1
|
Hernández-García JA, Bernal JS, Antony-Babu S, Villa-Tanaca L, Hernández-Rodríguez C, De-la-Vega-Camarillo E. Teosinte-derived SynCom and precision biofertilization modulate the maize microbiome, enhancing growth, yield, and soil functionality in a Mexican field. Front Microbiol 2025; 16:1534327. [PMID: 40270813 PMCID: PMC12015678 DOI: 10.3389/fmicb.2025.1534327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Modern agriculture faces the challenge of optimizing fertilization practices while maintaining soil resilience and microbial diversity, both critical for sustainable crop production. We evaluated the effects of multiple fertilization strategies on soil microbial communities and plant performance, comparing conventional methods (urea-based and phosphorus fertilizers applied manually or via drone-assisted precision delivery) with biofertilization using a synthetic microbial consortium (SynCom) derived from teosinte-associated microbes. This SynCom consisted of seven bacterial strains: Serratia nematodiphila EDR2, Klebsiella variicola EChLG19, Bacillus thuringiensis EML22, Pantoea agglomerans EMH25, Bacillus thuringiensis EBG39, Serratia marcescens EPLG52, and Bacillus tropicus EPP72. High-throughput sequencing revealed significant shifts in bacterial and fungal communities across treatments. Untreated soils showed limited diversity, dominated by Enterobacteriaceae (>70%). Conventional fertilization gradually reduced Enterobacteriaceae while increasing Pseudomonas and Lysinibacillus populations. Drone-assisted conventional fertilization notably enhanced Acinetobacter and Rhizobiales growth. Biofertilization treatments produced the most pronounced shifts, reducing Enterobacteriaceae below 50% while significantly increasing beneficial taxa like Bacillus, Pantoea, and Serratia. Network analysis demonstrated that microbial interaction complexity increased across treatments, with Bacillus emerging as a keystone species. Drone-assisted biofertilization fostered particularly intricate microbial networks, enhancing synergistic relationships involved in nutrient cycling and biocontrol, though maintaining the stability of these complex interactions requires careful monitoring. Our findings provide key insights into how precision biofertilization with teosinte-derived microbial consortia can sustainably reshape the maize microbiome, improving crop performance and soil resilience.
Collapse
Affiliation(s)
- Juan Alfredo Hernández-García
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Esaú De-la-Vega-Camarillo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Department of Entomology, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Smenderovac E, Rheault K, Moisan MA, Emilson C, Brazeau É, Morency MJ, Gagné P, Maire V, Emilson E, Venier L, Martineau C. Desiccation as a suitable alternative to cold-storage of phyllosphere samples for DNA-based microbial community analyses. Sci Rep 2025; 15:4243. [PMID: 39905028 PMCID: PMC11794883 DOI: 10.1038/s41598-024-82367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
The study of microbial communities of the plant phyllosphere in remote locations using DNA-based approaches is limited by the challenges associated with their preservation in the field and during transportation. Freezing is a common DNA preservation strategy, but it may be unsuitable for leaf samples, or inaccessible in some locations. Other methods such as desiccation, ethanol or commercial preservatives are potential alternative DNA preservation methods for ambient temperature storage. In this study, we assessed the efficacy of desiccation (with silica gel packs), and of three preservation solutions (95% ethanol, RNAlater, LifeGuard) for the preservation of epiphytic phyllosphere communities of Populus tremuloides and Picea glauca at ambient indoor temperature (21 °C) for up to three weeks. We assessed effects on DNA concentration and quality and used metabarcoding to detect changes in bacterial and fungal communities between treatments over time. A secondary study was conducted on leaves of Populus grandidentata to further test the ability of the desiccation treatment to resolve differences between sampling sites. Silica gel packs were identified as effective ambient temperature preservative of phyllosphere bacterial and fungal communities. There were some changes in the communities compared to immediate extraction due to this treatment, but these changes did not affect the ability to distinguish tree species and sampling locations. Overall, our study supports the use of silica gel pack short term preservation at ambient temperature for phyllosphere samples intended for DNA-based microbial community analyses.
Collapse
Affiliation(s)
- Emily Smenderovac
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada.
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada.
| | - Karelle Rheault
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | | | - Caroline Emilson
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | - Élodie Brazeau
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | | | - Patrick Gagné
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | - Vincent Maire
- Université du Québec à Trois-Rivières, Québec, Canada
| | - Erik Emilson
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | - Lisa Venier
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | | |
Collapse
|
3
|
Cronin D, Li YF, Evans P, Tyson GW, Woodcroft BJ, Rich VI, IsoGenie 2016 and 2019 Field Teams. Impact of storage and extraction methods on peat soil microbiomes. PeerJ 2024; 12:e18745. [PMID: 39726749 PMCID: PMC11670759 DOI: 10.7717/peerj.18745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (the PowerSoil Total RNA Isolation kit with DNA Elution Accessory kit) diverged from the others (PowerMax Soil DNA Isolation kit-High Humic Acid Protocol, and three variations of a modified PowerMax Soil DNA/RNA isolation kit), capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.
Collapse
Affiliation(s)
- Dylan Cronin
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, United States
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States
| | - Paul Evans
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
| | - Gene W. Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Virginia I. Rich
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, United States
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio, United States
| | - IsoGenie 2016 and 2019 Field Teams
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, United States
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Bartholomäus A, Genderjahn S, Mangelsdorf K, Schneider B, Zamorano P, Kounaves SP, Schulze-Makuch D, Wagner D. Inside the Atacama Desert: uncovering the living microbiome of an extreme environment. Appl Environ Microbiol 2024; 90:e0144324. [PMID: 39540743 DOI: 10.1128/aem.01443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The Atacama Desert in Chile is one of the driest and most inhospitable places on Earth. To analyze the diversity and distribution of microbial communities in such an environment, one of the most important and challenging steps is DNA extraction. Using commercial environmental DNA extraction protocols, a mixture of living, dormant, and dead cells of microorganisms is extracted, but separation of the different DNA pools is almost impossible. To overcome this problem, we applied a novel method on soils across a west-east moisture transect in the Atacama Desert to distinguish between extracellular DNA (eDNA) and intracellular DNA (iDNA) at the cell extraction level. Here, we show that a large number of living and potentially active microorganisms, such as Acidimicrobiia, Geodermatophilaceae, Frankiales, and Burkholderiaceae, occur in the hyperarid areas. We observed viable microorganisms involved as pioneers in initial soil formation processes, such as carbon and nitrogen fixation, as well as mineral-weathering processes. In response to various environmental stressors, microbes coexist as generalists or specialists in the desert soil environment. Our results show that specialists compete in a limited range of niches, while generalists tolerate a wider range of environmental conditions. Use of the DNA separation approach can provide new insights into different roles within viable microbial communities, especially in low-biomass environments where RNA-based analyses often fail.IMPORTANCEThe novel e- and iDNA separation technique offers insights into the living community at the cell extraction level in the hyperarid Atacama Desert. This approach provides a new framework for analyzing the composition and structure of the potentially active part of the microbial communities as well as their specialization, ecological network and community assembly process. Our findings underscore the significance of utilizing alternative genomic techniques in low-biomass environments where traditional DNA- and RNA-based analyses may not be feasible. The results demonstrate the viability of the proposed study framework and show that specialized microorganisms are important in initial soil formation processes, including microbial-driven mineral weathering, as well as the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Potsdam, Germany
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, University of Antofagasta, Antofagasta, Chile
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
- Department of Earth Science & Engineering, Imperial College London, London, United Kingdom
| | - Dirk Schulze-Makuch
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| |
Collapse
|
5
|
Reynolds MC, Cadillo-Quiroz H. Microbial DNA sample preservation and possible artifacts for field-based research in remote tropical peatlands. J Microbiol Methods 2024; 224:106997. [PMID: 39009285 DOI: 10.1016/j.mimet.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments.
Collapse
Affiliation(s)
- Mark C Reynolds
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
6
|
Smenderovac E, Emilson C, Rheault K, Brazeau É, Morency MJ, Gagné P, Venier L, Martineau C. Drying as an effective method to store soil samples for DNA-based microbial community analyses: a comparative study. Sci Rep 2024; 14:1725. [PMID: 38242898 PMCID: PMC10798986 DOI: 10.1038/s41598-023-50541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
Soil sampling for environmental DNA in remote and semi-remote locations is often limited due to logistical constraints surrounding sample preservation, including no or limited access to a freezer. Freezing at - 20 °C is a common DNA preservation strategy, however, other methods such as desiccation, ethanol or commercial preservatives are available as potential alternative DNA preservation methods for room temperature storage. In this study, we assessed five preservation methods (CD1 solution, 95% Ethanol, Dry & Dry silica gel packs, RNAlater, LifeGuard) along with freezing at - 20 °C, against immediate extraction on organic and mineral soils for up to three weeks of preservation. We assessed direct effects on DNA concentration and quality, and used DNA metabarcoding to assess effects on bacterial and fungal communities. Drying with Dry & Dry led to no significant differences from immediate extraction. RNAlater led to lower DNA concentrations, but effects on community structures were comparable to freezing. CD1, LifeGuard and Ethanol either caused immediate significant shifts in community structure, degradation of DNA quality or changes in diversity metrics. Overall, our study supports the use of drying with silica gel packs as a cost-effective, and easily applied method for the short-term storage at room temperature for DNA-based microbial community analyses.
