1
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
2
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent. J Bacteriol 2022; 204:e0015222. [PMID: 35862799 PMCID: PMC9380528 DOI: 10.1128/jb.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Production of capsular polysaccharides in Staphylococcus aureus is transcriptionally regulated by a control region of the cap operon that consists of SigA- and SigB-dependent promoters. A large number of regulators have been shown to affect cap gene expression. However, regulation of capsule is only partially understood. Here we found that SarZ was another regulator that activated the cap genes through the SigA-dependent promoter. Gel electrophoresis mobility shift experiments revealed that SarZ is bound to a broad region of the cap promoter including the SigA-dependent promoter but mainly the downstream region. We demonstrated that activation of cap expression by SarZ was independent of MgrA, which also activated capsule through the SigA-dependent promoter. Our results further showed that oxidative stress with hydrogen peroxide (H2O2) treatments enhanced SarZ activation of cap expression, indicating that SarZ is able to sense oxidative stress to regulate capsule production. IMPORTANCE Expression of virulence genes in Staphylococcus aureus is affected by environmental cues and is regulated by a surprisingly large number of regulators. Much is still unknown about how virulence factors are regulated by environment cues at the molecular level. Capsule is an antiphagocytic virulence factor that is highly regulated. In this study, we found SarZ was an activator of capsule and that the regulation of capsule by SarZ was affected by oxidative stress. These results provide an example of how a virulence factor could be regulated in response to an environmental cue. As the host oxidative defense system plays an important role against S. aureus, this study contributes to a better understanding of virulence gene regulation and staphylococcal pathogenesis.
Collapse
|
4
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
5
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
6
|
Liu M, Feng M, Yang K, Cao Y, Zhang J, Xu J, Hernández SH, Wei X, Fan M. Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against Methicillin-resistant Staphylococcus aureus isolated from pork. Food Chem 2020; 309:125692. [DOI: 10.1016/j.foodchem.2019.125692] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|
7
|
Morikawa K, Ushijima Y, Ohniwa RL, Miyakoshi M, Takeyasu K. What Happens in the Staphylococcal Nucleoid under Oxidative Stress? Microorganisms 2019; 7:microorganisms7120631. [PMID: 31795457 PMCID: PMC6956076 DOI: 10.3390/microorganisms7120631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
The evolutionary success of Staphylococcus aureus as an opportunistic human pathogen is largely attributed to its prominent abilities to cope with a variety of stresses and host bactericidal factors. Reactive oxygen species are important weapons in the host arsenal that inactivate phagocytosed pathogens, but S. aureus can survive in phagosomes and escape from phagocytic cells to establish infections. Molecular genetic analyses combined with atomic force microscopy have revealed that the MrgA protein (part of the Dps family of proteins) is induced specifically in response to oxidative stress and converts the nucleoid from the fibrous to the clogged state. This review collates a series of evidences on the staphylococcal nucleoid dynamics under oxidative stress, which is functionally and physically distinct from compacted Escherichia coli nucleoid under stationary phase. In addition, potential new roles of nucleoid clogging in the staphylococcal life cycle will be proposed.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Masatoshi Miyakoshi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| |
Collapse
|
8
|
Fang Y, Wang H, Liu X, Xin D, Rao Y, Zhu B. Transcriptome analysis of Xanthomonas oryzae pv. oryzicola exposed to H2O2 reveals horizontal gene transfer contributes to its oxidative stress response. PLoS One 2019; 14:e0218844. [PMID: 31581193 PMCID: PMC6776340 DOI: 10.1371/journal.pone.0218844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/21/2019] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is one of the most severe seed-borne bacterial diseases of rice. However, the molecular mechanisms underlying Xoc in response to oxidative stress are still unknown. In this study, we performed a time-course RNA-seq analysis on the Xoc in response to H2O2, aiming to reveal its oxidative response network. Overall, our RNA sequence analysis of Xoc revealed a significant global gene expression profile when it was exposed to H2O2. There were 7, 177, and 246 genes that were differentially regulated at the early, middle, and late stages after exposure, respectively. Three genes (xoc_1643, xoc_1946, xoc_3249) showing significantly different expression levels had proven relationships with oxidative stress response and pathogenesis. Moreover, a hypothetical protein (XOC_2868) showed significantly differential expression, and the xoc_2868 mutants clearly displayed a greater H2O2 sensitivity and decreased pathogenicity than those of the wild-type. Gene localization and phylogeny analysis strongly suggests that this gene may have been horizontally transferred from a Burkholderiaceae ancestor. Our study not only provides a first glance of Xoc's global response against oxidative stress, but also reveals the impact of horizontal gene transfer in the evolutionary history of Xoc.
