1
|
Deepa G, Daniel I, Sugumar S. An insight into the applications of bacteriophages against food-borne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:1-10. [PMID: 39867606 PMCID: PMC11754761 DOI: 10.1007/s13197-024-06070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 01/28/2025]
Abstract
Novel and emerging pathogens, enduring contamination, antibiotic resistance, an environment that is always changing, and the complexity of food production systems all contribute to the worsening of foodborne illness. It has been proposed that bacteriophages can serve as both fast food-borne pathogen detection tools and natural food preservatives in a variety of foods. Phages, like many other antimicrobial interventions used in food production systems, are not a cure-all for issues related to food safety, though. Consequently, phage-based biocontrol has a generally narrower antibacterial spectrum than most antibiotics, even though it can be promising in the fight against foodborne infections. Among the difficulties phage-based biocontrol techniques encounter are forming phage-insensitive single-cell variations and creating potent cocktails. To better understand when and where phage-based applications can be successfully implemented at the production and processing levels, this review focuses on phage-based applications at crucial control points in food production systems.
Collapse
Affiliation(s)
- Gutti Deepa
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Irene Daniel
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Theodorakis N, Feretzakis G, Hitas C, Kreouzi M, Kalantzi S, Spyridaki A, Kollia Z, Verykios VS, Nikolaou M. Immunosenescence: How Aging Increases Susceptibility to Bacterial Infections and Virulence Factors. Microorganisms 2024; 12:2052. [PMID: 39458361 PMCID: PMC11510421 DOI: 10.3390/microorganisms12102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The process of aging leads to a progressive decline in the immune system function, known as immunosenescence, which compromises both innate and adaptive responses. This includes impairments in phagocytosis and decreased production, activation, and function of T- and B-lymphocytes, among other effects. Bacteria exploit immunosenescence by using various virulence factors to evade the host's defenses, leading to severe and often life-threatening infections. This manuscript explores the complex relationship between immunosenescence and bacterial virulence, focusing on the underlying mechanisms that increase vulnerability to bacterial infections in the elderly. Additionally, it discusses how machine learning methods can provide accurate modeling of interactions between the weakened immune system and bacterial virulence mechanisms, guiding the development of personalized interventions. The development of vaccines, novel antibiotics, and antivirulence therapies for multidrug-resistant bacteria, as well as the investigation of potential immune-boosting therapies, are promising strategies in this field. Future research should focus on how machine learning approaches can be integrated with immunological, microbiological, and clinical data to develop personalized interventions that improve outcomes for bacterial infections in the growing elderly population.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Christos Hitas
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Magdalini Kreouzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Sofia Kalantzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Aikaterini Spyridaki
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Zoi Kollia
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Maria Nikolaou
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| |
Collapse
|
3
|
Kushwaha SO, Sahu SK, Yadav VK, Rathod MC, Patel D, Sahoo DK, Patel A. Bacteriophages as a potential substitute for antibiotics: A comprehensive review. Cell Biochem Funct 2024; 42:e4022. [PMID: 38655589 DOI: 10.1002/cbf.4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Over the years, the administration of antibiotics for the purpose of addressing bacterial infections has become increasingly challenging due to the increased prevalence of antimicrobial resistance exhibited by various strains of bacteria. Multidrug-resistant (MDR) bacterial species are rising due to the unavailability of novel antibiotics, leading to higher mortality rates. With these conditions, there is a need for alternatives in which phage therapy has made promising results. Phage-derived endolysins, phage cocktails, and bioengineered phages are effective and have antimicrobial properties against MDR and extensively drug-resistant strains. Despite these, it has been observed that phages can give antimicrobial activity to more than one bacterial species. Thus, phage cocktail against resistant strains provides broad spectrum treatment and magnitude of effectivity, which is many folds higher than antibiotics. Many commercially available endolysins such as Staphefekt SA.100, Exebacase (CF-301), and N-Rephasin®SAL200 are used in biofilm penetration and treating plant diseases. The role of CMP1 phage endolysin in transgenic tomato plants in preventing Clavibacter michiganensis infection and the effectiveness of phage in protecting Atlantic salmon from vibriosis have been reported. Furthermore, phage-derived endolysin therapy, such as TSPphg phage exogenous treatment, can aid in disrupting cell walls, leading to bacterial cell lysis. As animals in aquaculture and slaughterhouses are highly susceptible to bacterial infections, effective phage therapy instead of antibiotics can help treat poultry animals, preserve them, and facilitate disease-free trade. Using bioengineered phages and phage cocktails enhances the effectiveness by providing a broad spectrum of phages and target specificity. Research is currently being conducted on clinical trials to confirm the efficacy of engineered phages and phage cocktails in humans. Although obtaining commercial approval may be time-consuming, it will be beneficial in the postantibiotic era. This review provides an overview of the significance of phage therapy as a potential alternative to antibiotics in combating resistant bacterial strains and its application to various fields and emphasizes the importance of safeguarding and ensuring treatment efficacy.
