1
|
Xin Q, Jia H, Wang B, Pan L. CRISPR-dCpf1 mediated whole genome crRNA inhibition library for high-throughput screening of growth characteristic genes in Bacillus amyloliquefaciens LB1ba02. Int J Biol Macromol 2023; 253:127179. [PMID: 37802457 DOI: 10.1016/j.ijbiomac.2023.127179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, autolysis affects the growth of bacteria, further affecting the yield of target products. Besides, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which further leads to a lack of high-throughput screening tools. Here, we constructed a genome-wide crRNA inhibition library based on the CRISPR/dCpf1 system and high-throughput screening of related genes affecting the cell growth and autolysis using flow cytometry in B. amyloliquefaciens LB1ba02. The whole genome crRNA library was first validated for resistance to the toxic chemical 5-fluorouracil, and then used for validation of essential genes. In addition, seven gene loci (oppD, flil, tuaA, prmA, sigO, hslU, and GE03231) that affect the growth characteristics of LB1ba02 were screened. Among them, the Opp system had the greatest impact on growth. When the expression of operon oppA-oppB-oppC-oppD-oppF was inhibited, the cell growth difference was most significant. Inhibition of other sites could also promote rapid growth of bacteria to varying degrees; however, inhibition of GE03231 site accelerated cell autolysis. Therefore, the whole genome crRNA inhibition library is well suited for B. amyloliquefaciens LB1ba02 and can be further applied to high-throughput mining of other functional genes.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Hang Jia
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
2
|
Li J, Yang C, Jousset A, Yang K, Wang X, Xu Z, Yang T, Mei X, Zhong Z, Xu Y, Shen Q, Friman VP, Wei Z. Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants. eLife 2023; 12:e90726. [PMID: 37706503 PMCID: PMC10519709 DOI: 10.7554/elife.90726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Chunlan Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Keming Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xinlan Mei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zengtao Zhong
- College of Life Science, Nanjing Agricultural UniversityNanjingChina
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
- Department of Microbiology, University of HelsinkiHelsinkiFinland
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
3
|
Zalila-Kolsi I, Ben-Mahmoud A, Al-Barazie R. Bacillus amyloliquefaciens: Harnessing Its Potential for Industrial, Medical, and Agricultural Applications-A Comprehensive Review. Microorganisms 2023; 11:2215. [PMID: 37764059 PMCID: PMC10536829 DOI: 10.3390/microorganisms11092215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus amyloliquefaciens, a Gram-positive bacterium, has emerged as a versatile microorganism with significant applications in various fields, including industry, medicine, and agriculture. This comprehensive review aims to provide an in-depth understanding of the characteristics, genetic tools, and metabolic capabilities of B. amyloliquefaciens, while highlighting its potential as a chassis cell for synthetic biology, metabolic engineering, and protein expression. We discuss the bacterium's role in the production of chemicals, enzymes, and other industrial bioproducts, as well as its applications in medicine, such as combating infectious diseases and promoting gut health. In agriculture, B. amyloliquefaciens has demonstrated potential as a biofertilizer, biocontrol agent, and stress tolerance enhancer for various crops. Despite its numerous promising applications, B. amyloliquefaciens remains less studied than its Gram-negative counterpart, Escherichia coli. This review emphasizes the need for further research and development of advanced engineering techniques and genetic editing technologies tailored for B. amyloliquefaciens, ultimately unlocking its full potential in scientific and industrial contexts.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Ray Al-Barazie
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| |
Collapse
|
4
|
Zhang P, Lv Z, Lu Z, Ma W, Bie X. Effects of the deletion and substitution of thioesterase on bacillomycin D synthesis. Biotechnol Lett 2023:10.1007/s10529-023-03373-z. [PMID: 37266877 DOI: 10.1007/s10529-023-03373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The importance of thioesterase domains on bacillomycin D synthesis and the ability of different thioesterase domains to selectively recognize and catalyze peptide chain hydrolysis and cyclization were studied by deleting and substituting thioesterase domains. RESULTS No bacillomycin D analogs were found in the thioesterase-deleted strain fmbJ-ΔTE, indicating that the TE domain was essential for bacillomycin D synthesis. Then the thioesterase in bacillomycin D synthetases was replaced by the thioesterase in bacillomycin F, iturin A, mycosubtilin, plipastatin and surfactin synthetases. Except for fmbJ-S-TE, all others were able to synthesize bacillomycin D homologs because a suitable recombination site was selected, which maintained the integrity of NRPSs. In particular, the yield of bacillomycin D in fmbJ-IA-TE, fmbJ-M-TE and fmbJ-P-TE was significantly increased. CONCLUSION This study expands our understanding of the TE domain in bacillomycin D synthetases and shows that thioesterase has excellent potential in the chemical-enzymatic synthesis of natural products or their analogs.
Collapse
Affiliation(s)
- Ping Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ziyan Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenjie Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Effect and regulation of fatty acids on bacillomycin D synthesis. World J Microbiol Biotechnol 2023; 39:113. [PMID: 36907904 DOI: 10.1007/s11274-023-03551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
Bacillomycin D is a cyclic antimicrobial lipopeptide that has excellent antifungal effects, but its application is limited due to its low yield. At present, it is not clear whether fatty acids regulate the synthesis of bacillomycin D. Therefore, the effects of nine fatty acids on the yield of bacillomycin D produced by Bacillus amyloliquefaciens fmbJ were studied. The results showed that sodium propionate, propionic acid, and butyric acid could increase the yield of bacillomycin D by 44, 40, and 10%, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression levels of bacillomycin D synthesis gene, signaling factors and genes related to fatty acid metabolism, so as to explore the mechanism of sodium propionate regulating bacillomycin D synthesis. In conclusion, sodium propionate could accelerate the tricarboxylic acid cycle and promoted spore formation, cell movement, the secretion of extracellular protease and the transcription of bacillomycin D synthesis gene by upregulating the expression of signal factors degU, degQ, sigH, sigM and spo0A and ultimately promoted the synthesis of bacillomycin D. In this study, the mechanism of sodium propionate increasing bacillomycin D production was explored from multiple perspectives, which provided theoretical support for the large-scale production of bacillomycin D and was expected to promote its wide application in food, agriculture and medicine fields.
