1
|
Abu-Tahon MA, Housseiny MM, Aboelmagd HI, Daifalla N, Khalili M, Isichei AC, Ramadan A, Abu El-Saad AM, Seddek NH, Ebrahim D, Ali YH, Saeed IK, Rikabi HA, Eltaib L. A holistic perspective on the efficiency of microbial enzymes in bioremediation process: Mechanism and challenges: A review. Int J Biol Macromol 2025; 308:142278. [PMID: 40132713 DOI: 10.1016/j.ijbiomac.2025.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Industrial activities, pharmaceutical contaminants, excessive agricultural inputs, and improper waste disposal have contributed to the widespread pollution of soil and water. Traditional remediation techniques, while effective, often generate secondary waste and are economically unfeasible. In contrast, microbial bioremediation offers a sustainable and cost-effective alternative by utilizing microorganisms and their enzymatic systems to degrade and detoxify pollutants. This review investigates the potential of microbial enzymes in remediation strategies for removing heavy metals and pharmaceutical contaminants from polluted environments. It analyzes the fundamental mechanisms by which microorganisms sequester and degrade these pollutants, emphasizing the enzymatic processes that facilitate their breakdown. Furthermore, it explores key microbial factors influencing bioremediation efficiency, including microbial diversity and environmental conditions. Additionally, it examines the challenges associated with scaling these bioremediation strategies for global environmental applications and provides insights for future research and implementation.
Collapse
Affiliation(s)
- Medhat A Abu-Tahon
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Manal M Housseiny
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, P.C.11757, Cairo, Egypt
| | - Heba I Aboelmagd
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nada Daifalla
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - May Khalili
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Adaugo C Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abeer Ramadan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed M Abu El-Saad
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nermien H Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Doaa Ebrahim
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Yahia H Ali
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Intisar K Saeed
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Hind A Rikabi
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
2
|
Gao J, Qi M, Wang X, Feng X, Li J, Zhang G, Feng S, Yang Z, Ning G. Combined induction by Cu(II) and veratrole enhances the degradation of high molecular weight polyaromatic hydrocarbons by Fusarium dlaminii ZH-H2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117794. [PMID: 39919596 DOI: 10.1016/j.ecoenv.2025.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
The effect of combined induction by Cu(II) and veratrole on the degradation of high molecular weight polyaromatic hydrocarbons (HMW-PAHs) by Fusarium sp. ZH-H2 was investigated. This strain was characterized as F. dlaminii. The combination treatment of Cu(II) with veratrole (CL) improved the degradation efficiency of a mixture of 10 HMW-PAHs by 16 % compared to the control without inducer (CK), by 5 % compared to single Cu(II) induction (C), and by 12 % compared to single veratrole induction (L). In particular, degradation of benzo(g,hi)perylene (BghiP) was improved by 36 % compared to CK and by 52 % compared to L. The CL combination treatment increased lignin peroxidase (LiP) activity by 162 % at day 5 of incubation compared to the control and by 277 % compared to C. Transcriptome analysis revealed that the expression of 910 Fusarium genes had changed as a result of the combination treatment, with 510 up-regulated genes and 443 down-regulated genes. The combined CL treatment not only significantly stimulated Lip activity, but also induced the expression of genes coding for non-ligninolytic enzymes, which contributed to the degradation of PAHs. These included cytochrome P450 monooxygenase (EC:1.-.-.-) and downstream PAH converting enzymes such as aldehyde dehydrogenase (EC:1.2.1.3), NADP-dependent ethanol dehydrogenase (EC:1.1.1.2), ethanol dehydrogenase (EC:1.1.1.156], tryptophan 2,3 dioxygenase (EC:1.13.11.52), gentisate 1,2-dioxygenase (EC:1.13.11.5), salicylate hydroxylase (EC:.14.13.1) β-hexokinase (EC:3.2.1.52), and glutathione transferase (EC: 2.5.1.18). Their increased expression enhanced the HMWPAHs degradation under induction of Cu(II) plus veratrole synergistically. These findings provide new insights in the combined use of these inducers for enhanced microbial remediation of HMW-PAHs in the environment.
Collapse
Affiliation(s)
- Jiayuan Gao
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Mingyue Qi
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Xiaomin Wang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Xuan Feng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; Geophysical Exploration Academy of China Metallurgical Bureau, Baoding, Hebei 071051, PR China
| | - Jiahui Li
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Guangwei Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Shengdong Feng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China
| | - Zhixin Yang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| | - Guohui Ning
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Key Laboratory for Farmland Eco-Environment, Baoding, Hebei 071000, PR China.
| |
Collapse
|
3
|
Kato H, Miura D, Kato M, Shimizu M. Metabolic mechanism of lignin-derived aromatics in white-rot fungi. Appl Microbiol Biotechnol 2024; 108:532. [PMID: 39661194 PMCID: PMC11634970 DOI: 10.1007/s00253-024-13371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
White-rot fungi, such as Phanerochaete chrysosporium, play a crucial role in biodegrading lignocellulosic biomass including cellulose, hemicellulose, and lignin. These fungi utilise various extracellular and intracellular enzymes, such as lignin peroxidases, manganese peroxidases, versatile peroxidases, monooxygenases, and dioxygenases, to degrade lignin and lignin-derived aromatics, thereby significantly contributing to the global carbon cycle with potential applications in industrial bioprocessing and bioremediation. Although the metabolism of lignin fragments in P. chrysosporium has been studied extensively, the enzymes involved in fragment conversion remain largely unknown. This review provides an overview of the current knowledge regarding the metabolic pathways of lignin and its fragments by white-rot fungi. Recent studies have elucidated the intricate metabolic pathways and regulatory mechanisms of lignin-derived aromatic degradation by focusing on flavoprotein monooxygenases, intradiol dioxygenases, homogentisate dioxygenase-like proteins, and cytochrome P450 monooxygenases. Metabolic regulation of these enzymes demonstrates the adaptability of white-rot fungi in degrading lignin and lignin-derived aromatics. The interplay between the central metabolic pathways, haem biosynthesis, and haem-dependent NAD(P)H regeneration highlights the complexity of lignin degradation in white-rot fungi. These insights improve our understanding of fungal metabolism and pave the way for future studies aimed at leveraging these fungi for sustainable biotechnological applications. KEY POINTS: • White-rot fungi use enzymes to degrade lignin, and play a role in the carbon cycle. • Oxygenases are key enzymes for converting lignin-derived aromatics. • White-rot fungi adapt to metabolic changes by controlling the TCA/glyoxylate bicycle.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| | - Daisuke Miura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masashi Kato
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
4
|
Konan D, Ndao A, Koffi E, Elkoun S, Robert M, Rodrigue D, Adjallé K. Biodecomposition with Phanerochaete chrysosporium: A review. AIMS Microbiol 2024; 10:1068-1101. [PMID: 39628719 PMCID: PMC11609428 DOI: 10.3934/microbiol.2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Phanerochaete chrysosporium is considered the model fungus for white rot fungi. It is the first basidiomycete whose genome has been completely sequenced. Its importance lies in the fact that its enzymatic system comprises the major enzymes involved in lignin degradation. Lignin is a complex and highly recalcitrant compound that very few living organisms are capable of degrading naturally. On the other hand, the enzymes produced by P. chrysosporium are also powerful agents for the mineralization into CO2 and H2O of a wide range of aromatic compounds. However, these aromatic compounds are largely xenobiotic compounds with documented toxic effects on the environment and health. While the economic and environmental benefits of biodegradation with P. chrysosporium are well established, a thorough understanding of P. chrysosporium and its biodegradation processes is essential for successful biodegradation. Our aim of this critical literature review is to provide a concise and comprehensive insight of biodecomposition of organic substrate by P. chrysosporium.