Collapse
Affiliation(s)
- Shruti O Kushwaha
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Santosh Kumar Sahu
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Mayuri C Rathod
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Dhaval Patel
- Bioinformatic Division, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Xuan G, Zhao G, Wang Y, Su Q, Wang J, Lin H. Complete genome analysis and biological characterization of a novel phage vB_CP_qdyz_P5 with lytic activity against Clostridium perfringens. Microb Pathog 2023; 183:106279. [PMID: 37549798 DOI: 10.1016/j.micpath.2023.106279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Clostridium perfringens, a common foodborne pathogen, exhibit high-stress resistance. The prevailing reliance on antibiotics in the farming industry for its prevention and control has led to increasing concerns over antibiotic residue and bacterial resistance. Bacteriophages that possess specific lytic activity against C. perfringens are of significant interest. Here, a novel C. perfringens phage, named vB_CP_qdyz_P5, was isolated and characterized. The phage displayed high stability at temperatures below 70 °C and pH levels ranging from 4 to 12. Genome analysis revealed that vB_CP_qdyz_P5 has a double-stand DNA of 18,888 bp with a G + C composition of 28.8%. Among the 27 identified opening reading frames (ORFs), eight were found to be functional genes. BLASTn analysis showed that vB_CP_qdyz_P5 is closely related to phage DCp1, with a genome homology coverage of 83%. Phylogenetic analysis indicated that vB_CP_qdyz_P5 may be a novel phage of the family Guelinviridae, Susfortunavirus. This study provides important preliminary information for further research on the potential use of vB_CP_qdyz_P5 in protecting against C. perfringens and maintaining intestinal health.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Gang Zhao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qiao Su
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Zia S, Alkheraije KA. Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens. Front Vet Sci 2023; 10:1162465. [PMID: 37303721 PMCID: PMC10247982 DOI: 10.3389/fvets.2023.1162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
A major public health impact is associated with foodborne illnesses around the globe. Additionally, bacteria are becoming more resistant to antibiotics, which pose a global threat. Currently, many scientific efforts have been made to develop and implement new technologies to combat bacteria considering the increasing emergence of multidrug-resistant bacteria. In recent years, there has been considerable interest in using phages as biocontrol agents for foodborne pathogens in animals used for food production and in food products themselves. Foodborne outbreaks persist, globally, in many foods, some of which lack adequate methods to control any pathogenic contamination (like fresh produce). This interest may be attributed both to consumers' desire for more natural food and to the fact that foodborne outbreaks continue to occur in many foods. Poultry is the most common animal to be treated with phage therapy to control foodborne pathogens. A large number of foodborne illnesses worldwide are caused by Salmonella spp. and Campylobacter, which are found in poultry and egg products. Conventional bacteriophage-based therapy can prevent and control humans and animals from various infectious diseases. In this context, describing bacteriophage therapy based on bacterial cells may offer a breakthrough for treating bacterial infections. Large-scale production of pheasants may be economically challenging to meet the needs of the poultry market. It is also possible to produce bacteriophage therapy on a large scale at a reduced cost. Recently, they have provided an ideal platform for designing and producing immune-inducing phages. Emerging foodborne pathogens will likely be targeted by new phage products in the future. In this review article, we will mainly focus on the Bacteriophages (phages) that have been proposed as an alternative strategy to antibiotics for food animal pathogens and their use for public health and food safety.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
6
|
Vidigal PMP, Hungaro HM. Genome sequencing of Pseudomonas fluorescens phage UFJF_PfSW6: a novel lytic Pijolavirus specie with potential for biocontrol in the dairy industry. 3 Biotech 2023; 13:67. [PMID: 36726557 PMCID: PMC9884711 DOI: 10.1007/s13205-023-03485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The genomic characterization of phages with biocontrol potential against food-related bacteria is essential to future commercial applications. Here, we report the genome sequence of P. fluorescens phage UFJF_PfSW6 and a taxonomy proposal framing it as a novel phage species with great potential for biocontrol in the dairy industry. It showed a short linear double-stranded DNA genome (~ 39 kb) with a GC content of 21.2% and short DTR sequences of 215 bp. The genome of the UFJF_PfSW6 phage contains 48 genes with a unidirectional organization into three functional modules: DNA replication and metabolism, structural proteins, and DNA packing and host lysis. Thirteen promoters from phage and nine from host regulate these genes, and six Rho-independent terminators control their transcription. Twenty-seven genes of the UFJF_PfSW6 encode proteins with predicted functions. Comparative genome analysis revealed that the UFJF_PfSW6 genome shares 84% of genomic similarity with the genome sequence of the Pijolavirus PspYZU08, the only representative of the genus recognized so far. Therefore, our findings indicate that both phages are of the same genus, but UFJF_PfSW6 a is a novel Pijolavirus specie belonging to the Studiervirinae subfamily. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03485-3.
Collapse
Affiliation(s)
- Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900 Brazil
| | - Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG 36036-900 Brazil
| |
Collapse
|
7
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Bacteriophages as Biocontrol Agents in Livestock Food Production. Microorganisms 2022; 10:microorganisms10112126. [PMID: 36363718 PMCID: PMC9692620 DOI: 10.3390/microorganisms10112126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages have been regarded as biocontrol agents that can be used in the food industry. They can be used in various applications, such as pathogen detection and bio-preservation. Their potential to improve the quality of food and prevent foodborne illness is widespread. These bacterial viruses can also be utilized in the preservation of various other food products. The specificity and high sensitivity of bacteriophages when they lyse bacterial targets have been regarded as important factors that contribute to their great potential utility in the food industry. This review will provide an overview of their current and potential applications.
Collapse
|
9
|
Daubie V, Chalhoub H, Blasdel B, Dahma H, Merabishvili M, Glonti T, De Vos N, Quintens J, Pirnay JP, Hallin M, Vandenberg O. Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective. Front Cell Infect Microbiol 2022; 12:1000721. [PMID: 36211951 PMCID: PMC9532704 DOI: 10.3389/fcimb.2022.1000721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
As the global burden of disease caused by multidrug resistant bacteria is a major source of concern, credible clinical alternatives to antibiotic therapy, such as personalized phage therapy, are actively explored. Although phage therapy has been used for more than a century, the issue of an easy to implement diagnostic tool for determining phage susceptibility that meets current routine clinical needs is still open. In this Review, we summarize the existing methods used for determining phage activity on bacteria, including the three reference methods: the spot test, the double agar overlay plaque assay, and the Appelmans method. The first two methods rely on the principle of challenging the overnight growth of a lawn of bacteria in an agar matrix to a known relative phage to bacteria concentration and represent good screening tools to determine if the tested phage can be used for a “passive” and or “active” treatment. Beside these methods, several techniques, based on “real-time” growth kinetics assays (GKA) have been developed or are under development. They all monitor the growth of clinical isolates in the presence of phages, but use various detection methods, from classical optical density to more sophisticated techniques such as computer-assisted imagery, flow-cytometry, quantitative real-time polymerase chain reaction (qPCR) or metabolic indicators. Practical considerations as well as information provided about phage activity are reviewed for each technique. Finally, we also discuss the analytical and interpretative requirements for the implementation of a phage susceptibility testing tool in routine clinical microbiology.