Collapse
|
6
|
Huang K, Liu W, Zhao FJ. Methylarsenite is a broad-spectrum antibiotic disrupting cell wall biosynthesis and cell membrane potential. Environ Microbiol 2023; 25:562-574. [PMID: 36510854 DOI: 10.1111/1462-2920.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Methylarsenite (MAs(III)), a product of arsenic biomethylation or bioreduction of methylarsenate (MAs(V)), has been proposed as a primitive antibiotic. However, the antibacterial property and the bactericidal mechanism of MAs(III) remain largely unclear. In this study, we found that MAs(III) is highly toxic to 14 strains of bacteria, especially against 9 strains of Gram-positive bacteria with half maximal inhibitory concentration (IC50) in the sub micromolar range for Staphyloccocus aureus, Microbacterium sp., Pseudarthrobacter siccitolerans and several Bacillus species. In a co-culture of B. subtilis 168 and MAs(III)-producer Enterobacter sp. CZ-1, the later reduced non-toxic MAs(V) to highly toxic MAs(III) to kill the former and gain a competitive advantage. MAs(III) induced autolysis of B. subtilis 168. Deletion of the autolysins LytC, LytD, LytE, and LytF suppressed MAs(III)-induced autolysis in B. subtilis 168. Transcriptomic analysis showed that MAs(III) downregulated the expression of the major genes involved in the biosynthesis of the cell wall peptidoglycan. Overexpression of an UDP-N-acetylglucosamine enolpyruvyl transferase gene murAA alleviated MAs(III)-induced autolysis in B. subtilis 168. MAs(III) disrupted the membrane potential of B. subtilis 168 and caused severe membrane damage. The results suggest that MAs(III) is a broad-spectrum antibiotic preferentially against Gram-positive bacteria by disrupting the cell wall biosynthesis pathway and cell membrane potential.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Liu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Translocation of subunit PPSE in plipastatin synthase and synthesis of novel lipopeptides. Synth Syst Biotechnol 2022; 7:1173-1180. [PMID: 36204332 PMCID: PMC9519435 DOI: 10.1016/j.synbio.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
8
|
Lv Z, Ma W, Zhang P, Lu Z, Zhou L, Meng F, Wang Z, Bie X. Deletion of COM donor and acceptor domains and the interaction between modules in bacillomycin D produced by Bacillus amyloliquefaciens. Synth Syst Biotechnol 2022; 7:989-1001. [PMID: 35782484 PMCID: PMC9213223 DOI: 10.1016/j.synbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomei Bie
- Corresponding author. Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Zhang J, Zhu B, Xu X, Liu Y, Li Q, Li Y, Lu F. Remodeling Bacillus amyloliquefaciens Cell Wall Rigidity to Reduce Cell Lysis and Increase the Yield of Heterologous Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10552-10562. [PMID: 35984403 DOI: 10.1021/acs.jafc.2c04454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacillus amyloliquefaciens has great potential as a host for heterologous protein production, but its severe autolytic behavior has precluded its industrial application to date. Because d,l-endopeptidase activity-guided cell wall rigidity is considered essential for autolysis resistance, we investigated the effects of d,l-endopeptidase genes lytE, lytF, cwlO, and cwlS play on the growth, lysis, and morphology remodeling of B. amyloliquefaciens strain TCCC11018. Individual and combinatorial deletion of lytE, lytF, and cwlS enhanced the cell growth and delayed cell lysis. For the best mutant with the lytF and cwlS double deletion, the viable cell number at 24 h increased by 11.90% and the cell wall thickness at 6 h increased by 25.87%. Transcriptomic and proteomic analyses indicated that the improvement was caused by enhanced peptidoglycan synthesis. With the lytF and cwlS double deletion, the extracellular green fluorescent protein and phospholipase D expression levels increased by 113 and 55.89%, respectively. This work broadens our understanding of the relationship between d,l-endopeptidases and B. amyloliquefaciens cell characteristics, which provides an effective strategy to improve the heterologous protein expression in B. amyloliquefaciens-based cell factories.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
10
|
Chen H, Wu J, Huang X, Feng X, Ji H, Zhao L, Wang J. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front Microbiol 2022; 13:968439. [PMID: 36090104 PMCID: PMC9459226 DOI: 10.3389/fmicb.2022.968439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are important for decomposition of proteins to generate peptides or amino acids and have a broad range of applications in different industries. Herein, a gene encoding an alkaline protease (AprBcp) from Bacillus circulans R1 was cloned and bioinformatics analyzed. In addition, a series of strategies were applied to achieve high-level expression of AprBcp in Bacillus subtilis. The maximum activity of AprBcp reached 165,870 U/ml after 60 h fed-batch cultivation in 50 l bioreactor. The purified recombinant AprBcp exhibited maximum activity at 60°C and pH 10.0, and remained stable in the range from pH 8.0 to 11.0 and 30 to 45°C. Metal ions Ca2+, Mn2+, and Mg2+ could improve the stability of AprBcp. Furthermore, the recombinant AprBcp displayed great potential application on the recovery of protein from soybean dregs. The results of this study will provide an effective method to prepare AprBcp in B. subtilis and its potential application on utilization of soybean dregs.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Jie Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaodan Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Xuzhong Feng
- Shenzhen Shanggutang Food Development Co., Ltd.,Shenzhen, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd.,Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
11
|
Xin Q, Wang B, Pan L. Development and application of a CRISPR-dCpf1 assisted multiplex gene regulation system in Bacillus amyloliquefaciens LB1ba02. Microbiol Res 2022; 263:127131. [PMID: 35868259 DOI: 10.1016/j.micres.2022.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which makes its CRISPR tool development lagging far behind other Bacillus species. Here, we adapted a nuclease-deficient mutant dCpf1 (D917A) of Cpf1 and developed a CRISPR/dCpf1 assisted multiplex gene regulation system for the first time in B. amyloliquefaciens LB1ba02. A 73.9-fold inhibition efficiency and an optimal 1.8-fold activation effect at the - 327 bp site upstream of the TSS were observed in this system. In addition, this system achieved the simultaneous activation of the expression of three genes (secE, secDF, and prsA) by designing a crRNA array. On this basis, we constructed a crRNA activation library for the proteins involved in the Sec pathway, and screened 7 proteins that could promote the secretion of extracellular proteins. Among them, the most significant effect was observed when the expression of molecular motor transporter SecA was activated. Not only that, we constructed crRNA arrays to activate the expression of two or three proteins in combination. The results showed that the secretion efficiency of fluorescent protein GFP was further increased and an optimal 9.8-fold effect was observed when SecA and CsaA were simultaneously activated in shake flask fermentation. Therefore, the CRISPR/dCpf1-ω transcription regulation system can be applied well in a restriction-modification system strain and this system provides another CRISPR-based regulation tool for researchers who are committed to the development of genetic engineering and metabolic circuits in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
12
|
Xin Q, Chen Y, Chen Q, Wang B, Pan L. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02. Microb Cell Fact 2022; 21:99. [PMID: 35643496 PMCID: PMC9148480 DOI: 10.1186/s12934-022-01832-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yudan Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Zhang J, Zhu B, Li X, Xu X, Li D, Zeng F, Zhou C, Liu Y, Li Y, Lu F. Multiple Modular Engineering of Bacillus Amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases From B. Clausii. Front Bioeng Biotechnol 2022; 10:866066. [PMID: 35497355 PMCID: PMC9046661 DOI: 10.3389/fbioe.2022.866066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a generally recognized as safe (GRAS) microorganism that presents great potential for the production of heterologous proteins. In this study, we performed genomic and comparative transcriptome to investigate the critical modular in B. amyloliquefaciens on the production of heterologous alkaline proteases (AprE). After investigation, it was concluded that the key modules affecting the production of alkaline protease were the sporulation germination module (Module I), extracellular protease synthesis module (Module II), and extracellular polysaccharide synthesis module (Module III) in B. amyloliquefaciens. In Module I, AprE yield for mutant BA ΔsigF was 25.3% greater than that of BA Δupp. Combining Module I synergistically with mutation of extracellular proteases in Module II significantly increased AprE production by 36.1% compared with production by BA Δupp. In Module III, the mutation of genes controlling extracellular polysaccharides reduced the viscosity and the accumulation of sediment, and increased the rate of dissolved oxygen in fermentation. Moreover, AprE production was 39.6% higher than in BA Δupp when Modules I, II and III were engineered in combination. This study provides modular engineering strategies for the modification of B. amyloliquefaciens for the production of alkaline proteases.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