Collapse
Affiliation(s)
| | - Caroline Emilson
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Karelle Rheault
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Élodie Brazeau
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | | - Patrick Gagné
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Lisa Venier
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | |
Collapse
|
7
|
Moškrič A, Pavlin A, Mole K, Marinč A, Bubnič J, Opara A, Kovačić M, Puškadija Z, Uzunov A, Andonov S, Dahle B, Prešern J. Cutting corners: The impact of storage and DNA extraction on quality and quantity of DNA in honeybee ( Apis mellifera) spermatheca. Front Physiol 2023; 14:1139269. [PMID: 36935742 PMCID: PMC10020693 DOI: 10.3389/fphys.2023.1139269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The purpose of our study was to investigate methods of short-term storage that allow preservation, transport and retrieval of genetic information contained in honeybee queen's spermatheca. Genotyping of the honeybee colony requires well ahead planned sample collection, depending on the type of data to be acquired. Sampling and genotyping of spermatheca's content instead of individual offspring is timesaving, allowing answers to the questions related to patriline composition immediately after mating. Such procedure is also cheaper and less error prone. For preservation either Allprotect Tissue Reagent (Qiagen) or absolute ethanol were used. Conditions during transportation were simulated by keeping samples 6-8 days at room temperature. Six different storing conditions of spermathecas were tested, complemented with two DNA extraction methods. We have analysed the concentration of DNA, RNA, and proteins in DNA extracts. We also analysed how strongly the DNA is subjected to fragmentation (through amplification of genetic markers ANT2 and tRNAleu-COX2) and whether the quality of the extracted DNA is suitable for microsatellite (MS) analysis. Then, we tested the usage of spermatheca as a source of patriline composition in an experiment with three instrumentally inseminated virgin queens and performed MS analysis of the extracted DNA from each spermatheca, as well as queens' and drones' tissue. Our results show that median DNA concentration from spermathecas excised prior the storage, regardless of the storing condition and DNA extraction method, were generally lower than median DNA concentration obtained from spermathecas dissected from the whole queens after the storage. Despite the differences in DNA yield from the samples subjected to different storing conditions there was no significant effect of storage method or the DNA extraction method on the amplification success, although fewer samples stored in EtOH amplified successfully in comparison to ATR storing reagent. However, we recommend EtOH as a storing reagent due to its availability, low price, simplicity in usage in the field and in the laboratory, and capability of good preservation of the samples for DNA analysis during transport at room temperature.
Collapse
Affiliation(s)
- Ajda Moškrič
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
- *Correspondence: Ajda Moškrič,
| | - Anja Pavlin
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Mole
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Andraž Marinč
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Jernej Bubnič
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Andreja Opara
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Marin Kovačić
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossmayer, Osijek, Croatia
- Centre for Applied Life Sciences Healthy Food Chain Ltd., Osijek, Croatia
| | - Zlatko Puškadija
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossmayer, Osijek, Croatia
- Centre for Applied Life Sciences Healthy Food Chain Ltd., Osijek, Croatia
| | - Aleksandar Uzunov
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Company for Applied Research and Permanent Education in Agriculture, Skopje, Macedonia
| | - Sreten Andonov
- Department of Animal Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
| | - Janez Prešern
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhang Y, Bo G, Shen M, Shen G, Yang J, Dong S, Shu Z, Wang Z. Differences in microbial diversity and environmental factors in ploughing-treated tobacco soil. Front Microbiol 2022; 13:924137. [PMID: 36171748 PMCID: PMC9511222 DOI: 10.3389/fmicb.2022.924137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
During agricultural production, plowing affects the existing traits of the planted soil, including environmental factors (physicochemical properties and soil enzymatic activity) and microbial community, but whether deep tillage and conventional tillage cause differences in soil microecology are unknown. In this study, the 16S rRNA high-throughput sequencing technology was combined with soil environmental factor detection to analyze the differences in microbial diversity of smokey soils at different depths. As a result, the composition and structure of microbial community varied in different soil depth after plowing. Two dominant phyla, Actinobacteria and Acidobacteria, have varied a lot between the deep-plowing treatment HS3 (the sample in 10–20 cm depth after deep-plowing treatment) sample and the conventional tillage HC3 (treatment the sample in 10–20 cm depth after conventional tillage) sample. The abundance of Actinobacteria has increased significantly, while the abundance of Acidobacteria has decreased significantly. Moreover, deep tillage increased the activity of sucrase (S-SC) and nitrate reductase (NR) in samples with soil depth below 20 cm. In summary, deep tillage disturbed spatial microbial diversity and environmental factors significantly. This would provide new guidance for improving farmland management strategies, optimizing the activation methods of soil layers, further improving crop planting soil, and increasing crop yield.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guodong Bo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Guodong Bo,
| | - Minchong Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guoming Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shanyu Dong
- Yichang Tobacco Company of Hubei Province, Yichang, China
| | - Zhaohe Shu
- Enshi Tobacco Company of Hubei Province, Enshi, China
- Zhaohe Shu,
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Zhaobao Wang,
| |
Collapse
|
9
|
Wietz M, Metfies K, Bienhold C, Wolf C, Janssen F, Salter I, Boetius A. Impact of preservation method and storage period on ribosomal metabarcoding of marine microbes: Implications for remote automated samplings. Front Microbiol 2022; 13:999925. [PMID: 36160263 PMCID: PMC9490091 DOI: 10.3389/fmicb.2022.999925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Automated sampling technologies can enhance the temporal and spatial resolution of marine microbial observations, particularly in remote and inaccessible areas. A critical aspect of automated microbiome sampling is the preservation of nucleic acids over long-term autosampler deployments. Understanding the impact of preservation method on microbial metabarcoding is essential for implementing genomic observatories into existing infrastructure, and for establishing best practices for the regional and global synthesis of data. The present study evaluates the effect of two preservatives commonly used in autosampler deployments (mercuric chloride and formalin) and two extraction kits (PowerWater and NucleoSpin) on amplicon sequencing of 16S and 18S rRNA gene over 50 weeks of sample storage. Our results suggest the combination of mercuric chloride preservation and PowerWater extraction as most adequate for 16S and 18S rRNA gene amplicon-sequencing from the same seawater sample. This approach provides consistent information on species richness, diversity and community composition in comparison to control samples (nonfixed, filtered and frozen) when stored up to 50 weeks at in situ temperature. Preservation affects the recovery of certain taxa, with specific OTUs becoming overrepresented (SAR11 and diatoms) or underrepresented (Colwellia and pico-eukaryotes) after preservation. In case eukaryotic sequence information is the sole target, formalin preservation and NucleoSpin extraction performed best. Our study contributes to the design of long-term autonomous microbial observations in remote ocean areas, allowing cross-comparison of microbiome dynamics across sampling devices (e.g., water and particle samplers) and marine realms.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christian Wolf
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Felix Janssen
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ian Salter
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faroe Marine Research Institute, Torshavn, Faroe Islands
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
10
|
Yang J, Lee J, Choi J, Ma L, Heaton EA, Howe A. Response of Total (DNA) and Metabolically Active (RNA) Microbial Communities in Miscanthus × Giganteus Cultivated Soil to Different Nitrogen Fertilization Rates. Microbiol Spectr 2022; 10:e0211621. [PMID: 35170997 PMCID: PMC8849084 DOI: 10.1128/spectrum.02116-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Miscanthus × giganteus is a promising high-yielding perennial plant to meet growing bioenergy demands; however, the degree to which the soil microbiome affects its nitrogen cycling and subsequently, biomass yield remains unclear. In this study, we hypothesize that contributions of metabolically active soil microbial membership may be underestimated with DNA-based approaches. We assessed the response of the soil microbiome to nitrogen availability in terms of both DNA and RNA soil microbial communities from the Long-term Assessment of Miscanthus Productivity and Sustainability (LAMPS) field trial. DNA and RNA were extracted from 271 samples, and 16S small subunit (SSU) rRNA amplicon sequencing was performed to characterize microbial community structure. Significant differences were observed in the resulting soil microbiomes and were best explained by the sequencing library of origin, either DNA or RNA. Similar numbers of membership were detected in DNA and RNA microbial communities, with more than 90% of membership shared. However, the profile of dominant membership within DNA and RNA differed, with varying proportions of Actinobacteria and Proteobacteria and Firmicutes and Proteobacteria. Only RNA microbial communities showed seasonal responses to nitrogen fertilization, and these differences were associated with nitrogen-cycling bacteria. The relative abundance of bacteria associated with nitrogen cycling was 7-fold higher in RNA than in DNA, and genes associated with denitrifying bacteria were significantly enriched in RNA, suggesting that these bacteria may be underestimated with DNA-only approaches. Our findings indicate that RNA-based SSU characterization can be a significant and complementing resource for understanding the role of soil microbiomes in bioenergy crop production. IMPORTANCEMiscanthus × giganteus is a promising candidate for bioeconomy cropping systems; however, it remains unclear how the soil microbiome supplies nitrogen to this low-input crop. DNA-based techniques are used to provide community characterization, but may miss important metabolically active taxa. By analyzing both DNA- and actively transcribed RNA-based microbial communities, we found that nitrogen cycling taxa in the soil microbiome may be underestimated using only DNA-based approaches. Accurately understanding the role of microbes and how they cycle nutrients is important for the development of sustainable bioenergy crops, and RNA-based approaches are recommended as a complement to DNA approaches to better understand the microbial, plant, and management interactions.