Collapse
Affiliation(s)
- Delon Konan
- Laboratory of Environmental Biotechnologies, Institut National de la Recherche Scientifique (INRS), Québec city, QC, G1P 4S5, Canada
| | - Adama Ndao
- Laboratory of Environmental Biotechnologies, Institut National de la Recherche Scientifique (INRS), Québec city, QC, G1P 4S5, Canada
| | - Ekoun Koffi
- Department of Mechanic and Energy Engineering, Institut National Polytechnique Felix Houphouët Boigny (INPHB), Yamoussoukro, Côte d'Ivoire
| | - Saïd Elkoun
- Center for Innovation in Technological Ecodesign (CITE), University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Mathieu Robert
- Center for Innovation in Technological Ecodesign (CITE), University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Denis Rodrigue
- Department of Chemical Engineering, Université Laval, Québec City, QC, G1V0A6, Canada
| | - Kokou Adjallé
- Laboratory of Environmental Biotechnologies, Institut National de la Recherche Scientifique (INRS), Québec city, QC, G1P 4S5, Canada
| |
Collapse
|
5
|
Liu L, Jin Y, Lian H, Yin Q, Wang H. Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot. J Fungi (Basel) 2024; 10:641. [PMID: 39330400 PMCID: PMC11432967 DOI: 10.3390/jof10090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant's self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | | | | | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (L.L.); (Y.J.); (H.L.); (Q.Y.)
| |
Collapse
|
6
|
Wang Y, Li J, Chang Y, Chang S, Chen Y, Wei D, Li R, Zheng Y, Kang Z, Wu Z, Chen P, Wei Y, Li J, Xu Z. Metabolomics analysis of advancing humification mechanism in secondary fermentation of composting by fungal bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173267. [PMID: 38754504 DOI: 10.1016/j.scitotenv.2024.173267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to investigate the differential metabolites and core metabolic pathways caused by fungal bioaugmentation (pH regulation and Phanerochaete chrysosporium inoculation) in secondary fermentation of composting, as well as their roles in advancing humification mechanism. Metabolomics analyses showed that inoculation strengthened the expression of carbohydrate, amino acid, and aromatic metabolites, and pH regulation resulted in the up-regulation of the phosphotransferase system and its downstream carbohydrate metabolic pathways, inhibiting Toluene degradation and driving biosynthesis of aromatic amino acids via the Shikimate pathway. Partial least squares path model suggested that lignocellulose degradation, precursors especially amino acids and their metabolism process enhanced by the regulation of pH and Phanerochaete were the main direct factors for humic acid formation in composting. This finding helps to understand the regulating mechanism of fungal bioaugmentation to improve the maturity of agricultural waste composting.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanting Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Arif S, M’Barek HN, Bekaert B, Aziz MB, Diouri M, Haesaert G, Hajjaj H. Lignocellulolytic Enzymes Production by Four Wild Filamentous Fungi for Olive Stones Valorization: Comparing Three Fermentation Regimens. J Microbiol Biotechnol 2024; 34:1017-1028. [PMID: 38803105 PMCID: PMC11180923 DOI: 10.4014/jmb.2312.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/29/2024]
Abstract
Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of β-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 μg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.
Collapse
Affiliation(s)
- Soukaina Arif
- Moulay Ismail University of Meknès, Laboratory of Biotechnology and Bioresources Valorization, BP 11201, Zitoune Meknes City, Morocco
- Moulay Ismail University of Meknès, Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Marjane 2, BP 298, Meknes City, Morocco
| | - Hasna Nait M’Barek
- Moulay Ismail University of Meknès, Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Marjane 2, BP 298, Meknes City, Morocco
- Paris-Saclay University, CentraleSupélec, European Center of Biotechnology and Bioeconomy (CEBB) - LGPM, 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Boris Bekaert
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Valentin Vaerwyckweg 1, Schoonmeersen - gebouw C 9000 Ghent, Belgium
| | - Mohamed Ben Aziz
- Sultan Moulay Sliman University, Higher School of Technology, Laboratory of Biotechnology, Bioresources, and Bioinformatics (3BIO), 54000 Khenifra, Morocco
| | - Mohammed Diouri
- Moulay Ismail University of Meknès, Laboratory of Biotechnology and Bioresources Valorization, BP 11201, Zitoune Meknes City, Morocco
- Moulay Ismail University of Meknès, Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Marjane 2, BP 298, Meknes City, Morocco
| | - Geert Haesaert
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Valentin Vaerwyckweg 1, Schoonmeersen - gebouw C 9000 Ghent, Belgium
| | - Hassan Hajjaj
- Moulay Ismail University of Meknès, Laboratory of Biotechnology and Bioresources Valorization, BP 11201, Zitoune Meknes City, Morocco
- Moulay Ismail University of Meknès, Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Marjane 2, BP 298, Meknes City, Morocco
| |
Collapse
|
8
|
Wang M, Long J, Zhao J, Li Z. Effect of alkali treatment on enzymatic hydrolysis of p-toluenesulfonic acid pretreated bamboo substrates. BIORESOURCE TECHNOLOGY 2024; 396:130454. [PMID: 38360218 DOI: 10.1016/j.biortech.2024.130454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive separation and utilization of whole components of lignocellulosic materials has received extensive attention in present research. This study focused on the efficacy of alkali treatment for enzymatic saccharification of cellulose based on p-toluenesulfonic acid (p-TsOH) pretreated bamboo substrate. The results showed that the cellulose to glucose conversion yield was 94.69 % under optimized conditions of 0.4 g NaOH/g, 160 °C and 4 h (soaked), which after only 6 h enzymatic hydrolysis time. Alkali lignin recovery was 88.51 %, with potential for conversion to lignin derivatives. The yield of hemicellulose in the pretreated filtrate was 51.85 % after the 4th cycling reuse of p-TsOH. This work has borrowed the advantages of p-TsOH pretreatment of depolymerized hemicellulose from bamboo, combined with a low-priced weak alkali secondary treatment method, which can be effectively applied to the co-production of lignin, xylooligosaccharide, xylose and glucose, and the whole process is green and economically sustainable.
Collapse
Affiliation(s)
- Meixin Wang
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Juan Long
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jiayue Zhao
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
9
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
10
|
van der Made JJA, Landis EA, Deans GT, Lai RA, Chandran K. Synergistic lignin degradation between Phanerochaete chrysosporium and Fenton chemistry is mediated through iron cycling and ligninolytic enzyme induction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166767. [PMID: 37660814 PMCID: PMC10646785 DOI: 10.1016/j.scitotenv.2023.166767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Removal of recalcitrant lignin from wastewater remains a critical bottleneck in multiple aspects relating to microbial carbon cycling ranging from incomplete treatment of biosolids during wastewater treatment to limited conversion of biomass feedstock to biofuels. Based on previous studies showing that the white rot fungus Phanerochaete chrysosporium and Fenton chemistry synergistically degrade lignin, we sought to determine optimum levels of Fenton addition and the mechanisms underlying this synergy. We tested the extent of degradation of lignin under different ratios of Fenton reagents and found that relatively low levels of H2O2 and Fe(II) enhanced fungal lignin degradation, achieving 80.4 ± 1.61 % lignin degradation at 1.5 mM H2O2 and 0.3 mM Fe(II). Using a combination of whole-transcriptome sequencing and iron speciation assays, we determined that at these concentrations, Fenton chemistry induced the upregulation of 80 differentially expressed genes in P. ch including several oxidative enzymes. This study underlines the importance of non-canonical, auxiliary lignin-degrading pathways in the synergy between white rot fungi and Fenton chemistry in lignin degradation. We also found that, relative to the abiotic control, P. ch. increases the availability of Fe(II) for the production of hydroxyl radicals in the Fenton reaction by recycling Fe(III) (p < 0.001), decreasing the Fe(II) inputs necessary for lignin degradation via the Fenton reaction.
