structure, Cel5A from Thermoascus aurantiacus. Consistent with previously described endoglucanase structures, the H. jecorina Cel5A active site contains a primarily hydrophobic substrate binding groove and a series of hydrogen bond networks surrounding two catalytic glutamates. The reported structure, however, demonstrates stark differences between side-chain identity, loop regions, and the number of disulfides. Such structural information may aid efforts to improve the stability of this protein for industrial use while maintaining enzymatic activity through revealing nonessential and immutable regions.
Collapse
Affiliation(s)
- Toni M Lee
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
47
|
Farrow MF, Arnold FH. High throughput screening of fungal endoglucanase activity in Escherichia coli. J Vis Exp 2011:2942. [PMID: 21860379 DOI: 10.3791/2942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellulase enzymes (endoglucanases, cellobiohydrolases, and β-glucosidases) hydrolyze cellulose into component sugars, which in turn can be converted into fuel alcohols. The potential for enzymatic hydrolysis of cellulosic biomass to provide renewable energy has intensified efforts to engineer cellulases for economical fuel production. Of particular interest are fungal cellulases, which are already being used industrially for foods and textiles processing. Identifying active variants among a library of mutant cellulases is critical to the engineering process; active mutants can be further tested for improved properties and/or subjected to additional mutagenesis. Efficient engineering of fungal cellulases has been hampered by a lack of genetic tools for native organisms and by difficulties in expressing the enzymes in heterologous hosts. Recently, Morikawa and coworkers developed a method for expressing in E. coli the catalytic domains of endoglucanases from H. jecorina, an important industrial fungus with the capacity to secrete cellulases in large quantities. Functional E. coli expression has also been reported for cellulases from other fungi, including Macrophomina phaseolina and Phanerochaete chrysosporium. We present a method for high throughput screening of fungal endoglucanase activity in E. coli. This method uses the common microbial dye Congo Red (CR) to visualize enzymatic degradation of carboxymethyl cellulose (CMC) by cells growing on solid medium. The activity assay requires inexpensive reagents, minimal manipulation, and gives unambiguous results as zones of degradation ("halos") at the colony site. Although a quantitative measure of enzymatic activity cannot be determined by this method, we have found that halo size correlates with total enzymatic activity in the cell. Further characterization of individual positive clones will determine , relative protein fitness. Traditional bacterial whole cell CMC/CR activity assays involve pouring agar containing CMC onto colonies, which is subject to cross-contamination, or incubating cultures in CMC agar wells, which is less amenable to large-scale experimentation. Here we report an improved protocol that modifies existing wash methods for cellulase activity: cells grown on CMC agar plates are removed prior to CR staining. Our protocol significantly reduces cross-contamination and is highly scalable, allowing the rapid screening of thousands of clones. In addition to H. jecorina enzymes, we have expressed and screened endoglucanase variants from the Thermoascus aurantiacus and Penicillium decumbens, suggesting that this protocol is applicable to enzymes from a range of organisms.
Collapse
Affiliation(s)
- Mary F Farrow
- Department Of Chemistry and Chemical Engineering, California Institute of Technology, USA
| | | |
Collapse
|
48
|
|
49
|
Akcapinar GB, Gul O, Sezerman U. Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Prog 2011; 27:1257-63. [PMID: 21774095 DOI: 10.1002/btpr.663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/27/2011] [Indexed: 11/11/2022]
Abstract
Trichoderma reesei cellulases are important biocatalysts for a wide range of industrial applications that include the paper, feed, and textile industries. T. reesei endoglucanase 1 (egl1) was successfully expressed as an active and stable catalyst in Pichia pastoris for the first time. Codon optimization was applied to egl1 of T. reesei to enhance its expression levels in P. pastoris. When compared with the originally cloned egl1 gene of T. reesei, the synthetic codon optimized egl1 gene (egl1s) was expressed at a higher level in P. pastoris. Batch fermentations of both clones with the same copy number under controlled conditions indicated that codon optimized EGI enzyme activity increased to 1.24 fold after 72 h of methanol induction. Our research indicated that P. pastoris is a suitable host for cellulase production.
Collapse
|
50
|
Yin Q, Teng Y, Ding M, Zhao F. Site-directed mutagenesis of aromatic residues in the carbohydrate-binding module of Bacillus endoglucanase EGA decreases enzyme thermostability. Biotechnol Lett 2011; 33:2209-16. [PMID: 21720844 DOI: 10.1007/s10529-011-0680-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 06/20/2011] [Indexed: 11/28/2022]
Abstract
The endoglucanase, EGA, from Bacillus sp. AC-1 comprises a glycosyl hydrolase family-9 catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). Seven aromatic residues were subjected to site-directed mutagenesis in both CBM3 and EGA to investigate their roles in enzyme thermostability. The complexes generated by mixing CBMY527G, CBMW532A, or CBMF592G with CM9 each lost their activities after 15 min at 45°C, while the wild-type complex retained >70% activity after 2 h. The mutants EGAY527G, EGAW532A, and EGAF592G showed little activity after 15 min at 60°C, whereas EGA remained 70% active after 2 h. Thus the residues Tyr(527), Trp(532), and Phe(592) contribute not only to CBM3-mediated stability of CM9 but also to EGA thermostability suggesting that hydrophobic interaction between the two modules, independent of covalent linkages, is important for enzyme thermostability.
Collapse
Affiliation(s)
- Qiuyu Yin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|