Collapse
Affiliation(s)
- Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Lanying Ma
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Emily A. Heaton
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| |
Collapse
|
11
|
VanMensel D, Droppo IG, Weisener CG. Identifying chemolithotrophic and pathogenic-related gene expression within suspended sediment flocs in freshwater environments: A metatranscriptomic assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150996. [PMID: 34656597 DOI: 10.1016/j.scitotenv.2021.150996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The introduction and proliferation of pathogenic organisms in aquatic systems is a serious global issue that consequently leads to economic, financial, and health concerns. Health and safety related to recreational water use is typically monitored through water quality assessments that are outdated and can be misleading. These traditional methods focus on broad taxa groups, provide no insight into the active community or source of contamination, and the sediment compartments (bed and suspended) are often overlooked. To bridge this knowledge gap, our study aimed to 1) examine the metatranscriptome of the microbial community associated with suspended sediment (SS) in freshwater systems; 2) explore the influence of SS in tributaries to the littoral zone of the receiving lake; and 3) compare the SS fraction with previously reported nearshore bed sediment data. Samples were collected seasonally from Lake St. Clair and Lake Erie. Beaches in this region are influenced by both agriculture runoff and continued urban expansion. Results show that both adjacent tributary and beach SS have similar microbial functional diversity and are strongly correlated by site and season. We identified expression of transcripts encoding sequences with similarities to genes involved in nine bacterial infectious disease pathways, including legionellosis (sdhA) and Vibrio cholerae pathogenesis. According to MG-RAST gene categories, lake samples typically showed higher overall expression (p < 0.05) of transcripts with similarities to genes involved in infectious disease pathways compared to the tributaries, with summer upregulated (p < 0.05) compared to fall. Our data suggests SS acts as a strong vector for pathogen transport, making this facet an important area for further research as it pertains to human health regarding recreational water use. To our knowledge, this work is the first to investigate SS in aquatic microbial communities using metatranscriptomic analyses and has significant potential to help address growing issues of microbial contamination impacting freshwater security.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, Ontario N9B 3P4, Canada.
| | - Ian G Droppo
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario L7R 4A6, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
12
|
Brasell KA, Pochon X, Howarth J, Pearman JK, Zaiko A, Thompson L, Vandergoes MJ, Simon KS, Wood SA. Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cores are often refrigerated (4 °C) for weeks or months before subsampling. We investigated the impact of storage time on changes in DNA (purified or as cell lysate) concentrations and shifts in biological communities following storage of lake surface sediment at 4 °C for up to 24 weeks. Sediment samples (~ 0.22 g, in triplicate per time point) were spiked with purified DNA (100 or 200 ng) or lysate from a brackish water cyanobacterium that produces the cyanotoxin nodularin or non-spiked. Samples were analysed every 1–4 weeks over a 24-week period. Droplet digital PCR showed no significant decrease in the target gene (nodularin synthetase – subunit F; ndaF) over the 24-week period for samples spiked with purified DNA, while copy number decreased by more than half in cell lysate-spiked samples. There was significant change over time in bacteria and eukaryotic community composition assessed using metabarcoding. Amongst bacteria, the cyanobacterial signal became negligible after 5 weeks while Proteobacteria increased. In the eukaryotic community, Cercozoa became dominant after 6 weeks. These data demonstrate that DNA yields and community composition data shift significantly when sediments are stored chilled for more than 5 weeks. This highlights the need for rapid subsampling and appropriate storage of sediment core samples for paleogenomic studies.
Collapse
|
13
|
Tennant RK, Power AL, Burton SK, Sinclair N, Parker DA, Jones RT, Lee R, Love J. In-situ sequencing reveals the effect of storage on lacustrine sediment microbiome demographics and functionality. ENVIRONMENTAL MICROBIOME 2022; 17:5. [PMID: 35101122 PMCID: PMC8805238 DOI: 10.1186/s40793-022-00400-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/12/2022] [Indexed: 05/05/2023]
Abstract
The sediment microbiome is a demographically diverse and functionally active biosphere. Ensuring that data acquired from sediment is truly representative of the microbiome is critical to achieving robust analyses. Sample storage and the processing and timing of nucleic acid purification after environmental sample extraction may fundamentally affect the detectable microbial community and thereby significantly alter resultant data. Direct sequencing of environmental samples is increasingly commonplace due to the advent of the portable Oxford Nanopore MinION sequencing device. Here we demonstrate that storing sediment subsamples at - 20 °C or storing the cores at 4 °C for 10 weeks prior to analysis, has a significant effect on the sediment microbiome analysed using sedimentary DNA (sedDNA), especially for Alpha-, Beta- and Deltaproteobacteria species. Furthermore, these significant differences are observed regardless of sediment type. We show that the taxa which are predominantly affected by storage are Proteobacteria, and therefore recommend on-site purifications are performed to ensure an accurate representation of these taxa are observed in the microbiome. Comparisons of sedimentary RNA (sedRNA) analyses, revealed substantial differences between samples purified and sequenced immediately on-site, samples that were frozen before transportation, and cores that were stored at 4 °C prior to analysis. Our data therefore suggest that a more accurate representation of the sediment microbiome demography and functionality may be achieved by environmental sequencing as rapidly as possible to minimise confounding effects of storage.
Collapse
Affiliation(s)
- Richard K Tennant
- Geography, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4RJ, UK.
| | - Ann L Power
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| | - Sara K Burton
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| | - Norman Sinclair
- The Orkney Brewery, Quoyloo, Stromness, Orkney, KW16 3LT, UK
| | - David A Parker
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| | - Richard T Jones
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
14
|
Dully V, Rech G, Wilding TA, Lanzén A, MacKichan K, Berrill I, Stoeck T. Comparing sediment preservation methods for genomic biomonitoring of coastal marine ecosystems. MARINE POLLUTION BULLETIN 2021; 173:113129. [PMID: 34784523 DOI: 10.1016/j.marpolbul.2021.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
To avoid loss of genetic information in environmental DNA (eDNA) field samples, the preservation of nucleic acids during field sampling is a critical step. In the development of standard operating procedures (SOPs) for eDNA-based compliance monitoring, the effect of different routinely used sediment preservations on biological community structures serving as bioindicators has gone untested. We compared eDNA metabarcoding results of marine bacterial communities from sample aliquots that were treated with a nucleic acid preservation solution (treated samples) and aliquots that were frozen without further treatment (non-treated samples). Sediment samples were obtained from coastal locations subjected to different stressors (aquaculture, urbanization, industry). DNA extraction efficiency, bacterial community profiles, and measures of alpha- and beta-diversity were highly congruent between treated and non-treated samples. As both preservation methods provide the same relevant information to environmental managers and regulators, we recommend the inclusion of both methods into SOPs for biomonitoring in marine coastal environments.
Collapse
Affiliation(s)
- Verena Dully
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Giulia Rech
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Scotland, United Kingdom
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Iain Berrill
- Scottish Salmon Producers Organization, Edinburgh, Scotland, United Kingdom
| | - Thorsten Stoeck
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
15
|
Pavlovska M, Prekrasna I, Parnikoza I, Dykyi E. Soil Sample Preservation Strategy Affects the Microbial Community Structure. Microbes Environ 2021; 36. [PMID: 33563868 PMCID: PMC7966943 DOI: 10.1264/jsme2.me20134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sample preservation is a critical procedure in any research that relies on molecular tools and is conducted in remote areas. Sample preservation options include low and room temperature storage, which require freezing equipment and specific buffering solutions, respectively. The aim of the present study was to investigate whether DNA/RNA Shield 1x from Zymo Research and DESS (Dimethyl sulfoxide, Ethylenediamine tetraacetic acid, Saturated Salt) solution performed similarly to snap freezing in liquid nitrogen. Soil samples were stored for 1 month in each of the buffers and without any solution at a range of temperatures: –20, +4, and +23°C. All treatments were compared to the “optimal treatment”, namely, snap freezing in liquid nitrogen. The quality and quantity of DNA were analyzed, and the microbial community structure was investigated in all samples. The results obtained indicated that the quantity and integrity of DNA was preserved well in all samples; however, the taxonomic distribution was skewed in samples stored without any solution at ambient temperatures, particularly when analyses were performed at lower taxonomic levels. Although both solutions performed equally well, sequencing output and OTU numbers in DESS-treated samples were closer to those snap frozen with liquid nitrogen. Furthermore, DNA/RNA Shield-stored samples performed better for the preservation of rare taxa.
Collapse
Affiliation(s)
- Mariia Pavlovska
- State Institution National Antarctic Scientific Center.,National University of Life and Environmental Sciences of Ukraine
| | | | | | - Evgen Dykyi
- State Institution National Antarctic Scientific Center
| |
Collapse
|
16
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
17
|
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I, Dalamaga M. Mycobiome and Cancer: What Is the Evidence? Cancers (Basel) 2021; 13:cancers13133149. [PMID: 34202433 PMCID: PMC8269322 DOI: 10.3390/cancers13133149] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although comprising a much smaller proportion of the human microbiome, the fungal community has gained much more attention lately due to its multiple and yet undiscovered interactions with the human bacteriome and the host. Head and neck cancer carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma have been associated with dissimilarities in the composition of the mycobiome between cases with cancer and non-cancer subjects. In particular, an abundance of Malassezia has been associated with the onset and progression of colorectal carcinoma and pancreatic adenocarcinoma, while the genera Schizophyllum, a member of the oral mycobiome, is suggested to exhibit anti-cancer potential. The use of multi-omics will further assist in establishing whether alterations in the human mycobiome are causal or a consequence of specific types of cancers. Abstract Background: To date, most researchhas focused on the bacterial composition of the human microbiota. In this review, we synopsize recent data on the human mycobiome and cancer, highlighting specific cancer types based on current available evidence, presenting interesting perspectives and limitations of studies and laboratory methodologies. Recent findings: Head and neck cancer carcinoma (HNCC), colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDA) have been associated with dissimilarities in the composition of mycobiota between cancer cases and non-cancer participants. Overall, fungal dysbiosis with decreased fungal richness and diversity was common in cancer patients; however, a specific mycobiotic signature in HNSCC or CRC has not emerged. Different strains of Candida albicans have been identified among cases with HNCC, whilst Lichtheimia corymbifera, a member of the Mucoraceae family, has been shown to predominate among patients with oral tongue cancer. Virulence factors of Candida spp. include the formation of biofilm and filamentation, and the secretion of toxins and metabolites. CRC patients present a dysregulated ratio of Basidiomycota/Ascomycota. Abundance of Malassezia has been linked to the occurrence and progression of CRC and PDA, particularly in animal models of PDA. Interestingly, Schizophyllum, a component of the oral mycobiome, may exhibit anti-cancer potential. Conclusion: The human mycobiome, per se, along with its interactions with the human bacteriome and the host, may be implicated in the promotion and progression of carcinogenesis. Fungi may be used as diagnostic and prognostic/predictive tools or treatment targets for cancer in the coming years. More large-scale, prospective, multicentric and longitudinal studies with an integrative multi-omics methodology are required to examine the precise contribution of the mycobiome in the etiopathogenesis of cancer, and to delineate whether changes that occur in the mycobiome are causal or consequent of cancer.