Collapse
Affiliation(s)
- Valéry Daubie
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Houssein Chalhoub
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bob Blasdel
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Hafid Dahma
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Quintens
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Marie Hallin
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Olivier Vandenberg,
| |
Collapse
|
10
|
Noor Mohammadi T, Shen C, Li Y, Zayda MG, Sato J, Masuda Y, Honjoh KI, Miyamoto T. Characterization and optimization of bacteriophage cocktails to control Clostridium perfringens in vitro and in curry roux. Int J Food Microbiol 2022; 380:109886. [PMID: 36027839 DOI: 10.1016/j.ijfoodmicro.2022.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
Abstract
Clostridium perfringens is a major cause of foodborne disease in developed countries. The aim of this study was to isolate and characterize phages specific to C. perfringens to evaluate the most efficient phage cocktail for the biocontrol of C. perfringens, both in vitro and in curry roux. In this study, four phages were isolated from chicken meat and were morphologically and genetically characterized along with two phages previously isolated in our laboratory that display different host lysis spectra. Phage cocktail CP11, consisting of phages CPQ3, 7, 8, and 10, showed the broadest host range. Electron micrograph images suggested that all four phages belong to the Podoviridae family, and none of them carry any antibiotic resistance or toxin genes. Notably, the phages were stable at various pH values and in curry roux. Cocktails consisting of six, five, and four phages at the same concentrations were examined to determine the most effective phage cocktail. Phage cocktail PC11 significantly decreased the viable count of C. perfringens to a value less than the lower detection limit up to 48 h at both 8 and 37 °C in broth and at 24 °C in the curry roux. These results suggest that phage cocktail PC11 is a promising natural biocontrol agent against C. perfringens in vitro and in curry roux.
Collapse
Affiliation(s)
- Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Cunkuan Shen
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuncheng Li
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mahmoud Gamaleldin Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya Governorate, Egypt
| | - Jun Sato
- Safety Science Research, R&D, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Li J, Zhao F, Zhan W, Li Z, Zou L, Zhao Q. Challenges for the application of bacteriophages as effective antibacterial agents in the food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:461-471. [PMID: 34487550 DOI: 10.1002/jsfa.11505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Food contamination caused by foodborne pathogens is one of the most important concerns in public health worldwide, and accounts for a significant portion of food loss every year. The emergence of antimicrobial resistant bacteria has turned the attention of researchers back to the potential of bacteriophages as antibacterial agents, and their use has been attempted in various pre-and post-harvest food production settings. The application of phage-based antibacterial products has achieved considerable success but a number of technical, environmental and administrative challenges remain unaddressed. In this review, we summarize the current status of bacteriophage application in the food industry. We discuss the obstacles facing the further development of phage-based antibacterial products from the aspects of technology, environmental safety, and administrative policy. We also advance some possible solutions to these challenges. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Li
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Feng Zhao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenyao Zhan
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
13
|
BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021; 13:v13112171. [PMID: 34834977 PMCID: PMC8624392 DOI: 10.3390/v13112171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.
Collapse
|
14
|
Pereira C, Costa P, Pinheiro L, Balcão VM, Almeida A. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. PLANTA 2021; 253:49. [PMID: 33502587 DOI: 10.1007/s00425-020-03549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Phage-based biocontrol strategies can be an effective alternative to control Psa-induced bacterial canker of kiwifruit. The global production of kiwifruit has been seriously affected by Pseudomonas syringae pv. actinidiae (Psa) over the last decade. Psa damages both Actinidia chinensis var. deliciosa (green kiwifruit) but specially the susceptible Actinidia chinensis var. chinensis (gold kiwifruit), resulting in severe economic losses. Treatments for Psa infections currently available are scarce, involving frequent spraying of the kiwifruit plant orchards with copper products. However, copper products should be avoided since they are highly toxic and lead to the development of bacterial resistance to this metal. Antibiotics are also used in some countries, but bacterial resistance to antibiotics is a serious worldwide problem. Therefore, it is essential to develop new approaches for sustainable agriculture production, avoiding the emergence of resistant Psa bacterial strains. Attempts to develop and establish highly accurate approaches to combat and prevent the occurrence of bacterial canker in kiwifruit plants are currently under study, using specific viruses of bacteria (bacteriophages, or phages) to eliminate the Psa. This review discusses the characteristics of Psa-induced kiwifruit canker, Psa transmission pathways, prevention and control, phage-based biocontrol strategies as a new approach to control Psa in kiwifruit orchards and its advantages over other therapies, together with potential ways to bypass phage inactivation by abiotic factors.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Larindja Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP, CEP 18023-000, Brazil.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2020; 338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Costa
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Yıldirim Z, Sakin T, Akçelik M, Akçelik N. Identification and characterization of lytic bacteriophages specific to foodborne pathogenic Escherichia coli O157:H7. FOOD SCI TECHNOL INT 2020; 27:56-72. [PMID: 32536218 DOI: 10.1177/1082013220929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to identify and characterize five different lytic bacteriophages specific to Escherichia coli O157:H7. vB_EcoM-P12, vB_EcoM-P13, vB_EcoM-P23, and vB_EcoM-P34 phages belonged to the Myoviridae family and vB_EcoS-P24 phage was in the Siphoviridae family. Their plaque sizes changed between 0.48 ± 0.03 and 0.90 ± 0.03 mm in diameter. stx1 and stx2 virulent gene regions were absent in the genome of five Eco-phages and their genome size was 33 kbp. The protein band profiles of the five phages were found to be different from each other. Their latent period, burst size, and burst time changed between 10-15 min, 72-144 PFU/cell and 20-35 min, respectively. Multiplicity of infection values and mutant frequency of the phages were among 0.1-0.001 and 1.14 × 10-7-3.69 × 10-8, respectively. The phages had strong lytic activity against their host bacteria (E. coli NCTC 12900, ATCC 43888, and ATCC 35150) at 5-37 ℃ and adsorbed to their host cells by 92.7-97.5% in the first five minutes of incubation. These phages are thought to be good candidates as therapeutic and biocontrol agents against E. coli O157:H7 in the veterinary science and food industry due to short latent period, high burst size, rapid development in host cells, high lytic activity, high adsorption rate, stability over a wide pH range and high temperature, and absence of stx1 and stx2 genes.