Collapse
Affiliation(s)
| | - Elizabeth A Landis
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Griffin T Deans
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Ruby A Lai
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA; Department of Civil and Environmental Engineering, Stanford University, Palo Alto, CA, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Pradeep Kumar V, Sridhar M, Ashis Kumar S, Bhatta R. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi. Microbiol Spectr 2023; 11:e0141923. [PMID: 37655898 PMCID: PMC10581151 DOI: 10.1128/spectrum.01419-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Indigenous white-rot fungal isolates Schizophyllum commune, Phanerochaete chrysosporium, Ganoderma racenaceum, and Lentinus squarrosulus, demonstrating the ability to depolymerize lignin of the crop residues, were studied for their potential to produce ligninolytic enzymes using modified production media under conditions of limiting and excess nitrogen for higher enzymatic expressions. Secretome-rich media on the investigation confirmed the successful production of lignin-depolymerizing enzymes, viz. laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. Production of laccases and peroxidases was statistically significant in nitrogen-limiting media with and without the substrate, across all white-rot fungal cultures at 95% confidence interval. Nitrogen-limiting media with the substrate on analysis extracellularly expressed 99.27 U of laccase and 68.48 U of manganese peroxidase in Schizophyllum commune, while 195.14 U of lignin peroxidase was produced by Phanerochaete chrysosporium. Lentinus squarrosulus expressed 455.34 U of laccase and 357.13 U of versatile peroxidase with 250.09 U of laccase and 206.95 U of manganese peroxidase produced by Ganoderma racenaceum for every milliliter of the media used. Nitrogen-limiting media triggered the production of laccase during the initial stages of growth while the expression of peroxidases was predominant at a later stage. Also, this media evinced increased enzymatic yields with low biomass content compared to nitrogen-excess conditions. The extant study confirmed the positive influence of nitrogen-limiting media in the efficient production of ligninolytic enzymes and their suggestive degradation potential for environmental pollutants, making these enzymes a safe, clean alternative to the use of chemicals and the media to be effective for large-scale production of ligninolytic enzymes. IMPORTANCE Lignin on account of its high abundance, complex polymeric structure, and biochemical properties is identified as a promising candidate in renewable energy and bioproduct manufacturing. However, depolymerization of lignin remains a major challenge in lignin utilization, entailing the employment of harsh treatments representing not only an environmental concern but also a waste of economic potential. Developing an alternative green technology to minimize this impact is imperative. Methods using enzymes to depolymerize lignin are the focus of recent studies. Current research work emphasized the efficient expression of the major lignin-depolymerizing enzymes: laccases, lignin peroxidases, manganese peroxidases, and versatile peroxidases from native isolates of white-rot fungus for several biotechnological applications as well as treatment of crop residues for use as ruminant feed in improving productivity. The importance of nitrogen in augmenting the expression of lignin-depolymerizing enzymes and providing a media recipe for the cost-effective production of ligninolytic enzymes is highlighted.
Collapse
Affiliation(s)
- Vidya Pradeep Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Manpal Sridhar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Samanta Ashis Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Raghavendra Bhatta
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Effects of Solid-State Fermentation Pretreatment with Single or Dual Culture White Rot Fungi on White Tea Residue Nutrients and In Vitro Rumen Fermentation Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
Collapse
|
13
|
Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene. Enzyme Microb Technol 2022; 158:110037. [DOI: 10.1016/j.enzmictec.2022.110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
|
14
|
Suryadi H, Judono JJ, Putri MR, Eclessia AD, Ulhaq JM, Agustina DN, Sumiati T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 2022; 8:e08865. [PMID: 35141441 PMCID: PMC8814692 DOI: 10.1016/j.heliyon.2022.e08865] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Lignocellulose is the most abundant biomass available on earth, including wood and agricultural wastes such as rice straw, corn cobs, and oil palm empty bunches. The biopolymer content in lignocellulose has a great potential as feedstock for producing industrial raw materials such as glucose, sorbitol, xylose, xylitol, and other pharmaceutical excipients. Currently, scientists and governments agree that the enzymatic delignification method is an environmentally friendly green method to be applied. This review attempts to explain the proper preparation of the enzymes laccase, lignin peroxidase, and manganese peroxidase, as well as the important factors influencing their activity. The recent applications of the enzymes for detoxification of hazardous substances, proper enzyme immobilization technique, and future prospect combination with DESs extraction of lignin are also discussed.
Collapse
Affiliation(s)
- Herman Suryadi
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Jessica J. Judono
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Merianda R. Putri
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Alma D. Eclessia
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Jiihan M. Ulhaq
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Dinar N. Agustina
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Triyani Sumiati
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
15
|
Indira TI, Burhan KH, Manurung R, Widiana A. Enhancement of Essential Oil Yield from Melaleuca Leucadendra L. Leaves by Lignocellulose Degradation Pre-Treatment Using Filamentous Fungi. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Piyaviriyakul P, Boontanon N, Boontanon SK. Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:920-927. [PMID: 34270386 DOI: 10.1080/10934529.2021.1941558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination raises concerns over antibiotic resistance genes (ARGs), which can severely impact the human health and environment. Sulfamethoxazole (SMX) is a widely used antibiotic that is incompletely metabolized in the body. In this study, the research objectives were (1) to isolate the native strain of Trichoderma sp. from the environment and analyze the tolerance toward SMX concentration by evaluating fungal growth, and (2) to investigate the potential of SMX removal by fungi. The potential fungi isolated from rotten tree bark showed 97% similarity to Trichoderma harzianum (Accession no. MH707098.1). The whole cell of fungi was examined in vitro; the strain Trichoderma harzianum BGP115 eliminated 71% of SMX after 7 days, while the white rot fungi Trametes versicolor, demonstrated 90% removal after 10 days. Furthermore, the tolerance of fungal growth toward SMX concentration at 10 mg L-1 was analyzed, which indicated that Trichoderma harzianum BGP115 (the screened strain) exhibited more tolerance toward SMX than Trametes versicolor (the reference strain). The screened fungi isolated from rotted tree bark demonstrated the ability of SMX bioremoval and the potential to be tolerant to high concentrations of SMX.
Collapse
Affiliation(s)
- Pitchaya Piyaviriyakul
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
A Review on the Utilization of Lignin as a Fermentation Substrate to Produce Lignin-Modifying Enzymes and Other Value-Added Products. Molecules 2021; 26:molecules26102960. [PMID: 34065753 PMCID: PMC8156730 DOI: 10.3390/molecules26102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The lignocellulosic biomass is comprised of three major components: cellulose, hemicellulose, and lignin. Among these three, cellulose and hemicellulose were already used for the generation of simple sugars and subsequent value-added products. However, lignin is the least applied material in this regard because of its complex and highly variable nature. Regardless, lignin is the most abundant material, and it can be used to produce value-added products such as lignin-modifying enzymes (LMEs), polyhydroxyalkanoates (PHAs), microbial lipids, vanillin, muconic acid, and many others. This review explores the potential of lignin as the microbial substrate to produce such products. A special focus was given to the different types of lignin and how each one can be used in different microbial and biochemical pathways to produce intermediate products, which can then be used as the value-added products or base to make other products. This review paper will summarize the effectiveness of lignin as a microbial substrate to produce value-added products through microbial fermentations. First, basic structures of lignin along with its types and chemistry are discussed. The subsequent sections highlight LMEs and how such enzymes can enhance the value of lignin by microbial degradation. A major focus was also given to the value-added products that can be produced from lignin.