Collapse
Affiliation(s)
- Natalia Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
- Correspondence: (N.V.); (M.D.)
| | - Dimitris Kounatidis
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
| | - Fotis Panagopoulos
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
- Correspondence: (N.V.); (M.D.)
| |
Collapse
|
18
|
Towards the Optimization of eDNA/eRNA Sampling Technologies for Marine Biosecurity Surveillance. WATER 2021. [DOI: 10.3390/w13081113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of eDNA is growing exponentially in response to the need for detecting rare and invasive species for management and conservation decisions. Developing technologies and standard protocols within the biosecurity sector must address myriad challenges associated with marine environments, including salinity, temperature, advective and deposition processes, hydrochemistry and pH, and contaminating agents. These approaches must also provide a robust framework that meets the need for biosecurity management decisions regarding threats to human health, environmental resources, and economic interests, especially in areas with limited clean-laboratory resources and experienced personnel. This contribution aims to facilitate dialogue and innovation within this sector by reviewing current approaches for sample collection, post-sampling capture and concentration of eDNA, preservation, and extraction, all through a biosecurity monitoring lens.
Collapse
|
19
|
Iturbe-Espinoza P, Brandt BW, Braster M, Bonte M, Brown DM, van Spanning RJM. Effects of DNA preservation solution and DNA extraction methods on microbial community profiling of soil. Folia Microbiol (Praha) 2021; 66:597-606. [PMID: 33834428 PMCID: PMC8298342 DOI: 10.1007/s12223-021-00866-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
Microbial community profiling using high-throughput sequencing relies in part on the preservation of the DNA and the effectiveness of the DNA extraction method. This study aimed at understanding to what extent these parameters affect the profiling. We obtained samples treated with and without a preservation solution. Also, we compared DNA extraction kits from Qiagen and Zymo-Research. The types of samples were defined strains, both as single species and mixtures, as well as undefined indigenous microbial communities from soil. We show that the use of a preservation solution resulted in substantial changes in the 16S rRNA gene profiles either due to an overrepresentation of Gram-positive bacteria or to an underrepresentation of Gram-negative bacteria. In addition, 16S rRNA gene profiles were substantially different depending on the type of kit that was used for extraction. The kit from Zymo extracted DNA from different types of bacteria in roughly equal amounts. In contrast, the kit from Qiagen preferentially extracted DNA from Gram-negative bacteria while DNA from Gram-positive bacteria was extracted less effectively. These differences in kit performance strongly influenced the interpretation of our microbial ecology studies.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, The Netherlands
| | | | - Rob J M van Spanning
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Duan M, Bau T. Initial sample processing can influence the soil microbial metabarcoding surveys, revealed by Leucocalocybe mongolica fairy ring ecosystem. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1996272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mingzheng Duan
- Key Laboratory of Edible Fungi Resources and Utilisation (North) of Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Tolgor Bau
- Key Laboratory of Edible Fungi Resources and Utilisation (North) of Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, PR China
| |
Collapse
|
21
|
Clasen LA, Detheridge AP, Scullion J, Griffith GW. Soil stabilisation for DNA metabarcoding of plants and fungi. Implications for sampling at remote locations or via third-parties. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.58365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Storage of soil samples prior to metagenomic analysis presents a problem. If field sites are remote or if samples are collected by third parties, transport to analytical laboratories may take several days or even weeks. The bulk of such samples and requirement for later homogenisation precludes the convenient use of a stabilisation buffer, so samples are usually cooled or frozen during transit. There has been limited testing of the most appropriate storage methods for later study of soil organisms by eDNA approaches. Here we tested a range of storage methods on two contrasting soils, comparing these methods to the control of freezing at -80 °C, followed by freeze-drying. To our knowledge, this is the first study to examine the effect of storage conditions on eukaryote DNA in soil, including both viable organisms (fungi) and DNA contained within dying/dead tissues (plants). For fungi, the best storage regimes (closest to the control) were storage at 4 °C (for up to 14 d) or active air-drying at room temperature. The worst treatments involved initial freezing, followed by thawing which led to significant later spoilage. The key spoilage organisms were identified as Metarhizium carneum and Mortierella spp., with a general increase in saprotrophic fungi and reduced abundances of mycorrhizal/biotrophic fungi. Plant data showed a similar pattern, but with greater variability in community structure, especially in the freeze-thaw treatments, probably due to stochastic variation in substrates for fungal decomposition, algal proliferation and some seed germination. In the absence of freeze drying facilities, samples should be shipped refrigerated, but not frozen if there is any risk of thawing.
Collapse
|
22
|
Rachel NM, Gieg LM. Preserving Microbial Community Integrity in Oilfield Produced Water. Front Microbiol 2020; 11:581387. [PMID: 33193212 PMCID: PMC7604316 DOI: 10.3389/fmicb.2020.581387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Determining a representative microbial signature from any given location is dependent on robust sample collection and handling. Different sampling locations and hence sample properties can vary widely; for example, soil would be collected and handled differently compared to liquid samples. In the event that sample material has a low concentration of biomass, large quantities need to be collected for microbial community analysis. This is certainly the case when investigating the microbiology of oilfield systems, wherein produced water (PW) is one of the most common sources for microbial sampling. As the detrimental effects of microbial metabolism within these industrial milieus are becoming increasingly well-established, the characterization of microbial community composition using molecular biological analyses is becoming more commonplace for accurate monitoring. As this field continues to develop, the importance for standardized operating protocols cannot be understated, so that industry can make the most informed operational decisions possible. Accurately identifying oilfield microbial communities is paramount, as improper preservation and storage following sample collection is known to lead to erroneous microbial identifications. Preserving oilfield PW can be challenging, as many locations are remote, requiring lengthy periods of time before samples can be processed and analyzed. While previous studies have characterized the effects of various preservatives on concentrated, filtered, or purified microbial samples, to the best of our knowledge, no such study has been undertaken on low biomass liquid samples. To this end, we investigated the effectiveness of nine different preservation conditions on PW collected from the same sampling location within a heavy-oil producing field, and monitored how the microbial community changed over the period of a month. Our results reveal that the choice of preservative drastically affects microbial community, and should be selected with careful consideration before sampling occurs.
Collapse
Affiliation(s)
- Natalie M Rachel
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Guerrieri A, Bonin A, Münkemüller T, Gielly L, Thuiller W, Francesco Ficetola G. Effects of soil preservation for biodiversity monitoring using environmental DNA. Mol Ecol 2020; 30:3313-3325. [PMID: 33034070 DOI: 10.1111/mec.15674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Environmental DNA (eDNA) metabarcoding is becoming a key tool for biodiversity monitoring over large geographical or taxonomic scales and for elusive taxa such as soil organisms. Increasing sample sizes and interest in remote or extreme areas often require the preservation of soil samples and thus deviations from optimal standardized protocols. However, we still ignore the impact of different methods of soil sample preservation on the results of metabarcoding studies and there is no guideline for best practices so far. Here, we assessed the impact of four methods of soil sample preservation that can be conveniently used also in metabarcoding studies targeting remote or difficult to access areas. Tested methods include: preservation at room temperature for 6 hr, preservation at 4°C for 3 days, desiccation immediately after sampling and preservation for 21 days, and desiccation after 6 hr at room temperature and preservation for 21 days. For each preservation method, we benchmarked resulting estimates of taxon diversity and community composition of three different taxonomic groups (bacteria, fungi and eukaryotes) in three different habitats (forest, river bank and grassland) against results obtained under ideal conditions (i.e., extraction of eDNA immediately after sampling). Overall, the different preservation methods only marginally impaired results and only under certain conditions. When rare taxa were considered, we detected small but significant changes in molecular operational taxonomic units (MOTU) richness of bacteria, fungi and eukaryotes across treatments, but MOTU richness was similar across preservation methods if rare taxa were not considered. All the approaches were able to identify differences in community structure among habitats, and the communities retrieved using the different preservation conditions were extremely similar. We propose guidelines on the selection of the optimal soil sample preservation conditions for metabarcoding studies, depending on the practical constraints, costs and ultimate research goals.