Collapse
Affiliation(s)
- Zeliha Yıldirim
- Department of Food Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Tuba Sakin
- Department of Food Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey
| | | | - Nefise Akçelik
- Institute of Biotechnology, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Axelsson L, Bjerke GA, McLeod A, Berget I, Holck AL. Growth Behavior of Listeria monocytogenes in a Traditional Norwegian Fermented Fish Product ( Rakfisk), and Its Inhibition through Bacteriophage Addition. Foods 2020; 9:E119. [PMID: 31979202 PMCID: PMC7074442 DOI: 10.3390/foods9020119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/05/2022] Open
Abstract
Listeria monocytogenes may persist in food production environments and cause listeriosis. In Norway, a product of concern is the traditional and popular fermented fish product "rakfisk", which is made from freshwater salmonid fish by mild-salting and brine maturation at low temperatures for several months. It is eaten without any heat treatment, and L. monocytogenes, therefore, poses a potential hazard. We investigated the effect of salt and temperature on the growth of L. monocytogenes in rakfisk during the 91 days of maturation. The amounts of organic acids produced during fermentation were too low to inhibit growth of L. monocytogenes. Temperature was clearly the most important parameter for controlling L. monocytogenes. At 7 °C, approximately 2 log growth was observed during the first 14 days of fermentation, and the level of L. monocytogenes thereafter remained constant. At 4 °C, only a little growth potential of the pathogen was recorded. We also investigated the effect of the anti-Listeria bacteriophage P100 on rakfisk with added L. monocytogenes. The phage was introduced to the L. monocytogenes-inoculated fish before fermentation, and an average of 0.9 log reduction was observed throughout the fermentation period. This is the first study of L. monocytogenes behavior in rakfisk and points to possible measures for increasing the product safety.
Collapse
Affiliation(s)
- Lars Axelsson
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (G.A.B.); (A.M.); (I.B.); (A.L.H.)
| | - Guro Alette Bjerke
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (G.A.B.); (A.M.); (I.B.); (A.L.H.)
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Anette McLeod
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (G.A.B.); (A.M.); (I.B.); (A.L.H.)
- Center for Laboratory Medicine, Østfold Hospital Trust, P.O. Box 300, N-1714 Grålum, Norway
| | - Ingunn Berget
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (G.A.B.); (A.M.); (I.B.); (A.L.H.)
| | - Askild L. Holck
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (G.A.B.); (A.M.); (I.B.); (A.L.H.)
| |
Collapse
|
18
|
Leon-Velarde CG, Jun JW, Skurnik M. Yersinia Phages and Food Safety. Viruses 2019; 11:E1105. [PMID: 31795231 PMCID: PMC6950378 DOI: 10.3390/v11121105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
One of the human- and animal-pathogenic species in genus Yersinia is Yersinia enterocolitica, a food-borne zoonotic pathogen that causes enteric infections, mesenteric lymphadenitis, and sometimes sequelae such as reactive arthritis and erythema nodosum. Y. enterocolitica is able to proliferate at 4 C, making it dangerous if contaminated food products are stored under refrigeration. The most common source of Y. enterocolitica is raw pork meat. Microbiological detection of the bacteria from food products is hampered by its slow growth rate as other bacteria overgrow it. Bacteriophages can be exploited in several ways to increase food safety with regards to contamination by Y. enterocolitica. For example, Yersinia phages could be useful in keeping the contamination of food products under control, or, alternatively, the specificity of the phages could be exploited in developing rapid and sensitive diagnostic tools for the identification of the bacteria in food products. In this review, we will discuss the present state of the research on these topics.
Collapse
Affiliation(s)
- Carlos G. Leon-Velarde
- Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7, Canada;
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 HY Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00029 HUS Helsinki, Finland
| |
Collapse
|
19
|
Fister S, Mester P, Witte AK, Sommer J, Schoder D, Rossmanith P. Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Yildirim Z, Sakin T, Akçelik M, Akçelik N. Characterization of SE-P3, P16, P37, and P47 bacteriophages infectingSalmonellaEnteritidis. J Basic Microbiol 2019; 59:1049-1062. [DOI: 10.1002/jobm.201900102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Zeliha Yildirim
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Tuba Sakin
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Mustafa Akçelik
- Department of Biology, Faculty of Science; Ankara University; Ankara Turkey
| | - Nesife Akçelik
- Department of Biotecnology, Institute of Biotechnology; Ankara University; Ankara Turkey
| |
Collapse
|
21
|
Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol 2019; 10:692. [PMID: 31293420 PMCID: PMC6598392 DOI: 10.3389/fphar.2019.00692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections.