14
|
Shen P, Niu D, Liu X, Tian K, Permaul K, Singh S, Mchunu NP, Wang Z. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6552961. [PMID: 35325171 PMCID: PMC9142198 DOI: 10.1093/jimb/kuac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022]
Abstract
Bacillus licheniformis is a well-known platform strain for production of industrial enzymes. However, the development of genetically stable recombinant B. licheniformis for high-yield enzyme production is still laborious. Here, a pair of plasmids, pUB-MazF and pUB'-EX1, were firstly constructed. pUB-MazF is a thermosensitive, self-replicable plasmid. It was able to efficiently cure from the host cell through induced expression of an endoribonuclease MazF, which is lethal to the host cell. pUB′-EX1 is a nonreplicative and integrative plasmid. Its replication was dependent on the thermosensitive replicase produced by pUB-MazF. Transformation of pUB′-EX1 into the B. licheniformis BL-UBM harboring pUB-MazF resulted in both plasmids coexisting in the host cell. At an elevated temperature, and in the presence of isopropyl-1-thio-β-d-galactopyranoside and kanamycin, curing of the pUB-MazF and multiple-copy integration of pUB′-EX1 occurred, simultaneously. Through this procedure, genetically stable recombinants integrated multiple copies of amyS, from Geobacillus stearothermophilus ATCC 31195 were facilely obtained. The genetic stability of the recombinants was verified by repeated subculturing and shaking flask fermentations. The production of α-amylase by recombinant BLiS-002, harboring five copies of amyS, in a 50-l bioreactor reached 50 753 U/ml after 72 hr fermentation. This strategy therefore has potential for production of other enzymes in B. licheniformis and for genetic modification of other Bacillus species.
Collapse
Affiliation(s)
- Peili Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Correspondence should be addressed to: Dandan Niu, E-mail:
| | - Xuelian Liu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kugen Permaul
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban 4001, South Africa
| | - Nokuthula Peace Mchunu
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort 0110, South Africa
| | - Zhengxiang Wang
- Correspondence should be addressed to: Zhengxiang Wang, E-mail:
| |
Collapse
|
15
|
A Novel Regulator Participating in Nitrogen Removal Process of Bacillus subtilis JD-014. Int J Mol Sci 2021; 22:ijms22126543. [PMID: 34207153 PMCID: PMC8234713 DOI: 10.3390/ijms22126543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Aerobic denitrification is considered as a promising biological method to eliminate the nitrate contaminants in waterbodies. However, the molecular mechanism of this process varies in different functional bacteria. In this study, the nitrogen removal characteristics for a newly isolated aerobic denitrifier Bacillus subtilis JD-014 were investigated, and the potential functional genes involved in the aerobic denitrification process were further screened through transcriptome analysis. JD-014 exhibited efficient denitrification performance when having sodium succinate as the carbon source with the range of nitrate concentration between 50 and 300 mg/L. Following the transcriptome data, most of the up-regulated differentially expressed genes (DEGs) were associated with cell motility, carbohydrate metabolism, and energy metabolism. Moreover, gene nirsir annotated as sulfite reductase was screened out and further identified as a regulator participating in the nitrogen removal process within JD-014. The findings in present study provide meaningful information in terms of a comprehensive understanding of genetic regulation of nitrogen metabolism, especially for Bacillus strains.
Collapse
|
16
|
Insight into the denitrification mechanism of Bacillus subtilis JD-014 and its application potential in bioremediation of nitrogen wastewater. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sun J, Liu Y, Lin F, Lu Z, Lu Y. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J Appl Microbiol 2021; 131:1289-1304. [PMID: 33460520 DOI: 10.1111/jam.15007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
AIM In the study, we investigated the regulatory effects of these genes (codY, comA, degU and spo0A) on the biosynthesis of three lipopeptides (bacillomycin D, fengycin and surfactin) in Bacillus amyloliquefaciens. METHODS AND RESULTS The codY, comA, degU and spo0A genes in B. amyloliquefaciens fmbJ were knocked out. The results showed that the productions of bacillomycin D were significantly reduced compared with that of fmbJ. Their deletion induced great changes in the levels of transcripts specifying metabolic pathways, quorum sensing system and substance transport system in fmbJ. Moreover, overexpression of these genes improved the productions of bacillomycin D. In particular, the overexpression of spo0A enhanced bacillomycin D yield up to 648·9 ± 60·9 mg l-1 from 277·3 ± 30·5 mg l-1 . In addition, the yields of surfactin in fmbJΔcodY and fmbJΔdegU were significantly improved, and the regulatory factor CodY had no significant effect on the synthesis of fengycin. CONCLUSIONS These genes positively regulated the expression of bacillomycin D and fengycin synthase genes in strain fmbJ. However, codY and degU negatively regulated surfactin biosynthesis. Moreover, it was found that CodY had a concentration dependence on bacillomycin D synthesis. Spo0A might play a direct regulatory role in the synthesis and secretion of bacillomycin D. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicated that genetic engineering of regulatory genes was an effective strategy to improve the yields of antimicrobial lipopeptides and provided promising strains for industrial production of lipopeptides.
Collapse
Affiliation(s)
- J Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Y Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - F Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Z Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Y Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Li Y, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Efficient Genome Editing in Bacillus licheniformis Mediated by a Conditional CRISPR/Cas9 System. Microorganisms 2020; 8:microorganisms8050754. [PMID: 32429599 PMCID: PMC7285353 DOI: 10.3390/microorganisms8050754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Bacillus licheniformis is widely used to produce multiple enzymes and chemicals in industrial fermentation. It is also an organism that is hard to genetically manipulate, which is mainly attributed to its extremely low transformation efficiency. The lack of genetic modification technology severely limits its further application. In this study, an all-in-one conditional clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 plasmid was developed for B. licheniformis with the cas9 gene under the control of a xylose-inducible promoter. By means of this design, the expression of the cas9 gene could be repressed without xylose, which significantly improved the transformation ratio from less than 0.1 cfu/μg to 2.42 cfu/μg DNA. Compared with this conditional system, a constitutive overexpression system led to significant growth retardation in bacterial cells. Both the biomass and specific growth rate decreased greatly. After transformation, successful genome editing could be triggered by 0.5% xylose. When the α-amylase gene amyL was used as a genomic target, the efficiencies of its disruption using three different protospacer-adjacent motif (PAM) sequences were 64.3%, 70.9%, and 47.1%, respectively. Moreover, temperature plays a pivotal role in the function of the constructed CRISPR system. The maximum success rate reached 97% at 20 °C, while higher temperatures negatively impacted the function of the system. These results suggested that the design with a cas9 gene under the strict control of a xylose-inducible promoter significantly improved the success rate of genome editing in this host. This work contributes to the development of genetic manipulation and furthers the use of B. licheniformis as an efficient industrial workhorse.