Collapse
Affiliation(s)
- Alessia Guerrieri
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Aurélie Bonin
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Tamara Münkemüller
- Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Ludovic Gielly
- Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Wilfried Thuiller
- Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.,Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| |
Collapse
|
24
|
Pei Y, Mamtimin T, Ji J, Khan A, Kakade A, Zhou T, Yu Z, Zain H, Yang W, Ling Z, Zhang W, Zhang Y, Li X. The guanidine thiocyanate-high EDTA method for total microbial RNA extraction from severely heavy metal-contaminated soils. Microb Biotechnol 2020; 14:465-478. [PMID: 32578381 PMCID: PMC7936289 DOI: 10.1111/1751-7915.13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular analyses relying on RNA, as a direct way to unravel active microbes and their functional genes, have received increasing attention from environmental researchers recently. However, extracting sufficient and high‐quality total microbial RNA from seriously heavy metal‐contaminated soils is still a challenge. In this study, the guanidine thiocyanate‐high EDTA (GTHE) method was established and optimized for recovering high quantity and quality of RNA from long‐term heavy metal‐contaminated soils. Due to the low microbial biomass in the soils, we combined multiple strong denaturants and intense mechanical lysis to break cells for increasing RNA yields. To minimize RNAase and heavy metals interference on RNA integrity, the concentrations of guanidine thiocyanate and EDTA were increased from 0.5 to 0.625 ml g−1 soil and 10 to 100 mM, respectively. This optimized GTHE method was applied to seven severely contaminated soils, and the RNA recovery efficiencies were 2.80 ~ 59.41 μg g−1 soil. The total microbial RNA of non‐Cr(VI) (NT) and Cr(VI)‐treated (CT) samples was utilized for molecular analyses. The result of qRT‐PCR demonstrated that the expressions of two tested genes, chrA and yieF, were respectively upregulated 4.12‐ and 62.43‐fold after Cr(VI) treatment. The total microbial RNA extracted from NT and CT samples, respectively, reached to 26.70 μg and 30.75 μg, which were much higher than the required amount (5 μg) for metatranscriptomic library construction. Besides, ratios of mRNA read were more than 86%, which indicated the high‐quality libraries constructed for metatranscriptomic analysis. In summary, the GTHE method is useful to study microbes of contaminated habitats.
Collapse
Affiliation(s)
- Yaxin Pei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Tursunay Mamtimin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Apurva Kakade
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Tuoyu Zhou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Hajira Zain
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| |
Collapse
|
25
|
Delavaux CS, Bever JD, Karppinen EM, Bainard LD. Keeping it cool: Soil sample cold pack storage and DNA shipment up to 1 month does not impact metabarcoding results. Ecol Evol 2020; 10:4652-4664. [PMID: 32551050 PMCID: PMC7297747 DOI: 10.1002/ece3.6219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023] Open
Abstract
With the advances of sequencing tools, the fields of environmental microbiology and soil ecology have been transformed. Today, the unculturable majority of soil microbes can be sequenced. Although these tools give us tremendous power and open many doors to answer important questions, we must understand how sample processing may impact our results and interpretations. Here, we test the impacts of four soil storage methods on downstream amplicon metabarcoding and qPCR analyses for fungi and bacteria. We further investigate the impact of thaw time on extracted DNA to determine a safe length of time during which this can occur with minimal impact on study results. Overall, we find that storage using standard cold packs with subsequent storage at -20°C is little different than immediate storage in liquid nitrogen, suggesting that the historical and current method is adequate. We further find evidence that storage at room temperature or with aid of RNAlater can lead to changes in community composition and in the case of RNAlater, lower gene copies. We therefore advise against these storage methods for metabarcoding analyses. Finally, we show that over 1 month, DNA extract thaw time does not impact diversity or qPCR metrics. We hope that this work will help researchers working with soil bacteria and fungi make informed decisions about soil storage and transport to ensure repeatability and accuracy of results and interpretations.
Collapse
Affiliation(s)
- Camille S. Delavaux
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKSUSA
- Kansas Biological SurveyThe University of KansasLawrenceKSUSA
| | - James D. Bever
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKSUSA
- Kansas Biological SurveyThe University of KansasLawrenceKSUSA
| | - Erin M. Karppinen
- Swift Current Research and Development CentreAgriculture and Agri‐Food CanadaSwift CurrentSKCanada
| | - Luke D. Bainard
- Swift Current Research and Development CentreAgriculture and Agri‐Food CanadaSwift CurrentSKCanada
| |
Collapse
|
26
|
Tindale LC, Baticados W, Duan J, Coombe M, Jassem A, Tang P, Uyaguari-Diaz M, Moore R, Himsworth C, Hsiao W, Prystajecky N. Extraction and Detection of Avian Influenza Virus From Wetland Sediment Using Enrichment-Based Targeted Resequencing. Front Vet Sci 2020; 7:301. [PMID: 32548133 PMCID: PMC7273442 DOI: 10.3389/fvets.2020.00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
Early virus detection and characterization is key to successful avian influenza virus (AIV) surveillance for the health of humans as well as domestic poultry. We explored a novel sampling approach and molecular strategy using sediment from wetlands and outdoor waterbodies on poultry farms as a population-level proxy of AIV activity in waterfowls. RNA was extracted using the MoBio RNA PowerSoil Total RNA isolation kit with additional chloroform extraction steps to reduce PCR inhibition. AIV matrix protein (MP) gene was detected in 42/345 (12.2%) samples by RT-qPCR; an additional 64 (18.6%) samples showed evidence of amplification below the threshold and were categorized as “suspect positive.” Enrichment-based targeted resequencing (TR) identified AIV sequences in 79/345 (22.9%) samples. TR probes were designed for MP, hemagglutinin (HA), and neuraminidase (NA), however PB2 and PA were also identified. Although RT-qPCR and TR only had fair-moderate agreement, RT-qPCR positivity was predictive of TR-positivity both when using only strictly positive RT-qPCR samples (OR = 11.29) and when coding suspect positives as positive (OR = 7.56). This indicates that RT-qPCR could be used as a screening tool to select samples for virus characterization by TR and that future studies should consider RT-qPCR suspect positives to be positive samples for subsequent resequencing when avoiding false negatives is the priority, for instance in a diagnostic test, and to consider suspect positives to be negative samples when cost efficiency over a large number of samples is the priority, for instance in a surveillance program. A total of 13 HA (H1-7, H9-13, H16) and 9 NA (N1-9) subtypes were identified, with a maximum of 8 HA and 8 NA subtypes detected in a single sample. The optimized RNA extraction and targeted resequencing methods provided increased virus detection and subtyping characterization that could be implemented in an AIV surveillance system.
Collapse
Affiliation(s)
- Lauren C Tindale
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Waren Baticados
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Jun Duan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Michelle Coombe
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, BC, Canada
| | - Agatha Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Miguel Uyaguari-Diaz
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Chelsea Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, BC, Canada
| | - William Hsiao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Natalie Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| |
Collapse
|
27
|
Rodríguez-Martínez R, Leonard G, Milner DS, Sudek S, Conway M, Moore K, Hudson T, Mahé F, Keeling PJ, Santoro AE, Worden AZ, Richards TA. Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink. ISME JOURNAL 2020; 14:984-998. [PMID: 31919469 PMCID: PMC7082347 DOI: 10.1038/s41396-019-0581-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022]
Abstract
Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.
Collapse
Affiliation(s)
- Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Mike Conway
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Karen Moore
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Theresa Hudson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Frédéric Mahé
- CIRAD, UMR LSTM, Montpellier, France.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
28
|
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 2020; 17:95-109. [PMID: 30442909 DOI: 10.1038/s41579-018-0116-y] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.