Collapse
Affiliation(s)
- Renata Lima
- LABiToN-Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Fernando Sá Del Fiol
- CRIA-Antibiotic Reference and Information Center, University of Sorocaba, Sorocaba, Brazil
| | - Victor M Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, i(bs)2-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, Brazil.,Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
22
|
El-Dougdoug N, Cucic S, Abdelhamid A, Brovko L, Kropinski A, Griffiths M, Anany H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol 2019; 293:60-71. [DOI: 10.1016/j.ijfoodmicro.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
23
|
Son HM, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Application of bacteriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl Microbiol Biotechnol 2018; 102:10259-10271. [DOI: 10.1007/s00253-018-9399-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
|
24
|
Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses 2018; 10:E428. [PMID: 30110929 PMCID: PMC6116114 DOI: 10.3390/v10080428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
25
|
Rebuilding the Gut Microbiota Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081679. [PMID: 30087270 PMCID: PMC6121872 DOI: 10.3390/ijerph15081679] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.
Collapse
|
26
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|
27
|
Jun JW, Park SC, Wicklund A, Skurnik M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Int J Food Microbiol 2018; 271:33-47. [DOI: 10.1016/j.ijfoodmicro.2018.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
28
|
Raza T, Andleeb S, Ullah SR, Jamal M, Mehmood K, Ali M. Isolation and Characterization of a Phage to Control Vancomycin Resistant Enterococcus Faecium. Open Life Sci 2018; 13:553-560. [PMID: 33817126 PMCID: PMC7874677 DOI: 10.1515/biol-2018-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/29/2018] [Indexed: 11/15/2022] Open
Abstract
Enterococcus faecium, is an important nosocomial pathogen with increased incidence of multidrug resistance (MDR) - specifically Vancomycin resistance. E. faecium constitutes the normal microbiota of the human intestine as well as exists in the hospitals and sewage, thus making the microorganism difficult to eliminate. Phage therapy has gained attention for controlling bacterial MDR infections and contaminations. We have successfully isolated from waste water and characterized a lytic bacteriophage STH1 capable of targeting Vancomycin resistant Enterococcus faecium (VREF) with high specificity. The phage was isolated from sewage water of a hospital at district Dera Ismail Khan, Pakistan. Initial characterization showed that magnesium and calcium ions significantly increased phage adsorption to the host. One step growth experiment showed a latent period of 18 min with burst size of 334 virions per cell. Optimal temperature and pH of the phage was 37°C and 7.0, respectively. Phage application to host strain grown in milk and water (treated and untreated) showed that the phage efficiently controlled bacterial growth. The study suggests that the phage STH1 can serve as potential control agent for E. faecium infections in medical facilities and in other environmental contaminations.
Collapse
Affiliation(s)
- Taskeen Raza
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Rahmat Ullah
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan-23200, Mardan, Pakistan
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology, C-II Johar Town, Lahore 54770, Pakistan
| |
Collapse
|
29
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
30
|
Wang L, Qu K, Li X, Cao Z, Wang X, Li Z, Song Y, Xu Y. Use of Bacteriophages to Control Escherichia coli O157:H7 in Domestic Ruminants, Meat Products, and Fruits and Vegetables. Foodborne Pathog Dis 2017. [PMID: 28636835 DOI: 10.1089/fpd.2016.2266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli O157:H7 is an important foodborne pathogen that causes severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Ruminant manure is a primary source of E. coli O157:H7 contaminating the environment and food sources. Therefore, effective interventions targeted at reducing the prevalence of fecal excretion of E. coli O157:H7 by cattle and sheep and the elimination of E. coli O157:H7 contamination of meat products as well as fruits and vegetables are required. Bacteriophages offer the prospect of sustainable alternative approaches against bacterial pathogens with the flexibility of being applied therapeutically or for biological control purposes. This article reviews the use of phages administered orally or rectally to ruminants and by spraying or immersion of fruits and vegetables as an antimicrobial strategy for controlling E. coli O157:H7. The few reports available demonstrate the potential of phage therapy to reduce E. coli O157:H7 carriage in cattle and sheep, and preparation of commercial phage products was recently launched into commercial markets. However, a better ecological understanding of the phage E. coli O157:H7 will improve antimicrobial effectiveness of phages for elimination of E. coli O157:H7 in vivo.
Collapse
Affiliation(s)
- Lili Wang
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| | - Kunli Qu
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Xiaoyu Li
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| | - Zhenhui Cao
- 3 Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming, China
| | - Xitao Wang
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,4 Research and Development Department, Dalian SEM Bio-Engineering Technology Company , Dalian, China
| | - Zhen Li
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Yaxiong Song
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Yongping Xu
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| |
Collapse
|
31
|
Gao Y, Liu Q, Wang M, Zhao G, Jiang Y, Malin G, Gong Z, Meng X, Liu Z, Lin T, Li Y, Shao H. Characterization and Genome Sequence of Marine Alteromonas gracilis Phage PB15 Isolated from the Yellow Sea, China. Curr Microbiol 2017; 74:821-826. [PMID: 28424938 DOI: 10.1007/s00284-017-1251-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
A novel marine Alteromonas gracilis siphovirus, phage PB15, was isolated from the surface water of the Yellow Sea in August 2015. It has a head diameter of 58 ± 5 nm head and a contractile tail approximately 105 ± 10 nm in length, and overall, the morphology suggests that PB15 belongs to the family Siphoviridae. PB15 phage is stable at over the temperature range 0-60 °C. The best MOI of these phage was 0.1, and infectivity decreased above 60 °C. The results suggest that phage is stable at pH value ranging between 3.0 and 11.0. Chloroform test shows that PB15 is not a lipid-containing phage. A one-step growth curve with a strain of A. gracilis gave a latent period of 16 min and rise period of 24 min and burst size of 60 PFU/cell. Genomic analysis of PB15 reveals a genome size of 37,333 bp with 45.52% G+C content, and 61 ORFs. ORF sequences accounted for 30.36% of the genome sequence. There is no obvious similarity between PB15 and other known phages by genomic comparison using the BLASTN tool in the NCBI database.