Collapse
Affiliation(s)
- Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.W.); (L.Z.); (Z.D.); (S.X.); (Z.G.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85918235
| |
Collapse
|
19
|
Yuan F, Li K, Zhou C, Zhou H, Liu H, Chai H, Lu F, Zhang H. Identification of two novel highly inducible promoters from Bacillus licheniformis by screening transcriptomic data. Genomics 2020; 112:1866-1871. [DOI: 10.1016/j.ygeno.2019.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
|
20
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
21
|
Lu J, Zhu X, Zhang C, Lu F, Lu Z, Lu Y. Co-expression of alcohol dehydrogenase and aldehyde dehydrogenase in Bacillus subtilis for alcohol detoxification. Food Chem Toxicol 2020; 135:110890. [DOI: 10.1016/j.fct.2019.110890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
|
22
|
Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12816-12823. [PMID: 31675231 DOI: 10.1021/acs.jafc.9b04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Bacillus subtilis Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified. LNR shares only 40% identity with PNR and reduces the aromatic ring C-6 nitro group of pendimethalin and both nitro groups of trifluralin, butralin, and oryzalin. The catalytic activities against the four dinitroanilines were much higher for LNR than for PNR. lnr deletion significantly reduced the pendimethalin-reduction activity (60% activity loss), while pnr deletion led to only 30% activity loss, indicating that both LNR and PNR were involved in pendimethalin nitroreduction in strain Y3; however, LNR played the major role. This study facilitates the elucidation of pendimethalin catabolism and provides degrading enzyme resources for the removal of dinitroaniline herbicide residues in environment and agricultural products.
Collapse
Affiliation(s)
- Haiyan Ni
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Na Li
- School of Life Science and Technology , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Meng Qian
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Jian He
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Qing Chen
- College of Life Sciences , Zaozhuang University , Zaozhuang , Shandong 277160 , China
| | - Yunhong Huang
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Long Zou
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zhong-Er Long
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , China
| |
Collapse
|
23
|
Watzlawick H, Altenbuchner J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system. AMB Express 2019; 9:158. [PMID: 31571017 PMCID: PMC6768931 DOI: 10.1186/s13568-019-0884-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/21/2019] [Indexed: 01/18/2023] Open
Abstract
The ganA gene from Bacillus subtilis encoding a β-galactosidase for degradation of the galactomannan was integrated in different loci of the B. subtilis chromosome employing the CRISPR/Cas9 system. Hereby a total of five copies of ganA cassettes in which the ganA gene was fused with the glucitol-promoter were inserted in the recipient chromosome wherein hypothetical, sporulation and protease genes were deleted. The strain with five copies of ganA expression cassette showed a β-galactosidase activity similar to the one with the same gene on a pUB110 derived multi-copy plasmid and under the same regulatory control of the glucitol promoter and GutR activator. The production of β-galactosidase in the strain with the multi-copy plasmid decreased rapidly when growth was performed under induced conditions and without antibiotic selection. In contrast, the strain with the five copies of ganA in the chromosome produced β-galactosidase for at least 40 generations. This demonstrates that the CRISPR/Cas9 system is a valuable and easy tool for constructing stable producer strains. The bigger efforts that are needed for the multiple target gene integration into the chromosome compared to cloning in expression vectors were justified by the higher stability of the target genes and the lack of antibiotic resistance genes.
Collapse
|
24
|
Jiang Y, Lu Y, Huang Y, Chen S, Ji Z. Bacillus amyloliquefaciens HZ-12 heterologously expressing NdmABCDE with higher ability of caffeine degradation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Mahipant G, Kato J, Kataoka N, Vangnai AS. An alternative genome-integrated method for undomesticated Bacillus subtilis and related species. J GEN APPL MICROBIOL 2019; 65:96-105. [PMID: 30487367 DOI: 10.2323/jgam.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given their applicability in genetic engineering, undomesticated Bacillus strains are extensively used as non-natural hosts for chemical production due to their high tolerance of toxic substrates or products. However, they are difficult to genomically modify due to their low transformation efficiencies. In this study, the Bacillus-E. coli shuttle vector pHY300PLK, which is widely used in gram-positive bacteria, was adopted for genome integration in organic solvent-tolerant Bacillus isolates. The Bacillus-replicative vector was used to deliver homologous recombinant DNA and propagate itself inside the host cell, increasing the likelihood of genome integration of the recombinant DNA. Then, the unintegrated vectors were cured by cell cultivation in antibiotic-free medium with facilitation of nickel ions. The developed protocol was successfully demonstrated and validated by the disruption of amyE gene in B. subtilis 168. With an improved clonal selection protocol, the probability of clonal selection of the amyE::cat genome-integrated mutants was increased up to 42.0 ± 10.2%. Genome integration in undomesticated, organic solvent tolerant Bacillus strains was also successfully demonstrated with amyE as well as proB gene creating the gene-disrupted mutants with the corresponding phenotype and genotype. Not only was this technique effectively applied to several strains of undomesticated B. subtilis, but it was also successfully applied to B. cereus. This study validates the possibility of the application of Bacillus-replicative vector as well as the developed protocol in a variety of genome modification of undomesticated Bacillus species.
Collapse
Affiliation(s)
- Gumpanat Mahipant
- Biological Sciences Program, Faculty of Science, Chulalongkorn University.,Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University
| | - Alisa S Vangnai
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University.,Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University
| |
Collapse
|
26
|
Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. ACTA ACUST UNITED AC 2019; 46:113-123. [DOI: 10.1007/s10295-018-2089-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
Abstract
Bacillus amyloliquefaciens K11 is a hyperproducer of extracellular neutral protease, which can produce recombinant homologous protein steadily and is amenable to scale up to high-cell density fermentation. The present study aims to genetically modify strain K11 as a highly efficient secretory expression system for high-level production of heterologous proteins. Using B. amyloliquefaciens K11 and alkaline protease gene BcaprE as the expression host and model gene, the gene expression levels mediated by combinations of promoters PamyQ, PaprE and Pnpr and signal peptides SPamyQ, SPaprE and SPnpr were assessed on shake flask level. The PamyQ-SPaprE was found to be the best secretory expression cassette, giving the highest enzyme activities of extracellular BcaprE (13,800 ± 308 U/mL). Using the same expression system, the maltogenic α-amylase Gs-MAase and neutral protease BaNPR were successfully produced with the enzyme activities of 19. ± 0.2 U/mL and 17,495 ± 417 U/mL, respectively. After knocking out the endogenous neutral protease-encoding gene Banpr, the enzyme activities of BcaprE and Gs-MAase were further improved by 25.4% and 19.4%, respectively. Moreover, the enzyme activities of BcaprE were further improved to 30,200 ± 312 U/mL in a 15 L fermenter following optimization of the fermentation conditions. In the present study, the genetically engineered B. amyloliquefaciens strain 7-6 containing PamyQ-SPaprE as the secretory expression cassette was developed. This efficient expression system shows general applicability and represents an excellent industrial strain for the production of heterologous proteins.