Collapse
Affiliation(s)
- R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Sten Anslan
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Leho Tedersoo
- Natural History Museum of Tartu University, Tartu, Estonia
| |
Collapse
|
29
|
VanMensel D, Chaganti SR, Droppo IG, Weisener CG. Exploring bacterial pathogen community dynamics in freshwater beach sediments: A tale of two lakes. Environ Microbiol 2019; 22:568-583. [PMID: 31736260 DOI: 10.1111/1462-2920.14860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 11/28/2022]
Abstract
Pathogenic bacteria associated with freshwater ecosystems can pose significant health risks particularly where recreational water use is popular. Common water quality assessments involve quantifying indicator Escherichia coli within the water column but neglect to consider physical and geochemical factors and contributions from the sediment. In this study, we used high-throughput sequencing to investigate sediment microbial communities at four freshwater public beaches in southern Ontario, Canada and analysed community structure, function, and gene expression with relation to geographical characteristics. Our results indicate that beach sediments at the sediment-water interface could serve as potential sources of bacterial contamination under low-energy environments with tightly packed small sediment particles compared with high-energy environments. Further, the absence of pathogens but expression of pathogenic transcripts suggests occurrence of alternate gene acquisition. Pathogenicity at these locations included expression of Salmonella virulence factors, genes involved in pertussis, and antimicrobial resistance. Finally, we introduce a proposed universal bacterial pathogen model to consider the combined and synergistic processes used by these microbes. To our knowledge, this is the first study of its kind to investigate chemolithotrophic activity related to pathogens within bed sediment at freshwater beaches. This work helps advance current understanding of health risks in these environments.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada.,Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Ian G Droppo
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
| |
Collapse
|
30
|
Li X, Qiu D, Chen S, Luo C, Hu D, Zeng J, Chen H, Li S, Yu X. Importance of messenger RNA stability of toxin synthetase genes for monitoring toxic cyanobacterial bloom. HARMFUL ALGAE 2019; 88:101642. [PMID: 31582157 DOI: 10.1016/j.hal.2019.101642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Toxic cyanobacterial blooms, occurring frequently worldwide, have posed serious threats to human health and aquatic ecosystem. RNA-based quantitative PCR, which could detect potential toxin-producing cyanobacteria that are actively transcribing toxin genes, is a more reliable method, compared to DNA-based qPCR. However, single-stranded mRNA is labile, and their degradation may lead to an underestimate of gene expression level, even misleading toxic risk management, and thus impeding its application. Here, the mRNA stability of microcystin synthetase genes (mcyA-J) was systematically evaluated in unicellular and colonial Microcystis with various treatments (-80 ℃, -196 ℃, 4 °C or 25 °C with RNases inhibitors). Results revealed the highly instability of toxin gene transcripts, affected by transcript structures and cell aggregation. The -196 ℃ treatment was the most effective for stabilizing these transcripts. RNAstore® (4 °C) could stabilize these transcripts effectively for a short time (less than 7 d), but their stability was strikingly reduced in colonial Microcystis. Furthermore, decay kinetics of mcyA-J transcripts in various treatments was developed, and showed that their decay rates were varied (0.0018-3.014 d-1), due to different molecular structures. The mcyH transcripts had the lowest decay rate (0.0018 d-1 at -196 ℃), attributed to the fewest AU sites and stem-loops involved in its secondary structure. Thus, mcyH was the most proper target gene for monitoring toxic cyanobacterial bloom. These findings provided new insight into mRNA stability of toxin genes, and contributed to monitoring toxic cyanobacterial blooms and water managements using RNA-based molecular techniques.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donghua Qiu
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, 361005, China
| | - Sheng Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Luo
- College of Petroleum Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Dong Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Chen
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, Fuzhou, 350001, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, Fuzhou, 350001, China
| | - Xin Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
31
|
Ribeiro H, Martins A, Gonçalves M, Guedes M, Tomasino MP, Dias N, Dias A, Mucha AP, Carvalho MF, Almeida CMR, Ramos S, Almeida JM, Silva E, Magalhães C. Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS One 2019; 14:e0216882. [PMID: 31091277 PMCID: PMC6519839 DOI: 10.1371/journal.pone.0216882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, Porto, Portugal
- * E-mail:
| | - Alfredo Martins
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | | | | | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Nuno Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - André Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F. Carvalho
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - C. Marisa R. Almeida
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Sandra Ramos
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
| | - José Miguel Almeida
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Eduardo Silva
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- FCUP–Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Reid T, Droppo IG, Chaganti SR, Weisener CG. Microbial metabolic strategies for overcoming low-oxygen in naturalized freshwater reservoirs surrounding the Athabasca Oil Sands: A proxy for End-Pit Lakes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:113-124. [PMID: 30772540 DOI: 10.1016/j.scitotenv.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
The success and sustainability of aquatic ecosystems are driven by the complex, cooperative metabolism of microbes. Ecological engineering strategies often strive to harness this syntrophic synergy of microbial metabolism for the reclamation of contaminated environments worldwide. Currently, there is a significant knowledge gap in our understanding of how the natural microbial ecology overcomes thermodynamic limitations in recovering contaminated environments. Here, we used in-situ metatranscriptomics and associated metataxonomic analyses on sediments collected from naturalized freshwater man-made reservoirs within the Athabasca Oil Sands region of Alberta, Canada. These reservoirs are unique since they are untouched by industrial mining processes and serve as representative endpoints for model landscape reconstruction. Results indicate that a microbial syntrophic cooperation has been established represented by the oxygenic and anoxygenic phototrophs, sustained through the efficient use of novel cellular mechanistic adaptations tailored to these unique thermodynamic conditions. Specifically, chemotaxis transcripts (cheY & MCPs-methyl-accepting chemotaxis proteins) were highly expressed, suggesting a highly active microbial response to gradients in environmental stimuli, resulting indirectly from hydrocarbon compound alteration. A high expression of photosynthetic activity, likely sustaining nutrient delivery to the similarly highly expressed methanogenic community acting in syntrophy during the breakdown of organics. Overall the more diversified functionality within sub-oxic sample locations indicates an ability to maintain efficient metabolism under thermodynamic constraints. This is the first study to holistically identify and characterize these types of in-situ, metabolic processes and address their thermodynamic feasibility within a global context for large landscape reconstruction. These characterizations of regional, natural landscapes surrounding the oil sands mining operation are severely lacking, but truly provide invaluable insight into end-point goals and targets for reclamation procedures.
Collapse
Affiliation(s)
- Thomas Reid
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Ian G Droppo
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
33
|
Lee KM, Adams M, Klassen JL. Evaluation of DESS as a storage medium for microbial community analysis. PeerJ 2019; 7:e6414. [PMID: 30740279 PMCID: PMC6368006 DOI: 10.7717/peerj.6414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
Microbial ecology research requires sampling strategies that accurately represent the microbial community under study. These communities must typically be transported from the collection location to the laboratory and then stored until they can be processed. However, there is a lack of consensus on how best to preserve microbial communities during transport and storage. Here, we evaluated dimethyl sulfoxide, ethylenediamine tetraacetic acid, saturated salt (DESS) solution as a broadly applicable preservative for microbial ecology experiments. We stored fungus gardens grown by the ant Trachymyrmex septentrionalis in DESS, 15% glycerol, and phosphate buffered saline (PBS) to test their impact on the fungus garden microbial community. Variation in microbial community structure due to differences in preservative type was minimal when compared to variation between ant colonies. Additionally, DESS preserved the structure of a defined mock community more faithfully than either 15% glycerol or PBS. DESS is inexpensive, easy to transport, and effective in preserving microbial community structure. We therefore conclude that DESS is a valuable preservative for use in microbial ecology research.
Collapse
Affiliation(s)
- Kevin M Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Madison Adams
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
34
|
Oldham AL, Sandifer V, Duncan KE. Effects of sample preservation on marine microbial diversity analysis. J Microbiol Methods 2019; 158:6-13. [PMID: 30677454 DOI: 10.1016/j.mimet.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
Abstract
Three replicate seawater samples were collected on three different days, filtered immediately and preserved with one of two guanidinium thiocyanate-based preservatives (DNAzol™ or RNA Lysis Buffer™ plus β-mercaptoethanol (RLA+)) and were kept frozen while being shipped to a lab. In parallel, a carboy of seawater was collected on each of the three days and maintained at ambient temperature while being shipped to a lab. Upon receipt the samples were filtered and treated in the same manner as for immediate preservation. Significantly more DNA was obtained from samples immediately preserved with DNAzol than the corresponding shipped samples for 2 of the 3 days. More DNA was extracted from DNAzol preserved samples but more RNA was obtained from RLA+ preserved samples. A protocol was designed to extract both DNA and RNA from split samples preserved with RLA+ and cDNA was synthesized from the RNA. Three high-throughput 16S rRNA gene libraries were constructed, one from DNA preserved with DNAzol, one from DNA preserved with RLA+ and one from cDNA (RLA+ preserved). Greater alpha diversity was found for libraries constructed from immediately preserved vs. shipped samples for both preservation types, with immediate preservation with DNAzol obtaining the highest level of diversity. Libraries constructed from immediately preserved (RLA+) DNA had greater alpha diversity than libraries constructed from shipped preserved (RLA+) DNA or cDNA. Unifrac measures of beta diversity showed clearer separation of sample types and a greater % variance explained for weighted than for unweighted principal coordinate analysis (PCoA) plots, indicating sample types varied more in their relative abundance of taxa than the presence/absence of particular taxa. We recommend immediate preservation of seawater samples, with DNAzol as the preferred preservative if quantification via qPCR will be performed or the highest alpha diversity is desired but preservation with RLA+ if RNA will be extracted.
Collapse
Affiliation(s)
- Athenia L Oldham
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States; Department of Biology, University of Texas of the Permian Basin, 4901 E University, Odessa, TX 79762, USA.
| | - Vince Sandifer
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States.
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
35
|
Tedersoo L, Drenkhan R, Anslan S, Morales‐Rodriguez C, Cleary M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol Ecol Resour 2019; 19:47-76. [PMID: 30358140 PMCID: PMC7379260 DOI: 10.1111/1755-0998.12959] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
High-throughput identification technologies provide efficient tools for understanding the ecology and functioning of microorganisms. Yet, these methods have been only rarely used for monitoring and testing ecological hypotheses in plant pathogens and pests in spite of their immense importance in agriculture, forestry and plant community dynamics. The main objectives of this manuscript are the following: (a) to provide a comprehensive overview about the state-of-the-art high-throughput quantification and molecular identification methods used to address population dynamics, community ecology and host associations of microorganisms, with a specific focus on antagonists such as pathogens, viruses and pests; (b) to compile available information and provide recommendations about specific protocols and workable primers for bacteria, fungi, oomycetes and insect pests; and (c) to provide examples of novel methods used in other microbiological disciplines that are of great potential use for testing specific biological hypotheses related to pathology. Finally, we evaluate the overall perspectives of the state-of-the-art and still evolving methods for diagnostics and population- and community-level ecological research of pathogens and pests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Rein Drenkhan
- Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sten Anslan
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | | - Michelle Cleary
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
36
|
Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K. Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:100-110. [PMID: 29414329 DOI: 10.1016/j.envpol.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microbial source tracking (MST) DNA-based assays have been used to successfully solve fecal pollution problems in many countries, particularly in developed nations. However, their application in developing countries has been limited but continues to increase. In this study, sixteen endpoint and quantitative PCR (qPCR) assays targeting universal and human-, swine-, and cattle-specific Bacteroidales gene markers were modified for endpoint PCR, evaluated for their performance with sewage and fecal samples from the Tha Chin watershed and subsequently validated with samples from the Chao Phraya watershed, Thailand. Sample sizes of 81 composite samples (from over 1620 individual samples) of farm animals of each type as well as 19 human sewage samples from the Tha Chin watershed were calculated using a stratified random sampling design to achieve a 90% confidence interval and an expected prevalence (i.e., desired assay's sensitivity) of 0.80. The best universal and human-, swine-, and cattle-specific fecal markers were BacUni EP, HF183/BFDrev EP, Pig-2-Bac EP, and Bac3 assays, respectively. The detection limits for these assays ranged from 30 to 3000 plasmid copies per PCR. The positive predictive values were high in universal and swine- and cattle-specific markers (85-100%), while the positive predictive value of the human-specific assay was 52.2%. The negative predictive values in all assays were relatively high (90.8-100%). A suite of PCR assays in Thailand was established for potential MST use in environmental waters, which supports the worldwide applicability of Bacteroidales gene markers. This study also emphasizes the importance of using a proper sample size in assessing the performance of MST markers in a new geographic region.