Collapse
Affiliation(s)
- Yu Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Guihua Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xue Meng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tongtong Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yutong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
32
|
Ma YH, Islam GS, Wu Y, Sabour PM, Chambers JR, Wang Q, Wu SX, Griffiths MW. Temporal distribution of encapsulated bacteriophages during passage through the chick gastrointestinal tract. Poult Sci 2016; 95:2911-2920. [DOI: 10.3382/ps/pew260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/10/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
|
33
|
Fister S, Robben C, Witte AK, Schoder D, Wagner M, Rossmanith P. Influence of Environmental Factors on Phage-Bacteria Interaction and on the Efficacy and Infectivity of Phage P100. Front Microbiol 2016; 7:1152. [PMID: 27516757 PMCID: PMC4964841 DOI: 10.3389/fmicb.2016.01152] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
When using bacteriophages to control food-borne bacteria in food production plants and processed food, it is crucial to consider that environmental conditions influence their stability. These conditions can also affect the physiological state of bacteria and consequently host–virus interaction and the effectiveness of the phage ability to reduce bacteria numbers. In this study we investigated the stability, binding, and replication capability of phage P100 and its efficacy to control Listeria monocytogenes under conditions typically encountered in dairy plants. The influences of SDS, Lutensol AO 7, salt, smear water, and different temperatures were investigated. Results indicate that phage P100 is stable and able to bind to the host under most conditions tested. Replication was dependent upon the growth of L. monocytogenes and efficacy was higher when bacterial growth was reduced by certain environmental conditions. In long-term experiments at different temperatures phages were initially able to reduce bacteria up to seven log10 units after 2 weeks at 4°C. However, thereafter, re-growth and development of phage-resistant L. monocytogenes isolates were encountered.
Collapse
Affiliation(s)
- Susanne Fister
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria
| | - Christian Robben
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria
| | - Anna K Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria
| | - Dagmar Schoder
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| |
Collapse
|
34
|
Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MMDC, Teixeira JA, Balcão VM. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016; 191:51-80. [PMID: 27524653 DOI: 10.1016/j.micres.2016.04.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 12/23/2022]
Abstract
Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies promises to be extremely safe and effective. Additionally, vaccination emerges as one of the most promising preventive strategies. All these will be tackled in detail in this review paper.
Collapse
Affiliation(s)
- Alessandra C Rios
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Carla G Moutinho
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal; University Fernando Pessoa, Porto, Portugal
| | | | - Fernando S Del Fiol
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Angela Jozala
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marco V Chaud
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marta M D C Vila
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Victor M Balcão
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
35
|
Kazi M, Annapure US. Bacteriophage biocontrol of foodborne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:1355-62. [PMID: 27570260 PMCID: PMC4984715 DOI: 10.1007/s13197-015-1996-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
Abstract
Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol".
Collapse
Affiliation(s)
- Mustafa Kazi
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019 India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019 India
| |
Collapse
|
36
|
Screening and characterisation of bacteriophage P100 insensitive Listeria monocytogenes isolates in Austrian dairy plants. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
A Thermophilic Phage Endolysin Fusion to a Clostridium perfringens-Specific Cell Wall Binding Domain Creates an Anti-Clostridium Antimicrobial with Improved Thermostability. Viruses 2015; 7:3019-34. [PMID: 26075507 PMCID: PMC4488725 DOI: 10.3390/v7062758] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/20/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Many enzymes are added to animal feed during production and are subjected to high-heat stress during feed processing. To produce a thermostabile endolysin for treating poultry, an E. coli codon-optimized gene was synthesized that fused the N-acetylmuramoyl-l-alanine amidase domain from the endolysin of the thermophilic bacteriophage ΦGVE2 to the cell-wall binding domain (CWB) from the endolysin of the C. perfringens-specific bacteriophage ΦCP26F. The resulting protein, PlyGVE2CpCWB, lysed C. perfringens in liquid and solid cultures. PlyGVE2CpCWB was most active at pH 8, had peak activity at 10 mM NaCl, 40% activity at 150 mM NaCl and was still 16% active at 600 mM NaCl. The protein was able to withstand temperatures up to 50 °C and still lyse C. perfringens. Herein, we report the construction and characterization of a thermostable chimeric endolysin that could potentially be utilized as a feed additive to control the bacterium during poultry production.
Collapse
|
38
|
Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D, Duda KA, Lavigne R, Drulis-Kawa Z. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm. PLoS One 2015; 10:e0127603. [PMID: 25996839 PMCID: PMC4440721 DOI: 10.1371/journal.pone.0127603] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.
Collapse
Affiliation(s)
- Katarzyna Danis-Wlodarczyk
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
- Division of Gene Technology, Catholic University of Leuven, Leuven, Belgium
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Michal Arabski
- Department of Microbiology, Institute of Biology, The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Slawomir Wasik
- Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Yves Briers
- Division of Gene Technology, Catholic University of Leuven, Leuven, Belgium
| | - Ho Bin Jang
- Division of Gene Technology, Catholic University of Leuven, Leuven, Belgium
| | | | - Katarzyna Anna Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Rob Lavigne
- Division of Gene Technology, Catholic University of Leuven, Leuven, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
39
|
Krylov V, Shaburova O, Pleteneva E, Krylov S, Kaplan A, Burkaltseva M, Polygach O, Chesnokova E. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 2015; 30:33-44. [PMID: 25680443 PMCID: PMC8200895 DOI: 10.1007/s12250-014-3546-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/30/2015] [Indexed: 11/27/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute for Vaccines & Sera, RAMS, Moscow, 105064, Russian,
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Heyse S, Hanna LF, Woolston J, Sulakvelidze A, Charbonneau D. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food. J Food Prot 2015; 78:97-103. [PMID: 25581183 DOI: 10.4315/0362-028x.jfp-14-041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.