Collapse
|
21
|
Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste. ENERGIES 2021. [DOI: 10.3390/en14082098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work describes a self-sustaining bioelectrochemical system that adopts simple cell configurations and operates in uncontrolled ambient surroundings. The microbial fuel cell (MFC) was comprised of white-rot fungus of Phanaerochaete chrysosporium fed with oil palm empty fruit bunch (EFB) as the substrate. This fungal strain degrades lignin by producing ligninolytic enzymes such as laccase, which demonstrates a specific affinity for oxygen as its electron acceptor. By simply pairing zinc and the air electrode in a membraneless, single-chamber, 250-mL enclosure, electricity could be harvested. The microbial zinc/air cell is capable of sustaining a 1 mA discharge current continuously for 44 days (i.e., discharge capacity of 1056 mAh). The role of the metabolic activities of P. chrysosporium on EFB towards the MFC’s performance is supported by linear sweep voltammetry measurement and scanning electron microscopy observations. The ability of the MFC to sustain its discharge for a prolonged duration despite the fungal microbes not being attached to the air electrode is attributed to the formation of a network of filamentous hyphae under the submerged culture. Further, gradual lignin decomposition by fungal inocula ensures a continuous supply of laccase enzyme and radical oxidants to the MFC. These factors promote a self-sustaining MFC devoid of any control features.
Collapse
|
22
|
Liu E, Segato F, Wilkins MR. Fed-batch production of Thermothelomyces thermophilus lignin peroxidase using a recombinant Aspergillus nidulans strain in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2021; 325:124700. [PMID: 33461124 DOI: 10.1016/j.biortech.2021.124700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic lignin depolymerization is considered a favorable approach to utilize lignin due to the higher selectivity and less energy requirement when compared to thermochemical lignin valorization. Lignin peroxidase (LiP) is one of the key enzymes involved in lignin degradation and possesses high redox potential to oxidize non-phenolic structures and phenolic compounds in lignin. However, the production of LiP is mainly from white-rot fungi at small scales. It is critical to discover new LiP from other microorganisms and produce LiP at large scales. This study aims to produce a novel LiP originally from Thermothelomyces thermophiles using a recombinant Aspergillus nidulans strain. The LiP production medium was optimized, and different fed-batch strategies for LiP production were investigated to improve LiP activity, yield, and productivity. Results demonstrated that LiP production was enhanced by using multi-pulse fed-batch fermentation. A maximum LiP activity of 1,645 mU/L with a protein concentration of 0.26 g/L was achieved.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
23
|
Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R. Fungi in PAH-contaminated marine sediments: Cultivable diversity and tolerance capacity towards PAH. MARINE POLLUTION BULLETIN 2021; 164:112082. [PMID: 33524832 DOI: 10.1016/j.marpolbul.2021.112082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal marine sediments.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, 04318, Germany
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
24
|
Whiteford R, Nurika I, Schiller T, Barker G. The white-rot fungus, Phanerochaete chrysosporium, under combinatorial stress produces variable oil profiles following analysis of secondary metabolites. J Appl Microbiol 2021; 131:1305-1317. [PMID: 33484615 DOI: 10.1111/jam.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
AIMS The effects of combinatorial stress on lipid production in Phanerochaete chrysosporium remain understudied. This species of white-rot fungi was cultivated on solid-state media while under variable levels of known abiotic and biotic stressors to establish the effect upon fungal oil profiles. METHODS AND RESULTS Environmental stressors induced upon the fungus included the following: temperature, nutrient limitation and interspecies competition to assess impact upon oil profiles. Fatty acid type and its concentration were determined using analytical methods of gas chromatography and mass spectrometry. Growth rate under stress was established using high-performance liquid chromatography with ergosterol as the biomarker. Fungi grown on solid-state agar were able to simultaneously produce short- and long-chain fatty acids which appeared to be influenced by nutritional composition as well as temperature. Addition of nitrogen supplements increased the growth rate, but lipid dynamics remained unchanged. Introducing competition-induced stress had significantly altered the production of certain fatty acids beyond that of the monoculture while under nutrient-limiting conditions. Linoleic acid concentrations, for example, increased from an average of 885 ng μl-1 at monoculture towards 13 820 ng μl-1 at co-culture, following 7 days of incubation. CONCLUSIONS Interspecies competition produced the most notable impact on lipid production for solid-state media cultivated fungi while the addition of nitrogen supplementation presented growth and lipid accumulation to be uncorrelated. Combinatorial stress therefore influences the yield of overall lipid production as well as the number of intermediate fatty acids produced, deriving similar oil profiles to the composition of vegetable and fish oils. SIGNIFICANCE AND IMPACT OF THE STUDY Fungal secondary metabolism remains highly sensitive following combinatorial stress. The outcome impacts the research towards optimizing fungal oil profiles for biomass and nutrition. Future investigations on fungal stress tolerance mechanisms need to address these environmental factors throughout the experimental design.
Collapse
Affiliation(s)
- R Whiteford
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - I Nurika
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia
| | - T Schiller
- Warwick Manufacturing Group, The University of Warwick, Coventry, UK
| | - G Barker
- School of Life Sciences, The University of Warwick, Coventry, UK
| |
Collapse
|
25
|
Leriche-Grandchamp M, Flourat A, Shen H, Picard F, Giordana H, Allais F, Fayeulle A. Inhibition of Phenolics Uptake by Ligninolytic Fungal Cells and Its Potential as a Tool for the Production of Lignin-Derived Aromatic Building Blocks. J Fungi (Basel) 2020; 6:jof6040362. [PMID: 33322772 PMCID: PMC7770579 DOI: 10.3390/jof6040362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023] Open
Abstract
Lignin is the principal natural source of phenolics but its structural complexity and variability make it difficult to valorize through chemical depolymerization approaches. White rots are one of the rare groups of organisms that are able to degrade lignin in ecosystems. This biodegradation starts through extracellular enzymes producing oxidizing agents to depolymerize lignin and continue with the uptake of the generated oligomers by fungal cells for further degradation. Phanerochaete chrysosporium is one of the most studied species for the elucidation of these biodegradation mechanisms. Although the extracellular depolymerization step appears interesting for phenolics production from lignin, the uptake and intracellular degradation of oligomers occurring in the course of the depolymerization limits its potential. In this study, we aimed at inhibiting the phenolics uptake mechanism through metabolic inhibitors to favor extracellular oligomers accumulation without preventing the ligninases production that is necessary for extracellular depolymerization. The use of sodium azide confirmed that an active transportation phenomenon is involved in the phenolics uptake in P. chrysosporium. A protocol based on carbonyl cyanide m-chlorophenyl hydrazone enabled reaching 85% inhibition for vanillin uptake. This protocol was shown not to inhibit, but on the contrary, to stimulate the depolymerization of both dehydrogenation polymers (DHPs) and industrial purified lignins.
Collapse
Affiliation(s)
| | - Amandine Flourat
- AgroParisTech, CEBB, URD Agro-Biotechnologies Industrielles (ABI), 51110 Pomacle, France
| | - Hangchen Shen
- AgroParisTech, CEBB, URD Agro-Biotechnologies Industrielles (ABI), 51110 Pomacle, France
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne, France
| | - Flavien Picard
- AgroParisTech, CEBB, URD Agro-Biotechnologies Industrielles (ABI), 51110 Pomacle, France
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne, France
| | - Heloïse Giordana
- AgroParisTech, CEBB, URD Agro-Biotechnologies Industrielles (ABI), 51110 Pomacle, France
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne, France
| | - Florent Allais
- AgroParisTech, CEBB, URD Agro-Biotechnologies Industrielles (ABI), 51110 Pomacle, France
| | - Antoine Fayeulle
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne, France
- Correspondence:
| |
Collapse
|
26
|
Abstract
Wood durability researchers have long described fungal decay of timber using the starkly simple terms of white, brown and soft rot, along with the less destructive mold and stain fungi. These terms have taken on an almost iconic meaning but are only based upon the outward appearance of the damaged timber. Long-term deterioration studies, as well as the emerging genetic tools, are showing the fallacy of simplifying the decay process into such broad groups. This paper briefly reviews the fundamentals of fungal decay, staining and mold processes, then uses these fundamentals as the basis for a discussion of fungal attack of wood in light of current knowledge about these processes. Biotechnological applications of decay fungi are reviewed, and an overview is presented on how fungi surmount the protective barriers that coatings provide on surfaces. Advances in biochemical analyses have, in some cases, radically altered our perceptions of how wood is degraded, and even the relationships between fungal species, while other new findings have reinforced traditional perspectives. Suggestions for future research needs in the coatings field relative to enhanced fungal and environmental protection are presented.