Collapse
Affiliation(s)
- Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| |
Collapse
|
37
|
Evaluation of the Microbial Viability of Soil Samples from Maize Crops in Freeze-Storage under Different Management Conditions in a Semi-Arid Climate. SUSTAINABILITY 2017. [DOI: 10.3390/su9050690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Forsgren E, Locke B, Semberg E, Laugen AT, Miranda JRD. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization. J Virol Methods 2017; 246:81-89. [PMID: 28442327 DOI: 10.1016/j.jviromet.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/15/2022]
Abstract
Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min.
Collapse
Affiliation(s)
- Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden.
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden
| | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden; Novia University of Applied Sciences, Raseborgsvägen 9, 10600 Ekenäs, Finland
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden
| |
Collapse
|
39
|
Methylophilaceae and Hyphomicrobium as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants. ACTA ACUST UNITED AC 2017; 44:35-47. [DOI: 10.1007/s10295-016-1860-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2016] [Indexed: 01/05/2023]
Abstract
Abstract
Molecular monitoring of bacterial communities can explain and predict the stability of bioprocesses in varying physicochemical conditions. To study methanol-fed denitrification biofilters of municipal wastewater treatment plants, bacterial communities of two full-scale biofilters were compared through fingerprinting and sequencing of the 16S rRNA genes. Additionally, 16S rRNA gene fingerprinting was used for 10-week temporal monitoring of the bacterial community in one of the biofilters. Combining the data with previous study results, the family Methylophilaceae and genus Hyphomicrobium were determined as suitable target groups for monitoring. An increase in the relative abundance of Hyphomicrobium-related biomarkers occurred simultaneously with increases in water flow, NOx − load, and methanol addition, as well as a higher denitrification rate, although the dominating biomarkers linked to Methylophilaceae showed an opposite pattern. The results indicate that during increased loading, stability of the bioprocess is maintained by selection of more efficient denitrifier populations, and this progress can be analyzed using simple molecular fingerprinting.
Collapse
|
40
|
Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M. Methylophaga and Hyphomicrobium can be used as target genera in monitoring saline water methanol-utilizing denitrification. ACTA ACUST UNITED AC 2016; 43:1647-1657. [DOI: 10.1007/s10295-016-1839-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Which bacterial taxonomic groups can be used in monitoring saline water methanol-utilizing denitrification and whether nitrate is transformed into N2 in the process are unclear. Therefore, methylotrophic bacterial communities of two efficiently functioning (nitrate/nitrite reduction was 63–96 %) tropical and cool seawater reactors at a public aquarium were investigated with clone library analysis and 454 pyrosequencing of the 16S rRNA genes. Transformation of nitrate into N2 was confirmed using 15N labeling in incubation of carrier material from the tropical reactor. Combining the data with previous study results, Methylophaga and Hyphomicrobium were determined to be suitable target genera for monitoring the function of saline water methanol-fed denitrification systems. However, monitoring was not possible at the single species level. Interestingly, potential nitrate-reducing methylotrophs within Filomicrobium and closely related Fil I and Fil II clusters were detected in the reactors suggesting that they also contributed to methylotrophic denitrification in the saline environment.
Collapse
Affiliation(s)
- Antti J Rissanen
- grid.6986.1 0000000093279856 Department of Chemistry and Bioengineering Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Anne Ojala
- grid.7737.4 0000000404102071 Department of Environmental Sciences University of Helsinki P.O. Box 65 FI-00014 Helsinki Finland
- grid.7737.4 0000000404102071 Department of Forest Sciences University of Helsinki P.O. Box 27 FI-00014 Helsinki Finland
| | | | - Jouni Jaakkola
- SEA LIFE, Helsinki Tivolitie 10 FI-00510 Helsinki Finland
| | - Marja Tiirola
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| |
Collapse
|
41
|
Lebuhn M, Derenkó J, Rademacher A, Helbig S, Munk B, Pechtl A, Stolze Y, Prowe S, Schwarz WH, Schlüter A, Liebl W, Klocke M. DNA and RNA Extraction and Quantitative Real-Time PCR-Based Assays for Biogas Biocenoses in an Interlaboratory Comparison. Bioengineering (Basel) 2016; 3:bioengineering3010007. [PMID: 28952569 PMCID: PMC5597165 DOI: 10.3390/bioengineering3010007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/24/2015] [Indexed: 01/17/2023] Open
Abstract
Five institutional partners participated in an interlaboratory comparison of nucleic acid extraction, RNA preservation and quantitative Real-Time PCR (qPCR) based assays for biogas biocenoses derived from different grass silage digesting laboratory and pilot scale fermenters. A kit format DNA extraction system based on physical and chemical lysis with excellent extraction efficiency yielded highly reproducible results among the partners and clearly outperformed a traditional CTAB/chloroform/isoamylalcohol based method. Analytical purpose, sample texture, consistency and upstream pretreatment steps determine the modifications that should be applied to achieve maximum efficiency in the trade-off between extract purity and nucleic acid recovery rate. RNA extraction was much more variable, and the destination of the extract determines the method to be used. RNA stabilization with quaternary ammonium salts was an as satisfactory approach as flash freezing in liquid N2. Due to co-eluted impurities, spectrophotometry proved to be of limited value for nucleic acid qualification and quantification in extracts obtained with the kit, and picoGreen® based quantification was more trustworthy. Absorbance at 230 nm can be extremely high in the presence of certain chaotropic guanidine salts, but guanidinium isothiocyanate does not affect (q)PCR. Absolute quantification by qPCR requires application of a reliable internal standard for which correct PCR efficiency and Y-intercept values are important and must be reported.
Collapse
Affiliation(s)
- Michael Lebuhn
- Bavarian State Research Center for Agriculture, Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany.
| | - Jaqueline Derenkó
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Department Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Antje Rademacher
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Department Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Susanne Helbig
- Beuth University of Applied Sciences, Department of Life Sciences and Technology, Luxemburger Strasse 10, 13353 Berlin, Germany.
| | - Bernhard Munk
- Bavarian State Research Center for Agriculture, Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany.
| | - Alexander Pechtl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany.
| | - Yvonne Stolze
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Steffen Prowe
- Beuth University of Applied Sciences, Department of Life Sciences and Technology, Luxemburger Strasse 10, 13353 Berlin, Germany.
| | - Wolfgang H Schwarz
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany.
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany.
| | - Michael Klocke
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Department Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| |
Collapse
|
42
|
Wang Y, Wu Y, Wu Z, Tam NFY. Genotypic responses of bacterial community structure to a mixture of wastewater-borne PAHs and PBDEs in constructed mangrove microcosms. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:91-101. [PMID: 26005923 DOI: 10.1016/j.jhazmat.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
Mangrove microcosms capable of removing polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) from wastewater were established under everyday tidal and non-tidal flooding regimes, along with two different mangrove species. Defining how bacterial communities change with pollutants or across treatments will contribute to understanding the microbial ecology of in situ bioremediation systems. A semi-nested PCR-DGGE (denaturing gradient gel electrophoresis) approach was employed, with known genus/species-specific primers targeting the 16S rRNA genes of Sphingomonas and Mycobacterium (related to PAH degradation) and Dehalococcoides (related to PBDE degradation). Results showed that the composition of Mycobacterium- and Dehalococcoides-like populations was critically determined by tidal regime during a medium-term (4-8 months) exposure, while that of Sphingomonas-like population, along with total bacterial community, was more dependent on sediment layer and became prominently affected by tidal regime till the end of 8-month treatment. The effect of plant species was relatively small. Canonical correspondence analysis (CCA) further revealed that Sphingomonas- and Mycobacterium-like populations were significantly associated with phenanthrene and benzo(a)pyrene, respectively, while Dehalococcoides-like population was the only group significantly related to the highest PBDE congener (BDE-209) in the mangrove microcosms.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yan Wu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
43
|
Romanazzi V, Traversi D, Lorenzi E, Gilli G. Effects of freezing storage on the DNA extraction and microbial evaluation from anaerobic digested sludges. BMC Res Notes 2015; 8:420. [PMID: 26347085 PMCID: PMC4562115 DOI: 10.1186/s13104-015-1407-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
Background The anaerobic digestion is one of the most spread renewable energy technology. The input biomasses included various environmental problematic wastes such as sludge coming from wastewater treatment plant (WWTP) and organic fraction of municipal solid waste (OFMSW). As biomolecular procedures have become important tools for the microbial characterisation of anaerobic samples coming from the reactors, it is crucial sampling and extracting properly DNA in order to employ such types of techniques. The current study is aimed to evaluate how freezing temperature and length of storage at −20 °C influence both the extracted DNA yield and microbial community quantifications from digested sludge samples collected at full-scale plants. Results From WWTP sludge samples, we observed a reduction of DNA concentration comparing fresh and stored samples for 10 days at −20 °C (ANOVA test p < 0.0001), with an estimated DNA loss of approximately 65 % for such types of samples, however the methanogen communities can be assessed respecting the fresh conditions. From OFMSW sludge samples, we observed a reduction in extracted DNA (−90 %), after 120 frozen days, while microbial communities are determined respecting the fresh conditions within 2 months of frozen storage. Conclusions The remarkable effect of frozen storage on sludge samples suggests as the better procedure to perform the DNA extraction from fresh sample. On the other hand it is not generally possible, so approximately 2 months of storage at −20 °C appears to be suitable time at which DNA concentrations remain sufficient to perform coherent microbial characterization through quantitative qRT-PCR.