Collapse
Affiliation(s)
- Serena Heyse
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA
| | - Leigh Farris Hanna
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA
| | - Joelle Woolston
- Intralytix, Inc., 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | - Duane Charbonneau
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA.
| |
Collapse
|
41
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
42
|
Saussereau E, Vachier I, Chiron R, Godbert B, Sermet I, Dufour N, Pirnay JP, De Vos D, Carrié F, Molinari N, Debarbieux L. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 2014; 20:O983-90. [PMID: 24920209 DOI: 10.1111/1469-0691.12712] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 12/20/2022]
Abstract
Bacteriophages have been shown to be effective for treating acute infections of the respiratory tract caused by antibiotic-resistant bacteria in animal models, but no evidence has yet been presented of their activity against pathogens in complex biological samples from chronically infected patients. We assessed the efficacy of a cocktail of ten bacteriophages infecting Pseudomonas aeruginosa following its addition to 58 sputum samples from cystic fibrosis (CF) patients collected at three different hospitals. Ten samples that did not contain P. aeruginosa were not analysed further. In the remaining 48 samples, the addition of bacteriophages led to a significant decrease in the levels of P. aeruginosa strains, as shown by comparison with controls, taking two variables (time and bacteriophages) into account (p = 0.024). In 45.8% of these samples, this decrease was accompanied by an increase in the number of bacteriophages. We also tested each of the ten bacteriophages individually against 20 colonies from each of these 48 samples and detected bacteriophage-susceptible bacteria in 64.6% of the samples. An analysis of the clinical data revealed no correlation between patient age, sex, duration of P. aeruginosa colonization, antibiotic treatment, FEV1 (forced expiratory volume in the first second) and the efficacy of bacteriophages. The demonstration that bacteriophages infect their bacterial hosts in the sputum environment, regardless of the clinical characteristics of the patients, represents a major step towards the development of bacteriophage therapy to treat chronic lung infections.
Collapse
Affiliation(s)
- E Saussereau
- Department of Microbiology, Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France; Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Niu YD, McAllister TA, Nash JHE, Kropinski AM, Stanford K. Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS One 2014; 9:e100426. [PMID: 24963920 PMCID: PMC4070988 DOI: 10.1371/journal.pone.0100426] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022] Open
Abstract
The T1-like bacteriophages vB_EcoS_AHP24, AHS24, AHP42 and AKS96 of the family Siphoviridae were shown to lyse common phage types of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157:H7), but not non-O157 E. coli. All contained circularly permuted genomes of 45.7–46.8 kb (43.8–44 mol% G+C) encoding 74–81 open reading frames and 1 arginyl-tRNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the structural proteins were identical among the four phages. Further proteomic analysis identified seven structural proteins responsible for tail fiber, tail tape measure protein, major capsid, portal protein as well as major and minor tail proteins. Bioinformatic analyses on the proteins revealed that genomes of AHP24, AHS24, AHP42 and AKS96 did not encode for bacterial virulence factors, integration-related proteins or antibiotic resistance determinants. All four phages were highly lytic to STEC O157:H7 with considerable potential as biocontrol agents. Comparative genomic, proteomic and phylogenetic analysis suggested that the four phages along with 17 T1-like phage genomes from database of National Center for Biotechnology Information (NCBI) can be assigned into a proposed subfamily “Tunavirinae” with further classification into five genera, namely “Tlslikevirus” (TLS, FSL SP-126), “Kp36likevirus” (KP36, F20), Tunalikevirus (T1, ADB-2 and Shf1), “Rtplikevirus” (RTP, vB_EcoS_ACG-M12) and “Jk06likevirus” (JK06, vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96, phiJLA23, phiKP26, phiEB49). The fact that the viruses related to JK06 have been isolated independently in Israel (JK06) (GenBank Assession #, NC_007291), Canada (vB_EcoS_Rogue1, AHP24, AHS24, AHP42, AKS96) and Mexico (phiKP26, phiJLA23) (between 2005 and 2011) indicates that these similar phages are widely distributed, and that horizontal gene transfer does not always prevent the characterization of bacteriophage evolution. With this new scheme, any new discovered phages with same type can be more properly identified. Genomic- and proteomic- based taxonomic classification of phages would facilitate better understanding phages diversity and genetic traits involved in phage evolution.
Collapse
Affiliation(s)
- Yan D. Niu
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, Alberta, Canada
- * E-mail: (YDN); (KS)
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - John H. E. Nash
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
- Department of Cellular and Molecular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, Alberta, Canada
- * E-mail: (YDN); (KS)
| |
Collapse
|
44
|
Taking bacteriophage therapy seriously: a moral argument. BIOMED RESEARCH INTERNATIONAL 2014; 2014:621316. [PMID: 24868534 PMCID: PMC4020481 DOI: 10.1155/2014/621316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need.
Collapse
|
45
|
Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp (Warsz) 2014; 62:117-29. [PMID: 24500660 PMCID: PMC3950567 DOI: 10.1007/s00005-014-0269-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023]
Abstract
The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.
Collapse
Affiliation(s)
- Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Burn Wound Centre, Queen Astrid Military Hospital, Brussels, Belgium,
| | | | | | | | | | | | | |
Collapse
|
46
|
Debarbieux L, Saussereau E, Maura D. [Phagotherapy: a nightmare for bacteria, a dream for physicians?]. Biol Aujourdhui 2013; 207:181-90. [PMID: 24330971 DOI: 10.1051/jbio/2013017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 01/21/2023]
Abstract
Bacteriophages were discovered in the early 20th century and rapidly used to treat bacterial infections in humans. As the first specific antibacterial agents, they were used worldwide until antibiotics ramped up. Thereafter, rapidly forgotten, they became the favorite toolbox for researchers that used them to elucidate some of the most fundamental aspects of the cellular life at the molecular level. Today, facing the threat of antibiotic resistant bacteria, bacteriophages are being reconsidered for their use in medicine. During the past century, knowledge on bacteriophages has improved considerably, nevertheless phage therapy is still in its infancy. Taking two examples of recently published experimental phage therapy results, this article summarizes the hopes but also the challenges that surround the future development of human phage therapy.