Collapse
|
27
|
Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 2020; 10:20267. [PMID: 33219291 PMCID: PMC7679414 DOI: 10.1038/s41598-020-75217-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
The efficiency of microorganisms to degrade lignified plants is of great importance in the Earth's carbon cycle, but also in industrial biorefinery processes, such as for biofuel production. Here, we present a large-scale proteomics approach to investigate and compare the enzymatic response of five filamentous fungi when grown on five very different substrates: grass (sugarcane bagasse), hardwood (birch), softwood (spruce), cellulose and glucose. The five fungi included the ascomycetes Aspergillus terreus, Trichoderma reesei, Myceliophthora thermophila, Neurospora crassa and the white-rot basidiomycete Phanerochaete chrysosporium, all expressing a diverse repertoire of enzymes. In this study, we present comparable quantitative protein abundance values across five species and five diverse substrates. The results allow for direct comparison of fungal adaptation to the different substrates, give indications as to the substrate specificity of individual carbohydrate-active enzymes (CAZymes), and reveal proteins of unknown function that are co-expressed with CAZymes. Based on the results, we present a quantitative comparison of 34 lytic polysaccharide monooxygenases (LPMOs), which are crucial enzymes in biomass deconstruction.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Oskar Bengtsson
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
28
|
Hashem AH, Suleiman WB, Abu-Elrish GM, El-Sheikh HH. Consolidated Bioprocessing of Sugarcane Bagasse to Microbial Oil by Newly Isolated Oleaginous Fungus: Mortierella wolfii. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05076-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Nowak M, Zawadzka K, Lisowska K. Occurrence of methylisothiazolinone in water and soil samples in Poland and its biodegradation by Phanerochaete chrysosporium. CHEMOSPHERE 2020; 254:126723. [PMID: 32334247 DOI: 10.1016/j.chemosphere.2020.126723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Methylisothiazolinone is a commonly used biocide that is released into natural environments. In this work, the ability of the fungal strain Phanerochaete chrysosporium DSM 1556 to biotransform this compound was evaluated. The tested strain was able to remove MIT (at concentrations 50 μg L-1 and 30 mg L-1) from the growth medium with the efficiency 90% after the first 6 h and 100% after 12 h of incubation. Moreover, for the first time, qualitative LC-MS/MS and GC-MS analysis showed monohydroxylated and dihydroxylated methylisothiazolinone and N-methylmalonamic acid as the main products of fungal biodegradation. The ecological toxicity of the tested biocide and its derivatives was also evaluated by using an acute toxicity test with Daphnia magna. An approximately 90% decrease in the toxicity of metabolites formed in the P. chrysosporium culture was noticed. The concentration of MIT in soil and water samples collected in Poland was assessed for the first time. The analysis showed that the selected locations in Poland are contaminated by MIT in the range from 1.04-10.08 μg L-1.
Collapse
Affiliation(s)
- Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
30
|
Islam M, Xu Q, Yuan Q. Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:285-295. [PMID: 32399240 PMCID: PMC7203322 DOI: 10.1007/s40201-020-00466-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
This study utilized Penicillium spp. to treat mature landfill leachate (MLL) in a continuous bioreactor and batch experimental tests under non-sterile conditions. MLL characteristics such as chemical oxygen demand (COD), soluble COD (sCOD), total carbon (TC), total organic carbon (TOC), and color removal efficiency were determined. The lignocellulosic enzymatic activity of laccase (Lac), lignin-peroxidase (LiP), and manganese-peroxidase (MnP) was also determined. The batch experimental test was carried out with raw and pretreated MLL containing the initial NH4 +-N concentrations of 0, 105, 352, and 914 mg/L. A maximum COD reduction of 41% and maximum enzymatic activity of 193, 37, and 25 U/L for Lac, LiP and MnP was recorded for the MLL containing 352 mg/L NH4 +-N. The continuous bioreactor exhibited maximum values of 52, 54, 60, 58, and 75 percentage of COD, sCOD, TC, TOC, and color removal efficiency with MLL containing 352 mg/L NH4 +-N that was pretreated at HRT 120 h, while the maximum detected lignocellulosic enzymatic activities were 149, 27, and 16 U/L for Lac, LiP, and MnP, respectively. A total of 64% COD reduction was achieved from the raw MLL considering 12% COD and 100% NH4 +-N reduction in the aerobic activated sludge sequencing batch reactor pretreatment process. The steady and higher removal efficiency of the bioreactor over the entire study period is promising for further exploration to enhance removal of refractory contaminants from the MLL.
Collapse
Affiliation(s)
- Mofizul Islam
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Qian Xu
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| |
Collapse
|
31
|
Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production of stable and mature compost often depends on the performance of microbes and their enzymatic activity. Environmental and nutritional conditions influence the characteristics of microbial communities and, therefore, the dynamics of major metabolic activities. Using three waste mixtures (textile waste mixed with either green, paper, or cardboard waste), the maturity of the compost produced was assessed by following the physico-chemical parameters and enzymatic activities provided by the microorganisms that were identified using next-generation sequencing (NGS). Among the three mixtures used, it was found that the two best mixtures showed C/N ratios of 16.30 and 16.96, total nitrogen of 1.37 and 1.39%, cellulase activities of 50.62 and 52.67 Ug−1, acid phosphatase activities of 38.81 and 68.77 Ug−1, and alkaline phosphatase activities of 51.12 and 56.86 Ug−1. In addition, several lignocellulosic species, together with those that are able to solubilize phosphate, were identified. Among those known for cellulase and acid/alkaline phosphatase activities, bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla were shown. The presence of species belonging to the Ascomycota and Basidiomycota phyla of Fungi, which are known for their ability to produce cellulase and acid/alkaline phosphatases, was demonstrated. These findings provide a basis for the production of stable and mature compost based on textile waste.
Collapse
|
32
|
Majeke BM, García-Aparicio M, Biko OD, Viljoen-Bloom M, van Zyl WH, Görgens JF. Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: Enzymatic valorization of technical (industrial) lignins. Enzyme Microb Technol 2020; 139:109593. [PMID: 32732041 DOI: 10.1016/j.enzmictec.2020.109593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 01/24/2023]
Abstract
Lignin peroxidase (LiP) is a well-recognized enzyme for its ability to oxidize lignins, but its commercial availability is limited, which hinders the biotechnological application of LiP-based bioprocesses in lignocellulose biorefineries. This study evaluated a combination strategy to improve the expression of LiP to promote its practical use. The strategy included optimization of the lipH8 gene of Phanerochaete chrysosporium according to the codon usage of Pichia pastoris, followed by fed-batch fermentation using a 14 L bioreactor (10 L working volume). The combination strategy achieved a maximum volumetric LiPH8 activity of 4480 U L-1, protein concentration of 417 mg L-1 and a specific activity of 10.7 U mg-1, which was higher than previous reports. Biochemical characterization showed that the recombinant LiPH8 (rLiPH8) was optimum at pH 3.0, 25 ℃ and 0.4 mM H2O2. Using the optimized conditions, rLiPH8 was used to treat isolated technical lignins namely soda-anthraquinone (SAQ) lignin and steam explosion (S-E) lignin. High-performance gel permeation chromatography (HP-GPC) analysis showed that the molecular weight (Mw) of SAQ and S-E lignins were increased by 1.43-and 1.14-fold, respectively, after the enzymatic treatment. Thermogravimetric analysis (TGA) also showed that the thermal stability of the lignins was improved, indicating that the enzyme treatment of lignins with rLiPH8 resulted in lignin re-polymerization. As the first report on rLiPH8 production using P. pastoris, this study has shed light on the possible route for the enhancement of rLiPH8 production and its potential application for upgrading technical lignins.