Collapse
|
27
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
28
|
Liu X, Wang H, Wang B, Pan L. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium. Protein Expr Purif 2018; 151:72-77. [DOI: 10.1016/j.pep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
29
|
Liu X, Wang H, Wang B, Pan L. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Microb Cell Fact 2018; 17:163. [PMID: 30348150 PMCID: PMC6196424 DOI: 10.1186/s12934-018-1011-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Bacillus subtilis has been widely used as a host for heterologous protein expression in food industry. B. subtilis ATCC6051 is an alternative expression host for the production of industrial enzymes, and exhibits favorable growth properties compared to B. subtilis 168. Extracellular expression of pullulanase from recombinant B. subtilis is still limited due to the issues on promoters of B. subtilis expression system. This study was undertaken to develop a new, high-level expression system in B. subtilis ATCC6051. Results To further optimize B. subtilis ATCC6051 as a expression host, eight extracellular proteases (aprE, nprE, nprB, epr, mpr, bpr, vpr and wprA), the sigma factor F (spoIIAC) and a surfactin (srfAC) were deleted, yielding the mutant B. subtilis ATCC6051∆10. ATCC6051∆10 showed rapid growth and produced much more extracellular protein compared to the widetype strain ATCC6051, due to the inactivation of multiple proteases. Using this mutant as the host, eleven plasmids equipped with single promoters were constructed for recombinant expression of pullulanase (PUL) from Bacillus naganoensis. The plasmid containing the PspovG promoter produced the highest extracellular PUL activity, which achieved 412.9 U/mL. Subsequently, sixteen dual-promoter plasmids were constructed and evaluated using this same method. The plasmid containing the dual promoter PamyL–PspovG produced the maximum extracellular PUL activity (625.5 U/mL) and showed the highest expression level (the dry cell weight of 18.7 g/L). Conclusions Taken together, we constructed an effective B. subtilis expression system by deleting multiple proteases and screening strong promoters. The dual-promoter PamyL–PspovG system was found to support superior expression of extracellular proteins in B. subtilis ATCC6051. Electronic supplementary material The online version of this article (10.1186/s12934-018-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hai Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
30
|
Gao L, Guo J, Fan Y, Ma Z, Lu Z, Zhang C, Zhao H, Bie X. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microb Cell Fact 2018; 17:84. [PMID: 29855381 PMCID: PMC5984369 DOI: 10.1186/s12934-018-0929-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/11/2018] [Indexed: 12/04/2022] Open
Abstract
Background Plipastatin, an antifungal lipopeptide, is synthesized by a non-ribosomal peptide synthetase (NRPS) in Bacillus subtilis. However, little information is available on the combinatorial biosynthesis strategies applied in plipastatin biosynthetic pathway. In this study, we applied module or individual domain deletion strategies to engineer the plipastatin biosynthetic pathway, and investigated the effect of deletions on the plipastatin assembly line, as well as revealed the synthetic patterns of novel lipopeptides. Results Module deletion inactivated the entire enzyme complex, whereas individual domain (A/T domain) deletion within module 7 truncated the assembly line, resulting in truncated linear hexapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Ala/Val). Interestingly, within the module 6 catalytic unit, the effect of thiolation domain deletion differed from that of adenylation deletion. Absence of the T6-domain resulted in a nonproductive strain, whereas deletion of the A6-domain resulted in multiple assembly lines via module-skipping mechanism, generating three novel types of plipastatin derivatives, pentapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu), hexapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Ile), and octapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Gln-Tyr-Ile). Conclusions Notably, a unique module-skipping process occurred following deletion of the A6-domain, which has not been previously reported for engineered NRPS systems. This finding provides new insight into the lipopeptides engineering. It is of significant importance for combinatorial approaches and should be taken into consideration in engineering non-ribosomal peptide biosynthetic pathways for generating novel lipopeptides. Electronic supplementary material The online version of this article (10.1186/s12934-018-0929-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Gao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Jianping Guo
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Yun Fan
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
31
|
Sun J, Qian S, Lu J, Liu Y, Lu F, Bie X, Lu Z. Knockout of rapC Improves the Bacillomycin D Yield Based on De Novo Genome Sequencing of Bacillus amyloliquefaciens fmbJ. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4422-4430. [PMID: 29648449 DOI: 10.1021/acs.jafc.8b00418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacillus amyloliquefaciens, a Gram-positive and soil-dwelling bacterium, could produce secondary metabolites that suppress plant pathogens. In this study, we provided the whole genome sequence results of B. amyloliquefaciens fmbJ, which had one circular chromosome of 4 193 344 bp with 4249 genes, 87 tRNA genes, and 27 rRNA genes. In addition, fmbJ was found to contain several gene clusters of antimicrobial lipopeptides (bacillomycin D, surfactin, and fengycin), and bacillomycin D homologues were further comprehensively identified. To clarify the influence of rapC regulating the synthesis of lipopeptide on the yield of bacillomycin D, rapC gene in fmbJ was successfully deleted by the marker-free method. Finally, it was found that the deletion of rapC gene in fmbJ significantly improved bacillomycin D production from 240.7 ± 18.9 to 360.8 ± 30.7 mg/L, attributed to the increased the expression of bacillomycin D synthesis-related genes through enhancing the transcriptional level of comA, comP, and phrC. These results showed that the production of bacillomycin D in B. amyloliquefaciens fmbJ might be regulated by the RapC-PhrC system. The findings are expected to advance further agricultural application of Bacillus spp. as a promising source of natural bioactive compounds.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Shiquan Qian
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jing Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yanan Liu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Fengxia Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
32
|
Kharchenko MS, Teslya PN, Babaeva MN, Zakataeva NP. Improving the selection efficiency of the counter-selection marker pheS* for the genetic engineering of Bacillus amyloliquefaciens. J Microbiol Methods 2018; 148:18-21. [PMID: 29596960 DOI: 10.1016/j.mimet.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis pheS was genetically modified to obtain a counter-selection marker with high selection efficiency in Bacillus amyloliquefaciens. The application of the new replication-thermosensitive integrative vector pNZTM1, containing this marker, pheSBsT255S/A309G, with a two-step replacement recombination procedure provides an effective tool for the genetic engineering of industrially important Bacillus species.