Collapse
Affiliation(s)
- Laurent Debarbieux
- Institut Pasteur, Département de Microbiologie, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Emilie Saussereau
- Institut Pasteur, Département de Microbiologie, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, 02114 Massachusetts, USA - Department of Microbiology and Immunobiology, Harvard Medical School, Boston, 02114 Massachusetts, USA - Shriners Hospitals for Children-Boston, Boston, 02114 Massachusetts, USA
| |
Collapse
|
47
|
Breyton C, Flayhan A, Gabel F, Lethier M, Durand G, Boulanger P, Chami M, Ebel C. Assessing the conformational changes of pb5, the receptor-binding protein of phage T5, upon binding to its Escherichia coli receptor FhuA. J Biol Chem 2013; 288:30763-30772. [PMID: 24014030 DOI: 10.1074/jbc.m113.501536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.
Collapse
Affiliation(s)
- Cécile Breyton
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France,.
| | - Ali Flayhan
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Frank Gabel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Mathilde Lethier
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Grégory Durand
- the Université d'Avignon, Equipe Chimie Bioorganique et Systèmes Amphiphiles, F-84029 Avignon, France,; the Institut des Biomolécules Max Mousseron, UMR 5247, F-34093 Montpellier, France
| | - Pascale Boulanger
- the Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, UMR CNRS 8619, F-91405 Orsay, France, and
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics, Biozentrum, University Basel, CH-4058 Basel, Switzerland
| | - Christine Ebel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| |
Collapse
|
48
|
T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One 2013; 8:e71036. [PMID: 23976975 PMCID: PMC3745418 DOI: 10.1371/journal.pone.0071036] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 06/27/2013] [Indexed: 01/03/2023] Open
Abstract
Viruses are potent activators of the signal pathways leading to increased cytokine or ROS production. The effects exerted on the immune system are usually mediated by viral proteins. Complementary to the progress in phage therapy practice, advancement of knowledge about the influence of bacteriophages on mammalian immunity is necessary. Particularly, the potential ability of phage proteins to act like other viral stimulators of the immune system may have strong practical implications for the safety and efficacy of bacteriophage therapy. Here we present studies on the effect of T4 phage and its head proteins on production of inflammatory mediators and inflammation-related factors: IL-1α, IL-1β, IL-2, IL-6, IL-10, IL-12 p40/p70, IFN-γ, TNF-α, MCP-1, MIG, RANTES, GCSF, GM-CSF and reactive oxygen species (ROS). Plasma cytokine profiles in an in vivo mouse model and in human blood cells treated with gp23*, gp24*, Hoc and Soc were evaluated by cytokine antibody arrays. Cytokine production and expression of CD40, CD80, CD86 and MHC class II molecules were also investigated in mouse bone marrow-derived dendritic cells treated with whole T4 phage particle or the same capsid proteins. The influence of T4 and gp23*, gp24*, Hoc and Soc on reactive oxygen species generation was examined in blood cells using luminol-dependent chemiluminescence assay. In all performed assays, the T4 bacteriophage and its capsid proteins gp23*, gp24*, Hoc and Soc did not affect production of inflammatory-related cytokines or ROS. These observations are of importance for any medical or veterinary application of bacteriophages.
Collapse
|
49
|
Seal BS. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci 2013; 92:526-33. [PMID: 23300321 PMCID: PMC4089029 DOI: 10.3382/ps.2012-02708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently used antibiotics. Clostridium perfringens is a gram-positive, spore-forming anaerobic bacterium that plays a significant role in human foodborne disease as well as non-foodborne human, animal, and avian diseases. Countries that have complied with the ban on antimicrobial growth promoters in feeds have reported increased incidences of C. perfringens-associated diseases in poultry. To address these issues, new antimicrobial agents, putative lysins encoded by the genomes of bacteriophages, are being identified in our laboratory. Poultry intestinal material, soil, sewage, and poultry processing drainage water were screened for virulent bacteriophages that could lyse C. perfringens and produce clear plaques in spot assays. Bacteriophages were isolated that had long noncontractile tails, members of the family Siphoviridae, and with short noncontractile tails, members of the family Podoviridae. Several bacteriophage genes were identified that encoded N-acetylmuramoyl-l-alanine amidases, lysozyme-endopeptidases, and a zinc carboxypeptidase domain that has not been previously reported in viral genomes. Putative phage lysin genes (ply) were cloned and expressed in Escherichia coli. The recombinant lysins were amidases capable of lysing both parental phage host strains of C. perfringens as well as other strains of the bacterium in spot and turbidity reduction assays, but did not lyse any clostridia beyond the species. Consequently, bacteriophage gene products could eventually be used to target bacterial pathogens, such as C. perfringens via a species-specific strategy, to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria.
Collapse
Affiliation(s)
- Bruce S Seal
- Poultry Microbiological Safety Research Unit, R.B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
50
|
Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new therapeutic phages to fight pseudomonas aeruginosa in wound infections. Viruses 2012; 5:15-53. [PMID: 23344559 PMCID: PMC3564109 DOI: 10.3390/v5010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent ("lytic") and temperate ("lysogenic") bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate) phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT), and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine.
Collapse
Affiliation(s)
- Victor Krylov
- Laboratory for Bacteriophages Genetics. Mechnikov Research Institute of Vaccines and Sera, 5a Maliy Kazenniy per., Moscow, Russia.
| | | | | | | |
Collapse
|