Collapse
Affiliation(s)
- B M Majeke
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - M García-Aparicio
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - O D Biko
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - M Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - W H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - J F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
33
|
Akhtar N, Mannan MAU. Mycoremediation: Expunging environmental pollutants. ACTA ACUST UNITED AC 2020; 26:e00452. [PMID: 32617263 PMCID: PMC7322808 DOI: 10.1016/j.btre.2020.e00452] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/27/2023]
Abstract
Mycoremediation of polycyclic aromatic hydrocarbons, challenges, and strategies to overcome. Role of the fungi in eradicating heavy metal contamination from the polluted sites. Mycoremediation of agricultural wastes including pesticides, herbicides, and cyanotoxins. Pharmaceutical wastes and strategies for its remediation using white-rot and ligninolytic fungus.
The ever-increasing population, rapid rate of urbanization, and industrialization are exacerbating the pollution-related problems. Soil and water pollution affect human health and the ecosystem. Thus, it is crucial to develop strategies to combat this ever-growing problem. Mycoremediation, employing fungi or its derivatives for remediation of environmental pollutants, is a comparatively cost-effective, eco-friendly, and effective method. It has advantages over other conventional and bioremediation methods. In this review, we have elucidated the harmful effects of common pollutants on public health and the environment. The role of several fungi in degrading these pollutants such as heavy metals, agricultural, pharmaceutical wastes, including polycyclic aromatic hydrocarbons, is enumerated. Future strategies to improve the rate and efficiency of mycoremediation are suggested. The manuscript describes the strategies which can be used as a future framework to address the global problem of pollution.
Collapse
Affiliation(s)
- Nahid Akhtar
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Punjab 144401, India
| | - M Amin-Ul Mannan
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Punjab 144401, India.,Department of Trans-Disciplinary Research, Division of Research and Development, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Punjab 144401, India
| |
Collapse
|
34
|
Shanthi Kumari BS, Praveen K, Usha KY, Dileep Kumar K, Praveen Kumar Reddy G, Rajasekhar Reddy B. Ligninolytic behavior of the white-rot fungus Stereum ostrea under influence of culture conditions, inducers and chlorpyrifos. 3 Biotech 2019; 9:424. [PMID: 31696029 DOI: 10.1007/s13205-019-1955-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/14/2019] [Indexed: 11/27/2022] Open
Abstract
The production of three ligninolytic enzymes, laccase (LAC), manganese peroxidase (MnP) and lignin peroxidase (LiP) by the white-rot fungus, Stereum ostrea, was significantly more in Koroljova liquid medium in the presence of chlorpyrifos under shaking conditions than under stationary conditions. These enzymes were secreted into the broth to the extent of 214.37, 82.75 and 8.05 U/ml under influence of chlorpyrifos on 10th day of incubation in comparison with 138.06, 51.85 and 6.44 U/ml, respectively, under similar conditions in control. Maximum production of LAC, MnP and LiP on liquid medium with/without chlorpyrifos under stationary conditions did not exceed 80-85, 33-40, 0.6-0.7 U/ml, respectively. Among lignosulfonic acid, veratryl alcohol (VA), gallic acid (GA) and tannic acid tested, GA induced maximum production of LAC (300.53 U/ml) and MnP (181.66 U/ml) after 10 days of growth in the presence of chlorpyriphos, while maximum LiP (1.134 U/ml) was produced when grown with the inducer VA during this period. Our data suggest that chlorpyrifos and inducers interacted positively in producing higher amounts of the ligninolytic enzymes in S. ostrea.
Collapse
Affiliation(s)
- B S Shanthi Kumari
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - K Praveen
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - K Y Usha
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - Kanderi Dileep Kumar
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - G Praveen Kumar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - B Rajasekhar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| |
Collapse
|
35
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
36
|
Luo H, Zhang Y, Xie Y, Li Y, Qi M, Ma R, Yang S, Wang Y. Iron-rich microorganism-enabled synthesis of magnetic biocarbon for efficient adsorption of diclofenac from aqueous solution. BIORESOURCE TECHNOLOGY 2019; 282:310-317. [PMID: 30875599 DOI: 10.1016/j.biortech.2019.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Microorganisms in nature have been suggested as effective synthetic platform for functional materials construction. In this study, we cultured a typical white rot fungus of Phanerochaete chrysosporium in iron-containing medium to obtain iron-rich biomass, serving as sole precursor for magnetic biocarbon synthesis. The accumulated iron in biomass reached to 4.6 wt%. After carbonization and activation, microporous magnetic biocarbon (Fe/BC) with high specific surface area of 1986 m2 g-1 was obtained. When applied as adsorbent for a model pharmaceutical (diclofenac sodium, DCF) removal from aqueous solution, a high adsorption capacity of 361.25 mg g-1 was found for the developed Fe/BC. Systematic isotherm, kinetic, thermodynamic and recycle studies were conducted to investigate adsorption behaviors of DCF onto Fe/BC. This work not only provides a novel strategy for magnetic biocarbon construction, but also envisions new perspective on the utilization of a variety of microorganisms in nature for functional materials preparation.
Collapse
Affiliation(s)
- Haiqiong Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulin Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Man Qi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Runze Ma
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shihao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
37
|
Saito Y, Tsuchida H, Matsumoto T, Makita Y, Kawashima M, Kikuchi J, Matsui M. Screening of fungi for decomposition of lignin-derived products from Japanese cedar. J Biosci Bioeng 2018; 126:573-579. [DOI: 10.1016/j.jbiosc.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022]
|
38
|
Howdeshell T, Tanaka T. Recovery of glucose from dried distiller’s grain with solubles, using combinations of solid-state fermentation and insect culture. Can J Microbiol 2018; 64:706-715. [DOI: 10.1139/cjm-2018-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A bioethanol by-product, dried distiller’s grains with solubles (DDGS) contains high levels of cellulose and starch. We hypothesized that combinations of solid-state fermentation (SSF) and digestion by black soldier fly larvae (BSFL) (Hermetia illucens) could increase the recovery of glucose from this by-product by concentrating and loosening the cellulose matrix through their activities. DDGS was individually fermented with Aspergillus niger, Aspergillus fumigatus, Trichoderma koningii, Phanerochaete chrysosporium, or Lactobacillus plantarum. The fermented DDGS was fed to BSFL, and glucose recoveries from spent feeds were conducted. SSF increases lipid and protein contents, supporting BSFL growth, and weakens the cellulosic matrix. BSFL use nutrients in SSF–DDGS, further concentrating and weakening the cellulose, i.e., DDGS is halved without changing the cellulose contents. For example, Lactobacillus plantarum SSF with BSFL culture concentrates the cellulose content from 9.7% to 26.5% of spent feed. Glucose recovery was determined using three sequential processes (free glucose determination, weak-acid hydrolysis of amorphous cellulose, and enzymatic hydrolysis of micronized crystalline cellulose). Total glucose obtained from 100 g of DDGS increased from 4.8 to 10.7 g. These results show that the combinations of SSF and BSFL could provide additional fermentable sugars (and insect biomass) from bioethanol by-products, suggesting a high productivity from the same feedstock.