Collapse
Affiliation(s)
- Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Haoye Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Xia Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Dedong Xin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
- * E-mail: (YR); (BZ)
| | - Bo Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, China
- * E-mail: (YR); (BZ)
| |
Collapse
|
9
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
10
|
Juttukonda LJ, Green ER, Lonergan ZR, Heffern MC, Chang CJ, Skaar EP. Acinetobacter baumannii OxyR Regulates the Transcriptional Response to Hydrogen Peroxide. Infect Immun 2019; 87:e00413-18. [PMID: 30297527 PMCID: PMC6300632 DOI: 10.1128/iai.00413-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes diverse infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired antimicrobial-resistance mechanisms, A. baumannii isolates are commonly multidrug resistant, and infections are notoriously difficult to treat. The World Health Organization recently highlighted carbapenem-resistant A. baumannii as a "critical priority" for the development of new antimicrobials because of the risk to human health posed by this organism. Therefore, it is important to discover the mechanisms used by A. baumannii to survive stresses encountered during infection in order to identify new drug targets. In this study, by use of in vivo imaging, we identified hydrogen peroxide (H2O2) as a stressor produced in the lung during A. baumannii infection and defined OxyR as a transcriptional regulator of the H2O2 stress response. Upon exposure to H2O2, A. baumannii differentially transcribes several hundred genes. However, the transcriptional upregulation of genes predicted to detoxify hydrogen peroxide is abolished in an A. baumannii strain in which the transcriptional regulator oxyR is genetically inactivated. Moreover, inactivation of oxyR in both antimicrobial-susceptible and multidrug-resistant A. baumannii strains impairs growth in the presence of H2O2 OxyR is a direct regulator of katE and ahpF1, which encode the major H2O2-degrading enzymes in A. baumannii, as confirmed through measurement of promoter binding by recombinant OxyR in electromobility shift assays. Finally, an oxyR mutant is less fit than wild-type A. baumannii during infection of the murine lung. This work reveals a mechanism used by this important human pathogen to survive H2O2 stress encountered during infection.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin R Green
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zachery R Lonergan
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marie C Heffern
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Galizia J, Martí MA. Reactive nitrogen and oxygen species: Friend or foe in the tuberculosis fight. Tuberculosis (Edinb) 2018; 113:175-176. [DOI: 10.1016/j.tube.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/27/2022]
|
12
|
Laczkovich I, Teoh WP, Flury S, Grayczyk JP, Zorzoli A, Alonzo F. Increased flexibility in the use of exogenous lipoic acid by Staphylococcus aureus. Mol Microbiol 2018; 109:150-168. [PMID: 29660187 DOI: 10.1111/mmi.13970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Lipoic acid is a cofactor required for intermediary metabolism that is either synthesized de novo or acquired from environmental sources. The bacterial pathogen Staphylococcus aureus encodes enzymes required for de novo biosynthesis, but also encodes two ligases, LplA1 and LplA2, that are sufficient for lipoic acid salvage during infection. S. aureus also encodes two H proteins, GcvH of the glycine cleavage system and the homologous GcvH-L encoded in an operon with LplA2. GcvH is a recognized conduit for lipoyl transfer to α-ketoacid dehydrogenase E2 subunits, while the function of GcvH-L remains unclear. The potential to produce two ligases and two H proteins is an unusual characteristic of S. aureus that is unlike most other Gram positive Firmicutes and might allude to an expanded pathway of lipoic acid acquisition in this microorganism. Here, we demonstrate that LplA1 and LplA2 facilitate lipoic acid salvage by differentially targeting lipoyl domain-containing proteins; LplA1 targets H proteins and LplA2 targets α-ketoacid dehydrogenase E2 subunits. Furthermore, GcvH and GcvH-L both facilitate lipoyl relay to E2 subunits. Altogether, these studies identify an expanded mode of lipoic acid salvage used by S. aureus and more broadly underscore the importance of bacterial adaptations when faced with nutritional limitation.
Collapse
Affiliation(s)
- Irina Laczkovich
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Wei Ping Teoh
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Sarah Flury
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Azul Zorzoli
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
13
|
Kadiyala U, Turali-Emre ES, Bahng JH, Kotov NA, VanEpps JS. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). NANOSCALE 2018; 10:4927-4939. [PMID: 29480295 PMCID: PMC5847298 DOI: 10.1039/c7nr08499d] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are attractive as broad-spectrum antibiotics, however, their further engineering as antimicrobial agents and clinical translation is impeded by controversial data about their mechanism of activity. It is commonly reported that ZnO-NP's antimicrobial activity is associated with the production of reactive oxygen species (ROS). Here we disprove this concept by comparing the antibacterial potency of ZnO-NPs and their capacity to generate ROS with hydrogen peroxide (H2O2). Then, using gene transcription microarray analysis, we provide evidence for a novel toxicity mechanism. Exposure to ZnO-NPs resulted in over three-log reduction in colonies of methicillin resistant S. aureus with minimal increase in ROS or lipid peroxidation. The amount of ROS required for the same amount of killing by H2O2 was much greater than that generated by ZnO-NPs. In contrast to H2O2, ZnO-NP mediated killing was not mitigated by the antioxidant, N-acetylcysteine. ZnO-NPs caused significant up-regulation of pyrimidine biosynthesis and carbohydrate degradation. Simultaneously, amino acid synthesis in S. aureus was significantly down-regulated indicating a complex mechanism of antimicrobial action involving multiple metabolic pathways. The results of this study point to the importance of specific experimental controls in the interpretation of antimicrobial mechanistic studies and the need for targeted molecular mechanism studies. Continued investigation on the antibacterial mechanisms of biomimetic ZnO-NPs is essential for future clinical translation.