Collapse
Affiliation(s)
| | - Petr N Teslya
- Ajinomoto-Genetika Research Institute, Moscow, Russia
| | | | | |
Collapse
|
33
|
Identification of strong promoters based on the transcriptome of Bacillus licheniformis. Biotechnol Lett 2017; 39:873-881. [PMID: 28238059 DOI: 10.1007/s10529-017-2304-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To expand the repertoire of strong promoters for high level expression of proteins based on the transcriptome of Bacillus licheniformis. RESULTS The transcriptome of B. licheniformis ATCC14580 grown to the early stationary phase was analyzed and the top 10 highly expressed genes/operons out of the 3959 genes and 1249 operons identified were chosen for study promoter activity. Using beta-galactosidase gene as a reporter, the candidate promoter pBL9 exhibited the strongest activity which was comparable to that of the widely used strong promoter p43. Furthermore, the pro-transglutaminase from Streptomyces mobaraensis (pro-MTG) was expressed under the control of promoter pBL9 and the activity of pro-MTG reached 82 U/ml after 36 h, which is 23% higher than that of promoter p43 (66.8 U/ml). CONCLUSION In our analyses of the transcriptome of B. licheniformis, we have identified a strong promoter pBL9, which could be adapted for high level expression of proteins in the host Bacillus subtilis.
Collapse
|
34
|
Translocation of the thioesterase domain for the redesign of plipastatin synthetase. Sci Rep 2016; 6:38467. [PMID: 28009004 PMCID: PMC5180189 DOI: 10.1038/srep38467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large enzymatic complexes that catalyse the synthesis of biologically active peptides in microorganisms. Genetic engineering has recently been applied to reprogram NRPSs to produce lipopeptides with a new sequence. The carboxyl-terminal thioesterase (TE) domains from NRPSs catalyse cleavage products by hydrolysis or complex macrocyclization. In this study, we modified plipastatin synthetase by moving the intrinsic TE region to the end of the internal thiolation (T) domains, thus generating Bacillus subtilis strains that could produce new truncated cyclic or linear peptides of the predicted sequence, which further provided an important insight into the regioselectivity of plipastatin TE. The TE was capable of recognizing and catalysing the lactone formation between L-Try3 with the last few residues L-Pro7 and L-Gln8 at the C-terminus. Additionally, the unmatched linkers connecting the TE region and T domain resulted in nonproduction strains, suggesting that the native T–TE linker is necessary and sufficient for the TE domain to release the products from the hybrid enzymes. This is the first report to demonstrate truncated cyclic lipopeptides production and module skipping by simply moving the TE domain forward in an NRPS system.
Collapse
|
35
|
Zakataeva NP, Romanenkov DV, Yusupova YR, Skripnikova VS, Asahara T, Gronskiy SV. Identification, Heterologous Expression, and Functional Characterization of Bacillus subtilis YutF, a HAD Superfamily 5'-Nucleotidase with Broad Substrate Specificity. PLoS One 2016; 11:e0167580. [PMID: 27907199 PMCID: PMC5132288 DOI: 10.1371/journal.pone.0167580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
5'-nucleotidases (EC 3.1.3.5) catalyze the hydrolytic dephosphorylation of 5'-ribonucleotides and 5'-deoxyribonucleotides as well as complex nucleotides, such as uridine 5'-diphosphoglucose (UDP-glucose), nicotinamide adenine dinucleotide and flavin adenine dinucleotide, to their corresponding nucleosides plus phosphate. These enzymes have been found in diverse species in intracellular and membrane-bound, surface-localized forms. Soluble forms of 5'-nucleotidases belong to the ubiquitous haloacid dehalogenase superfamily (HADSF) and have been shown to be involved in the regulation of nucleotide, nucleoside and nicotinamide adenine dinucleotide (NAD+) pools. Despite the important role of 5'-nucleotidases in cellular metabolism, only a few of these enzymes have been characterized in the Gram-positive bacterium Bacillus subtilis, the workhorse industrial microorganism included in the Food and Drug Administration’s GRAS (generally regarded as safe) list. In the present study, we report the identification of a novel 5'-nucleotidase gene from B. subtilis, yutF, which comprises 771 bp encoding a 256-amino-acid protein belonging to the IIA subfamily of the HADSF. The gene product is responsible for the major p-nitrophenyl phosphatase activity in B. subtilis. The yutF gene was overexpressed in Escherichia coli, and its product fused to a polyhistidine tag was purified and biochemically characterized as a soluble 5'-nucleotidase with broad substrate specificity. The recombinant YutF protein was found to hydrolyze various purine and pyrimidine 5'-nucleotides, showing preference for 5'-nucleoside monophosphates and, specifically, 5'-XMP. Recombinant YutF also exhibited phosphohydrolase activity toward nucleotide precursors, ribose-5-phosphate and 5-phosphoribosyl-1-pyrophosphate. Determination of the kinetic parameters of the enzyme revealed a low substrate specificity (Km values in the mM concentration range) and modest catalytic efficiencies with respect to substrates. An initial study of the regulation of yutF expression showed that the yutF gene is a component of the yutDEF transcription unit and that YutF overproduction positively influences yutDEF expression.
Collapse
Affiliation(s)
| | | | | | | | - Takayuki Asahara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
36
|
Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, Yan X. pheS * , an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol 2016; 101:217-227. [PMID: 27730334 DOI: 10.1007/s00253-016-7906-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/22/2022]
Abstract
Aside from applications in the production of commercial enzymes and metabolites, Bacillus amyloliquefaciens is also an important group of plant growth-promoting rhizobacteria that supports plant growth and suppresses phytopathogens. A host-genotype-independent counter-selectable marker would enable rapid genetic manipulation and metabolic engineering, accelerating the study of B. amyloliquefaciens and its development as both a microbial cell factory and plant growth-promoting rhizobacteria. Here, a host-genotype-independent counter-selectable marker pheS * was constructed through a point mutation of the gene pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase in Bacillus subtilis strain 168. In the presence of 5 mM p-chloro-phenylalanine, 100 % of B. amyloliquefaciens strain SQR9 cells carrying pheS * were killed, whereas the wild-type strain SQR9 showed resistance to p-chloro-phenylalanine. A simple pheS * and overlap-PCR-based strategy was developed to create the marker-free deletion of the amyE gene as well as a 37-kb bmy cluster in B. amyloliquefaciens SQR9. The effectiveness of pheS * as a counter-selectable marker in B. amyloliquefaciens was further confirmed through the deletion of amyE genes in strains B. amyloliquefaciens FZB42 and NJN-6. In addition, the potential use of pheS * in other Bacillus species was preliminarily assessed. The expression of PheS* in B. subtilis strain 168 and B. cereus strain ATCC 14579 caused pronounced sensitivity of both hosts to p-chloro-phenylalanine, indicating that pheS * could be used as a counter-selectable marker (CSM) in these strains.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Lingling Shi
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Bin Ye
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Haichao Feng
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ji Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, People's Republic of China
| | - Ruifu Zhang
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
37
|
Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 2016; 16:31. [PMID: 26957318 PMCID: PMC4784341 DOI: 10.1186/s12866-016-0645-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method. Results Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin, [∆Leu3]surfactin and [∆Leu6]surfactin showed evidence of reduced toxicity, while [∆Asp5]surfactin showed stronger inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum inhibitory concentration of [∆Leu6]surfactin for Fusarium moniliforme was 50 μg/mL, such that [∆Leu6]surfactin could lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to stimulating apoptosis in F. moniliforme. Conclusions The present results revealed that [∆Leu6]surfactin showed a significant antifungal activity against F. moniliforme and might successfully be employed to control fungal food contamination and improve food safety.