Collapse
Affiliation(s)
- Timothy Howdeshell
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Takuji Tanaka
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
39
|
Almeida PH, Oliveira ACCDE, Souza GPNDE, Friedrich JC, Linde GA, Colauto NB, Valle JSDO. Decolorization of remazol brilliant blue R with laccase from Lentinus crinitus grown in agro-industrial by-products. AN ACAD BRAS CIENC 2018; 90:3463-3473. [PMID: 29947669 DOI: 10.1590/0001-3765201820170458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
Lentinus crinitus is a white-rot fungus that produces laccase, an enzyme used for dye decolorization. Enzyme production depends on cultivation conditions, mainly agro-industrial by-products. We aimed to produce laccase from Lentinus crinitus with agro-industrial by-products for dye decolorization. Culture medium had coffee husk (CH) or citric pulp pellet (CP) and different nitrogen sources (urea, yeast extract, ammonium sulfate and sodium nitrate) at concentrations of 0, 0.7, 1.4, 2.8, 5.6 and 11.2 g/L. Enzymatic extract was used in the decolorization of remazol brilliant blue R. CH medium promoted greater laccase production than CP in all evaluated conditions. Urea provided the greatest laccase production for CH (37280 U/L) as well as for CP (34107 U/L). In CH medium, laccase activity was suppressed when carbon-to-nitrogen ratio changed from 4.5 to 1.56, but the other nitrogen concentrations did not affect laccase activity. For CP medium, reduction in carbon-to-nitrogen ratio from 6 to 1.76 increased laccase activity in 17%. The peak of laccase activity in CH medium occurred on the 11th day (41246 U/L) and in CP medium on the 12th day (32660 U/L). The maximum decolorization within 24 h was observed with CP enzymatic extract (74%) and with CH extract (76%).
Collapse
Affiliation(s)
- Patrícia H Almeida
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Ana Carolina C DE Oliveira
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Genyfer P N DE Souza
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Juliana C Friedrich
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Giani A Linde
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Nelson B Colauto
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| | - Juliana S DO Valle
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense, Praça Mascarenhas de Moraes, 4282, 87502-210 Umuarama, PR, Brazil
| |
Collapse
|
40
|
Fang S, Wang W, Tong S, Zhang C, Liu P. Evaluation of the Effects of Isolated Lignin on Cellulose Enzymatic Hydrolysis of Corn Stover Pretreatment by NaOH Combined with Ozone. Molecules 2018; 23:molecules23061495. [PMID: 29925811 PMCID: PMC6099953 DOI: 10.3390/molecules23061495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this experiment, corn stover was treated with optimal combined pretreatment conditions: 2% NaOH at 80 °C treated 2 h combined with initial pH 9 at the ozone concentration of 78 mg/mL treated 25 min. The effect of lignin removal rate on the enzymatic hydrolysis degree of cellulose during the treatment process was studied. At the same time, the lignin in the optimal pretreated corn stover was separated and extracted by enzymatic acidolysis, and its structure and connection were characterized. The results showed that the alkali combined with ozone pretreatment improved the enzymatic hydrolysis degree of the cellulose while exfoliating and degrading the macromolecular lignin into small molecules. The stable crosslink structure of the lignin-cellulose-hemicellulose was destroyed, and the lignocellulosic structure changed in favor of the enzymatic hydrolysis of the cellulose.
Collapse
Affiliation(s)
- Shuo Fang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shisheng Tong
- Bio-Pharmaceutical College, Beijing City University, Beijing 100094, China.
| | - Chunyan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
41
|
Naraian R, Kumari S, Gautam RL. Biodecolorization of brilliant green carpet industry dye using three distinct Pleurotus spp. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0012-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Gupta A, Jana AK. Effects of wheat straw solid contents in fermentation media on utilization of soluble/insoluble nutrient, fungal growth and laccase production. 3 Biotech 2018; 8:35. [PMID: 29291148 PMCID: PMC5745200 DOI: 10.1007/s13205-017-1054-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/17/2017] [Indexed: 11/24/2022] Open
Abstract
The objective of the work was to study the effect of agri-residue solid contents (2-20% w v-1) in fermentation medium on fungal growth, soluble and insoluble nutrient consumption and laccase production. Fungal strain Ganoderma lucidium and wheat straw substrate was screened for maximum laccase production. At low solid content submerged fermentation (SmF), fungus utilized mainly soluble nutrient and was unable to access the insoluble nutrient in media due to lack of contact with solid. At high solid content solid-state fermentation (SF), fungi grew on solid surface with dense and thin hyphae, utilized mainly insoluble nutrient. At medium solid content (8% w v-1) semi-solid fermentation (sSF), fungi grew on solid substrates with network of thick intercrossed hyphae, utilized both soluble and insoluble nutrients optimally resulting in highest fungal growth and laccase activity (~ 3.5 folds than in SmF and ~ 2.5 folds than in SF). Importance of soluble and insoluble nutrients was also established after isolation of their individual effects. Morphology of fungal growth (SEM), composition, thermal analysis (TGA/DTG) of substrates confirmed the results. sSF showed potential for the production of enzymes through utilization of agricultural residues as substrate.
Collapse
Affiliation(s)
- Antriksh Gupta
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, G T Road Bye Pass, Jalandhar, 144011 Punjab India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, G T Road Bye Pass, Jalandhar, 144011 Punjab India
| |
Collapse
|
43
|
Yee KL, Jansen LE, Lajoie CA, Penner MH, Morse L, Kelly CJ. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb Technol 2018; 108:59-65. [DOI: 10.1016/j.enzmictec.2017.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 02/03/2023]
|
44
|
Sakai K, Kojiya S, Kamijo J, Tanaka Y, Tanaka K, Maebayashi M, Oh JS, Ito M, Hori M, Shimizu M, Kato M. Oxygen-radical pretreatment promotes cellulose degradation by cellulolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:290. [PMID: 29213329 PMCID: PMC5713004 DOI: 10.1186/s13068-017-0979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The efficiency of cellulolytic enzymes is important in industrial biorefinery processes, including biofuel production. Chemical methods, such as alkali pretreatment, have been extensively studied and demonstrated as effective for breaking recalcitrant lignocellulose structures. However, these methods have a detrimental effect on the environment. In addition, utilization of these chemicals requires alkali- or acid-resistant equipment and a neutralization step. RESULTS Here, a radical generator based on non-thermal atmospheric pressure plasma technology was developed and tested to determine whether oxygen-radical pretreatment enhances cellulolytic activity. Our results showed that the viscosity of carboxymethyl cellulose (CMC) solutions was reduced in a time-dependent manner by oxygen-radical pretreatment using the radical generator. Compared with non-pretreated CMC, oxygen-radical pretreatment of CMC significantly increased the production of reducing sugars in culture supernatant containing various cellulases from Phanerochaete chrysosporium. The production of reducing sugar from oxygen-radical-pretreated CMC by commercially available cellobiohydrolases I and II was 1.7- and 1.6-fold higher, respectively, than those from non-pretreated and oxygen-gas-pretreated CMC. Moreover, the amount of reducing sugar from oxygen-radical-pretreated wheat straw was 1.8-fold larger than those from non-pretreated and oxygen-gas-pretreated wheat straw. CONCLUSIONS Oxygen-radical pretreatment of CMC and wheat straw enhanced the degradation of cellulose by reducing- and non-reducing-end cellulases in the supernatant of a culture of the white-rot fungus P. chrysosporium. These findings indicated that oxygen-radical pretreatment of plant biomass offers great promise for improvements in lignocellulose-deconstruction processes.