Collapse
Affiliation(s)
- Valeria Romanazzi
- Hygiene Division, Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Turin, Italy.
| | - Deborah Traversi
- Hygiene Division, Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Turin, Italy.
| | - Eugenio Lorenzi
- SMAT, Società Metropolitana Acque Torino S.p.A., Corso XI Febbraio 14, 10152, Turin, Italy.
| | - Giorgio Gilli
- Hygiene Division, Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
44
|
Brandt FB, Breidenbach B, Brenzinger K, Conrad R. Impact of short-term storage temperature on determination of microbial community composition and abundance in aerated forest soil and anoxic pond sediment samples. Syst Appl Microbiol 2015; 37:570-7. [PMID: 25466922 DOI: 10.1016/j.syapm.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/05/2023]
Abstract
Sampling strategy is important for unbiased analysis of the characteristics of microbial communities in the environment. During field work it is not always possible to analyze fresh samples immediately or store them frozen. Therefore, the effect of short-term storage temperature was investigated on the abundance and composition of bacterial, archaeal and denitrifying communities in environmental samples from two different sampling sites. Oxic forest soil and anoxic pond sediment were investigated by measuring microbial abundance (DNA) and transcriptional activity (RNA). Prior to investigating the effect of storage temperature, samples were immediately analyzed, in order to represent the original situation in the habitat. The effect of storage temperature was then determined after 11 days at different low temperatures (room temperature, 4 °C, −22 °C and −80 °C). Community profiling using terminal restriction fragment length polymorphism (T-RFLP) showed no significant differences between the immediately analyzed reference sample and the samples stored at different incubation temperatures, both for DNA and RNA extracts. The abundance of microbial communities was determined using quantitative PCR and it also revealed a stable community size at all temperatures tested. By contrast, incubation at an elevated temperature (37 °C) resulted in changed bacterial community composition. In conclusion, short-term storage, even at room temperature, did not affect microbial community composition, abundance and transcriptional activity in aerated forest soil and anoxic pond sediment.
Collapse
|
45
|
McCarthy A, Chiang E, Schmidt ML, Denef VJ. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition. PLoS One 2015; 10:e0121659. [PMID: 25798612 PMCID: PMC4370824 DOI: 10.1371/journal.pone.0121659] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 01/08/2023] Open
Abstract
Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA samples.
Collapse
Affiliation(s)
- Ann McCarthy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Edna Chiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Marian L. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
46
|
McHugh JM, de Kloet SR. Discrepancy in the diagnosis of avian Borna disease virus infection of Psittaciformes by protein analysis of feather calami and enzyme-linked immunosorbent assay of plasma antibodies. J Vet Diagn Invest 2015; 27:150-8. [PMID: 25701023 DOI: 10.1177/1040638715571358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study compares diagnosis of avian Borna disease virus (ABV) infection of psittacine birds by Western blot of bornaviral proteins in dried feather stems with the detection of anti-bornaviral protein antibodies to bornaviral proteins in plasma by enzyme-linked immunosorbent assay (ELISA). The detection of ABV proteins P40 and P24 in feather calami by Western blotting was possible even after storage of the dried feathers for several years at ambient temperature. Serological identification of anti-bornaviral antibodies may fail (e.g., in young birds, hatched from infected parents), whereas bornaviral P40 and P24 proteins were detected in feather stems. This failure can last at least 10 months after the birds are hatched. In some older birds (>5 years), ABV protein was only detectable in the brain, but not in some peripheral tissues, suggesting that the immune system had succeeded in removing the infecting ABV from tissues outside the brain. These results show that a combination of feather stem analysis for the presence of bornaviral proteins by Western blot combined with serological detection of anti-bornaviral antibodies by ELISA is the most reliable procedure for the detection of a bornaviral infection.
Collapse
|
47
|
Ribeiro H, Almeida CMR, Magalhães C, Bordalo AA, Mucha AP. Salt marsh sediment characteristics as key regulators on the efficiency of hydrocarbons bioremediation by Juncus maritimus rhizospheric bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:450-462. [PMID: 25081009 DOI: 10.1007/s11356-014-3388-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Mitigation of petroleum hydrocarbons was investigated during a 5-month greenhouse experiment, to assess the rhizoremediation (RR) potential in sediments with different characteristics colonized by Juncus maritimus, a salt marsh plant commonly found in temperate estuaries. Furthermore, the efficiency of two bioremediation treatments namely biostimulation (BS) by the addition of nutrients, and bioaugmentation (BA) by addition of indigenous microorganisms, was tested in combination with RR. The effect of the distinct treatments on hydrocarbon degradation, root biomass weight, and bacterial community structure was assessed. Our result showed higher potential for hydrocarbon degradation (evaluated by total petroleum hydrocarbon analysis) in coarse rhizosediments with low organic matter (OM), than rhizosediments with high OM, and small size particles. Moreover, the bacterial community structure was shaped according to the rhizosediment characteristics, highlighting the importance of specific microbe-particle associations to define the structure of rhizospheric bacterial communities, rather than external factors, such as hydrocarbon contamination or the applied treatments. The potential for hydrocarbon RR seems to depend on root system development and bacterial diversity, since biodegradation efficiencies were positively related with these two parameters. Treatments with higher root biomass, and concomitantly with higher bacterial diversity yielded higher hydrocarbon degradation. Moreover, BS and BA did not enhance hydrocarbons RR. In fact, it was observed that higher nutrient availability might interfere with root growth and negatively influence hydrocarbon degradation performance. Therefore, our results suggested that to conduct appropriate hydrocarbon bioremediation strategies, the effect of sediment characteristics on root growth/exploration should be taken into consideration, a feature not explored in previous studies. Furthermore, strategies aiming for the recovery of bacterial diversity after oil spills may improve the efficiency of hydrocarbon biodegradation in contaminated salt marsh sediments.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal,
| | | | | | | | | |
Collapse
|
48
|
Larsen AM, Mohammed HH, Arias CR. Comparison of DNA extraction protocols for the analysis of gut microbiota in fishes. FEMS Microbiol Lett 2014; 362:fnu031. [PMID: 25757730 DOI: 10.1093/femsle/fnu031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study investigated the impacts of bacterial DNA extraction methodology on downstream analysis of fish gut microbiota. Feces and intestine samples were taken from three sympatric freshwater fish species with varying diets. Samples were processed immediately (approximately 4 h after capture; fresh), stored at -20 °C for 15 days or preserved in RNAlater® reagent for 15 days. DNA was then extracted using two commercial kits: one designed for animal tissues and one specifically formulated for stool samples. Microbial community fingerprints were generated using ribosomal intergenic spacer analysis. Factors including diversity as depicted by band number, band intensity, repeatability and practicalities such as cost and time were considered. Despite significant differences in microbiota structure, results were similar between feces and intestine samples. Frozen samples were consistently outperformed by other storage methods and the stool kit typically outperformed the tissue kit. Overall, we recommend extraction of bacterial DNA from fresh samples using the stool kit for both sample types. If samples cannot be processed immediately, preservation in RNAlater® is preferred to freezing. Choice of DNA extraction method significantly influences the results of downstream microbial community analysis and thus should be taken into consideration for metadata analysis.
Collapse
Affiliation(s)
- Andrea M Larsen
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haitham H Mohammed
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Covadonga R Arias
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
49
|
Hauser LJ, Feazel LM, Ir D, Fang R, Wagner BD, Robertson CE, Frank DN, Ramakrishnan VR. Sinus culture poorly predicts resident microbiota. Int Forum Allergy Rhinol 2014; 5:3-9. [DOI: 10.1002/alr.21428] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/15/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Leah J. Hauser
- Department of Otolaryngology-Head and Neck Surgery; University of Colorado; Aurora CO
| | - Leah M. Feazel
- Division of Infectious Diseases; University of Colorado; Aurora CO
| | - Diana Ir
- Division of Infectious Diseases; University of Colorado; Aurora CO
| | - Rui Fang
- Department of Biostatistics and Informatics; University of Colorado; Aurora CO
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics; University of Colorado; Aurora CO
- The Microbiome Research Consortium; University of Colorado; Aurora CO
| | - Charles E. Robertson
- Department of Molecular, Cellular, and Developmental Biology; University of Colorado; Boulder CO
| | - Daniel N. Frank
- Division of Infectious Diseases; University of Colorado; Aurora CO
- The Microbiome Research Consortium; University of Colorado; Aurora CO
| | - Vijay R. Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery; University of Colorado; Aurora CO
| |
Collapse
|
50
|
Tatangelo V, Franzetti A, Gandolfi I, Bestetti G, Ambrosini R. Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiol Lett 2014; 356:32-8. [DOI: 10.1111/1574-6968.12475] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Valeria Tatangelo
- Department of Earth and Environmental Sciences; University of Milano-Bicocca; Milan Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences; University of Milano-Bicocca; Milan Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences; University of Milano-Bicocca; Milan Italy
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences; University of Milano-Bicocca; Milan Italy
| | - Roberto Ambrosini
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
| |
Collapse
|