Collapse
Affiliation(s)
- Jian Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Ling Gao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Hongxia Liu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| |
Collapse
|
38
|
A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 2016; 6:22229. [PMID: 26916714 PMCID: PMC4768087 DOI: 10.1038/srep22229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h.
Collapse
|
39
|
Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA. Appl Microbiol Biotechnol 2015; 100:3511-21. [DOI: 10.1007/s00253-015-7197-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 11/27/2022]
|
40
|
Liao Y, Huang L, Wang B, Zhou F, Pan L. The global transcriptional landscape of Bacillus amyloliquefaciens XH7 and high-throughput screening of strong promoters based on RNA-seq data. Gene 2015; 571:252-62. [DOI: 10.1016/j.gene.2015.06.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/25/2022]
|
41
|
Wenzel M, Altenbuchner J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. MICROBIOLOGY-SGM 2015; 161:1942-1949. [PMID: 26238998 DOI: 10.1099/mic.0.000150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To optimize Bacillus subtilis as a production strain for proteins and low molecular substances by genome engineering, we developed a markerless gene deletion system. We took advantage of a general property of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular the mannose PTS. Mannose is phosphorylated during uptake by its specific transporter (ManP) to mannose 6-phosphate, which is further converted to fructose 6-phosphate by the mannose-6-phosphate isomerase (ManA). When ManA is missing, accumulation of the phosphorylated mannose inhibits cell growth. This system was constructed by deletion of manP and manA in B. subtilis Δ6, a 168 derivative strain with six large deletions of prophages and antibiotic biosynthesis genes. The manP gene was inserted into an Escherichia coli plasmid together with a spectinomycin resistance gene for selection in B. subtilis. To delete a specific region, its up- and downstream flanking sites (each of approximately 700 bp) were inserted into the vector. After transformation, integration of the plasmid into the chromosome of B. subtilis by single cross-over was selected by spectinomycin. In the second step, excision of the plasmid was selected by growth on mannose. Finally, excision and concomitant deletion of the target region were verified by colony PCR. In this way, all nine prophages, seven antibiotic biosynthesis gene clusters and two sigma factors for sporulation were deleted and the B. subtilis genome was reduced from 4215 to 3640 kb. Despite these extensive deletions, growth rate and cell morphology remained similar to the B. subtilis 168 parental strain.
Collapse
Affiliation(s)
- Marian Wenzel
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
42
|
Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. Int J Mol Sci 2015; 16:7334-51. [PMID: 25837631 PMCID: PMC4425020 DOI: 10.3390/ijms16047334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/05/2023] Open
Abstract
In order to efficiently introduce DNA into B. subtilis ZK, which produces iturin A at a high level, we optimized seven electroporation conditions and explored an efficient electroporation method. Using the optimal conditions, the electroporation efficiency was improved to 1.03 × 107 transformants/μg of DNA, an approximately 10,000-fold increase in electroporation efficiency. This efficiency is the highest electroporation efficiency for B. subtilis and enables the construction of a directed evolution library or the knockout of a gene in B. subtilis ZK for molecular genetics studies. In the optimization process, the combined effects of three types of wall-weakening agents were evaluated using a response surface methodology (RSM) design, which led to a two orders of magnitude increase in electroporation efficiency. To the best of our limited knowledge, this study provides the first demonstration of using an RSM design for optimization of the electroporation conditions for B. subtilis. To validate the electroporation efficiency, a case study was performed and a gene (rapC) was inactivated in B. subtilis ZK using a suicide plasmid pMUTIN4. Moreover, we found that the rapC mutants exhibited a marked decrease in iturin A production, suggesting that the rapC gene was closely related to the iturin A production.
Collapse
|
43
|
Hossain MJ, Ran C, Liu K, Ryu CM, Rasmussen-Ivey CR, Williams MA, Hassan MK, Choi SK, Jeong H, Newman M, Kloepper JW, Liles MR. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. FRONTIERS IN PLANT SCIENCE 2015; 6:631. [PMID: 26347755 PMCID: PMC4538294 DOI: 10.3389/fpls.2015.00631] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 05/03/2023]
Abstract
To understand the growth-promoting and disease-inhibiting activities of plant growth-promoting rhizobacteria (PGPR) strains, the genomes of 12 Bacillus subtilis group strains with PGPR activity were sequenced and analyzed. These B. subtilis strains exhibited high genomic diversity, whereas the genomes of B. amyloliquefaciens strains (a member of the B. subtilis group) are highly conserved. A pairwise BLASTp matrix revealed that gene family similarity among Bacillus genomes ranges from 32 to 90%, with 2839 genes within the core genome of B. amyloliquefaciens subsp. plantarum. Comparative genomic analyses of B. amyloliquefaciens strains identified genes that are linked with biological control and colonization of roots and/or leaves, including 73 genes uniquely associated with subsp. plantarum strains that have predicted functions related to signaling, transportation, secondary metabolite production, and carbon source utilization. Although B. amyloliquefaciens subsp. plantarum strains contain gene clusters that encode many different secondary metabolites, only polyketide biosynthetic clusters that encode difficidin and macrolactin are conserved within this subspecies. To evaluate their role in plant pathogen biocontrol, genes involved in secondary metabolite biosynthesis were deleted in a B. amyloliquefaciens subsp. plantarum strain, revealing that difficidin expression is critical in reducing the severity of disease, caused by Xanthomonas axonopodis pv. vesicatoria in tomato plants. This study defines genomic features of PGPR strains and links them with biocontrol activity and with host colonization.
Collapse
Affiliation(s)
| | - Chao Ran
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
| | - Ke Liu
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Choong-Min Ryu
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | | | | | - Mohammad K. Hassan
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Soo-Keun Choi
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | - Haeyoung Jeong
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | - Molli Newman
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Mark R. Liles
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
- *Correspondence: Mark R. Liles, Department of Biological Sciences, Auburn University, Room 101, Rouse Life Sciences Building, 120 West Samford Avenue, Auburn, AL 36849, USA
| |
Collapse
|
44
|
A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Appl Microbiol Biotechnol 2014; 98:8963-73. [DOI: 10.1007/s00253-014-5824-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/20/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
45
|
Dong H, Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 2014; 13:63. [PMID: 24885003 PMCID: PMC4030025 DOI: 10.1186/1475-2859-13-63] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species.