Collapse
Affiliation(s)
- Kiyota Sakai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Saki Kojiya
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Junya Kamijo
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Yuta Tanaka
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Kenta Tanaka
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | | | - Jun-Seok Oh
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masafumi Ito
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masaru Hori
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi 464-8603 Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
45
|
Magstadt DR, Fales-Williams AJ, Palerme JS, Flaherty H, Lindquist T, Miles KG. Severe Disseminated Necrotizing and Granulomatous Lymphadenitis and Encephalitis in a Dog Due to Sporotrichum pruinosum (Teleomorph: Phanerochaete chrysosporium). Vet Pathol 2017; 55:298-302. [DOI: 10.1177/0300985817741731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A 9-year-old female mixed breed dog presented for an acute onset of anorexia, vomiting, and cough. Initial examination and diagnostics revealed a large multilobular cranial mediastinal mass with unidentified fungal organisms on cytology. The disease progressed in spite of therapy until the dog was euthanized 8 months later. Gross necropsy findings were a large multilobular intrathoracic mass, mild pleuritis, and generalized lymphadenopathy. Histologic evaluation showed granulomatous inflammation and necrosis with numerous 20- to 70-micron, periodic acid–Schiff- and Gomori methenamine silver-positive spherules effacing lymph node parenchyma, as well as severe inflammation within the midbrain. Endosporulation was a common finding, and large numbers of fungal hyphae were also present in affected areas. Ribosomal RNA gene sequencing found 100% identity to published sequences of Phanerochaete chrysosporium, the teleomorph form of Sporotrichum pruinosum. This is the first published report of disease caused by natural infection with this basidiomycete organism in animals.
Collapse
Affiliation(s)
- Drew R. Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Amanda J. Fales-Williams
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Jean-Sébastien Palerme
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Heather Flaherty
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Tracy Lindquist
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Kristina G. Miles
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
46
|
Elisashvili V, Kachlishvili E, Asatiani MD, Darlington R, Kucharzyk KH. Physiological Peculiarities of Lignin-Modifying Enzyme Production by the White-Rot Basidiomycete Coriolopsis gallica Strain BCC 142. Microorganisms 2017; 5:microorganisms5040073. [PMID: 29149086 PMCID: PMC5748582 DOI: 10.3390/microorganisms5040073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Sixteen white-rot Basidiomycota isolates were screened for production of lignin-modifying enzymes (LME) in glycerol- and mandarin peel-containing media. In the synthetic medium, Cerrena unicolor strains were the only high laccase (Lac) (3.2–9.4 U/mL) and manganese peroxidase (MnP) (0.56–1.64 U/mL) producers while one isolate Coriolopsis gallica was the only lignin peroxidase (LiP) (0.07 U/mL) producer. Addition of mandarin peels to the synthetic medium promoted Lac production either due to an increase in fungal biomass (Funalia trogii, Trametes hirsuta, and T. versicolor) or enhancement of enzyme production (C. unicolor, Merulius tremellosus, Phlebia radiata, Trametes ochracea). Mandarin peels favored enhanced MnP and LiP secretion by the majority of the tested fungi. The ability of LiP activity production by C. gallica, C. unicolor, F. trogii, T. ochracea, and T. zonatus in the medium containing mandarin-peels was reported for the first time. Several factors, such as supplementation of the nutrient medium with a variety of lignocellulosic materials, nitrogen source or surfactant (Tween 80, Triton X-100) significantly influenced production of LME by a novel strain of C. gallica. Moreover, C. gallica was found to be a promising LME producer with a potential for an easy scale up cultivation in a bioreactor and high enzyme yields (Lac-9.4 U/mL, MnP-0.31 U/mL, LiP-0.45 U/mL).
Collapse
Affiliation(s)
- Vladimir Elisashvili
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | - Eva Kachlishvili
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | - Mikheil D Asatiani
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | | | | |
Collapse
|
47
|
Kwak J, Yoon S, Mahanty B, Kim CG. Redox-mediator-free degradation of sulfathiazole and tetracycline using Phanerochaete chrysosporium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1211-1217. [PMID: 28910590 DOI: 10.1080/10934529.2017.1356191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The removal of two of the most commonly used antibiotics, tetracycline (TC) and sulfathiazole (STZ), using laccase-producing Phanerochaete chrysosporium was studied in liquid-phase batch experiments in the absence of any synthetic redox mediator. The removal of STZ and TC from single antibiotic spikes varied from 97.8% to 15.4% and 98.8% to 31%, respectively, with increasing initial doses of 10-250 mg L-1 within 14 days of incubation. The enzyme activity of P. chrysosporium was only minimally influenced by the concentrations of these antibiotics. The degradation of antibiotics initiated before an appreciable extracellular enzyme activity was noted in the fungal culture. The appearance of low-molecular weight molecular fragments from parent antibiotics in liquid chromatography-mass spectrometry confirmed the biodegradation process.
Collapse
Affiliation(s)
- Jehun Kwak
- a Department of Environment Engineering , INHA University , Nam-gu, Incheon , Republic of Korea
| | - Soonuk Yoon
- a Department of Environment Engineering , INHA University , Nam-gu, Incheon , Republic of Korea
| | - Biswanath Mahanty
- b Department of Biotechnology , Karunya University , Coimbatore , Tamil Nadu , India
| | - Chang-Gyun Kim
- a Department of Environment Engineering , INHA University , Nam-gu, Incheon , Republic of Korea
| |
Collapse
|
48
|
Xie C, Gong W, Yang Q, Zhu Z, Yan L, Hu Z, Peng Y. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp. BIORESOURCE TECHNOLOGY 2017; 243:188-195. [PMID: 28662388 DOI: 10.1016/j.biortech.2017.06.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
White-rot fungi combined with alkaline/oxidative (A/O) pretreatments of industrial hemp woody core were proposed to improve enzymatic saccharification. In this study, hemp woody core were treated with only white rot fungi, only A/O and combined with the two methods. The results showed that Pleurotus eryngii (P. eryngii) was the most effective fungus for pretreatment. Reducing sugars yield was 329mg/g with 30 Filter Paper Unit (FPU)/g cellulase loading when treated 21day. In the A/O groups, the results showed that when treated with 3% NaOH and 3% H2O2, the yield of reducing sugars was 288mg/g with 30FPU/g cellulase loading. After combination pretreatment with P. eryngii and A/O pretreatment, the reducing sugar yield from enzymatic hydrolysis of combined sample increased 1.10-1.29-fold than that of bio-treated or A/O pretreatment sample at the same conditions, suggesting that P. eryngii combined with A/O pretreatment was an effective method to improve enzyme hydrolysis.
Collapse
Affiliation(s)
- Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
49
|
Mishra V, Jana AK, Jana MM, Gupta A. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. BIORESOURCE TECHNOLOGY 2017; 236:49-59. [PMID: 28390277 DOI: 10.1016/j.biortech.2017.03.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 05/06/2023]
Abstract
The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions.
Collapse
Affiliation(s)
- Vartika Mishra
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Asim K Jana
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar 144011, Punjab, India.
| | - Mithu Maiti Jana
- Department of Chemistry, Dr B R A National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Antriksh Gupta
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar 144011, Punjab, India
| |
Collapse
|
50
|
Akpinar M, Ozturk Urek R. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 2017; 7:98. [PMID: 28560638 DOI: 10.1007/s13205-017-0742-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 01/30/2023] Open
Abstract
Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L-1) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu2+, 18 µM Fe2+, 0.025% (v/v) Tween 80, 4.0 g L-1 ammonium nitrate, 750 µM Mn2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.
Collapse
Affiliation(s)
- Merve Akpinar
- Chemistry Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35160, Buca-Izmir, Turkey
| | - Raziye Ozturk Urek
- Biochemistry Division, Chemistry Department, Faculty of Science, Dokuz Eylül University, 35160, Buca-Izmir, Turkey.
| |
Collapse
|