Collapse
Affiliation(s)
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
46
|
Wang J, He K, Xu Q, Chen N. Mutagenetic study of a novel inosine monophosphate dehydrogenase from Bacillus amyloliquefaciens and its possible application in guanosine production. BIOTECHNOL BIOTEC EQ 2014; 28:102-106. [PMID: 26019494 PMCID: PMC4434139 DOI: 10.1080/13102818.2014.901686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In this study, the amino acid sequence of inosine monophosphate dehydrogenase (IMPDH) from a guanosine-overproducing strain Bacillus amyloliquefaciens TA208 was found to be highly conserved comparing to its analogue in B. amyloliquefaciens FZB42, only with two substitutions of serine 166 to proline and glutamic acid 481 to lysine. To speculate on the effects of these variation sites, two reverse site-directed mutants P166S and K481E, as well as one deletion mutant IMPDHΔCBS, were characterised. According to the kinetic analysis of these enzymes, site-481 is a key mutation site to affect the nicotinamide adenine dinucleotide (NAD+) affinity, which accounted for the higher catalytic efficiency of IMPDH. On the contrary, mutants P166S and IMPDHΔCBS did not show better catalytic activity compared to normal IMPDH. Moreover, the overexpression of IMPDH-encoding gene guaB in B. amyloliquefaciens TA208 could improve the total production of guanosine up to 13.5 g L-1, which was 20.02% higher than that of the original strain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Bioengineering, Jilin University , Changchun , P.R. China
| | - Kuifu He
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| | - Qingyang Xu
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| | - Ning Chen
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| |
Collapse
|
47
|
Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 2013; 97:6113-27. [DOI: 10.1007/s00253-013-4960-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/29/2023]
|
48
|
Fang H, Liu H, Chen N, Zhang C, Xie X, Xu Q. Site-directed mutagenesis studies on the uridine monophosphate binding sites of feedback inhibition in carbamoyl phosphate synthetase and effects on cytidine production by Bacillus amyloliquefaciens. Can J Microbiol 2013; 59:374-9. [PMID: 23750951 DOI: 10.1139/cjm-2012-0758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major problem when pyrimidine de novo biosynthesis is used for cytidine production is the existence of many negative regulatory factors. Cytidine biosynthesis in Bacillus amyloliquefaciens proceeds via a pathway that is controlled by uridine monophosphate (UMP) through feedback inhibition of carbamoyl phosphate synthetase (CPS), the enzyme that converts CO2, NH3, and glutamine to carbamoyl phosphate. In this study, the gene carB encoding the large subunit of CPS from B. amyloliquefaciens CYT1 was site directed, and the UMP binding sites of feedback inhibition in Bam-CPS are described. The residues Thr-941, Thr-970, and Lys-986 in CPS from B. amyloliquefaciens were subjected to site-directed mutagenesis to alter UMP's feedback inhibition of CPS. To find feedback-resistant B. amyloliquefaciens, the influence of the T941F, T970A, K986I, T941F/K986I, and T941F/T970A/K986I mutations on CPS enzymatic properties was studied. The recombinant B. amyloliquefaciens with mutated T941F/K986I and T941F/T970A/K986I CPS showed a 3.7- and 5.7-fold increase, respectively, in cytidine production in comparison with the control expressing wild-type CPS, which was more suitable for further application of the cytidine synthesis. To a certain extent, the 5 mutations were found to release the enzyme from UMP inhibition and to improve B. amyloliquefaciens cytidine-producing strains.
Collapse
Affiliation(s)
- Haitian Fang
- College of Agriculture, Ningxia University, Yinchuan 750021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 2012; 95:499-509. [PMID: 22639142 DOI: 10.1007/s00253-012-4090-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
Abstract
Bifidobacteria are the main component of the human microflora. We constructed a temperature-sensitive (Ts) plasmid by random mutagenesis of the Bifidobacterium-Escherichia coli shuttle vector pKKT427 using error-prone PCR. Mutant plasmids were introduced into Bifidobacterium longum 105-A and, after screening approximately 3,000 colonies, candidate clones that grew at 30 °C but not at 42 °C were selected. According to DNA sequence analysis of the Ts plasmid, five silent and one missense mutations were found in the repB region. The site-directed mutagenesis showed only the missense mutation to be relevant to the Ts phenotype. We designated this plasmid pKO403. The Ts phenotype was also observed in B. longum NCC2705 and Bifidobacterium adolescentis ATCC15703. Single-crossover homologous-recombination experiments were carried out to determine the relationship between the length of homologous sequences encoded on the plasmid and recombination frequency: fragments greater than 1 kb gave an efficiency of more than 10(3) integrations per cell. We performed gene knockout experiments using this Ts plasmid. We obtained gene knockout mutants of the pyrE region of B. longum 105-A, and determined that double-crossover homologous recombination occurred at an efficiency of 1.8 %. This knockout method also worked for the BL0033 gene in B. longum NCC2705.
Collapse
|
50
|
Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characterization, and application to increase purine nucleoside production. Appl Microbiol Biotechnol 2011; 93:2023-33. [PMID: 22083279 DOI: 10.1007/s00253-011-3687-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Bacillus strains are used for the industrial production of the purine nucleosides inosine and guanosine, which are raw materials for the synthesis of the flavor enhancers disodium inosinate and disodium guanylate. An important precursor of purine nucleosides is 5-phospho-α-D: -ribosyl-1-pyrophosphate, which is synthesized by phosphoribosyl pyrophosphate synthetase (PRS, EC 2.7.6.1). Class I PRSs are widespread in bacteria and mammals, are highly conserved among different organisms, and are negatively regulated by two end products of purine biosynthesis, adenosine 5'-diphosphate (ADP) and guanosine 5'-diphosphate (GDP). The D52H, N114S, and L129I mutations in the human PRS isozyme I (PRS1) have been reported to cause uric acid overproduction and gout due to allosteric deregulation and enzyme superactivity. In this study, to find feedback-resistant Bacillus amyloliquefaciens PRS, the influence of the D58H, N120S, and L135I mutations (corresponding to the D52H, N114S, and L129I mutations in PRS1, respectively) on PRS enzymatic properties has been studied. Recombinant histidine-tagged wild-type PRS and three mutant PRSs were expressed in Escherichia coli, purified, and characterized. The N120S and L135I mutations were found to release the enzyme from ADP and GDP inhibition and significantly increase its sensitivity to inorganic phosphate (P(i)) activation. In contrast, PRS with the D58H mutation exhibited nearly identical sensitivity to ADP and GDP as the wild-type protein and had a notably greater P(i) requirement for activation. The N120S and L135I mutations improved B. amyloliquefaciens and Bacillus subtilis purine nucleoside-producing strains.
Collapse
|