Collapse
Affiliation(s)
- Usha Kadiyala
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| | - Emine Sumeyra Turali-Emre
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - Joong Hwan Bahng
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - Nicholas A. Kotov
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Department of Materials Science and Engineering; University of Michigan; Ann Arbor, USA
- Department of Macromolecular Science and Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| |
Collapse
|
14
|
Galizia J, Acosta MP, Urdániz E, Martí MA, Piuri M. Evaluation of nitroxyl donors' effect on mycobacteria. Tuberculosis (Edinb) 2018; 109:35-40. [DOI: 10.1016/j.tube.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
15
|
Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep 2017; 7:11739. [PMID: 28924169 PMCID: PMC5603545 DOI: 10.1038/s41598-017-12122-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
In living cells intracellular proteolysis is crucial for protein homeostasis, and ClpP proteases are conserved between eubacteria and the organelles of eukaryotic cells. In Staphylococcus aureus, ClpP associates to the substrate specificity factors, ClpX and ClpC forming two ClpP proteases, ClpXP and ClpCP. To address how individual ClpP proteases impact cell physiology, we constructed a S. aureus mutant expressing ClpX with an I265E substitution in the ClpP recognition tripeptide of ClpX. This mutant cannot degrade established ClpXP substrates confirming that the introduced amino acid substitution abolishes ClpXP activity. Phenotypic characterization of this mutant showed that ClpXP activity controls cell size and is required for growth at low temperature. Cells expressing the ClpXI265E variant, in contrast to cells lacking ClpP, are not sensitive to heat-stress and do not accumulate protein aggregates showing that ClpXP is dispensable for degradation of unfolded proteins in S. aureus. Consistent with this finding, transcriptomic profiling revealed strong induction of genes responding to protein folding stress in cells devoid of ClpP, but not in cells lacking only ClpXP. In the latter cells, highly upregulated loci include the urease operon, the pyrimidine biosynthesis operon, the betA-betB operon, and the pathogenicity island, SaPI5, while virulence genes were dramatically down-regulated.
Collapse
Affiliation(s)
- Steen G Stahlhut
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Abdulelah A Alqarzaee
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Camilla Jensen
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Niclas S Fisker
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Ana R Pereira
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vinai Chittezham Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Dorte Frees
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Kobylarz MJ, Heieis GA, Loutet SA, Murphy MEP. Iron Uptake Oxidoreductase (IruO) Uses a Flavin Adenine Dinucleotide Semiquinone Intermediate for Iron-Siderophore Reduction. ACS Chem Biol 2017; 12:1778-1786. [PMID: 28463500 DOI: 10.1021/acschembio.7b00203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many pathogenic bacteria including Staphylococcus aureus use iron-chelating siderophores to acquire iron. Iron uptake oxidoreductase (IruO), a flavin adenine dinucleotide (FAD)-containing nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase from S. aureus, functions as a reductase for IsdG and IsdI, two paralogous heme degrading enzymes. Also, the gene encoding for IruO was shown to be required for growth of S. aureus on hydroxamate siderophores as a sole iron source. Here, we show that IruO binds the hydroxamate-type siderophores desferrioxamine B and ferrichrome A with low micromolar affinity and in the presence of NADPH, Fe(II) was released. Steady-state kinetics of Fe(II) release provides kcat/Km values in the range of 600 to 7000 M-1 s-1 for these siderophores supporting a role for IruO as a siderophore reductase in iron utilization. Crystal structures of IruO were solved in two distinct conformational states mediated by the formation of an intramolecular disulfide bond. A putative siderophore binding site was identified adjacent to the FAD cofactor. This site is partly occluded in the oxidized IruO structure consistent with this form being less active than reduced IruO. This reduction in activity could have a physiological role to limit iron release under oxidative stress conditions. Visible spectroscopy of anaerobically reduced IruO showed that the reaction proceeds by a single electron transfer mechanism through an FAD semiquinone intermediate. From the data, a model for single electron siderophore reduction by IruO using NADPH is described.
Collapse
Affiliation(s)
- Marek J. Kobylarz
- The Department of Microbiology
and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3; Canada
| | - Graham A. Heieis
- The Department of Microbiology
and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3; Canada
| | - Slade A. Loutet
- The Department of Microbiology
and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3; Canada
| | - Michael E. P. Murphy
- The Department of Microbiology
and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3; Canada
| |
Collapse
|
17
|
Carvalho SM, de Jong A, Kloosterman TG, Kuipers OP, Saraiva LM. The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress. Front Microbiol 2017; 8:1273. [PMID: 28744267 PMCID: PMC5504149 DOI: 10.3389/fmicb.2017.01273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and 1H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
18
|
Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. mSphere 2017; 2:mSphere00082-17. [PMID: 28656172 PMCID: PMC5480029 DOI: 10.1128/msphere.00082-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species. Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
Collapse
|
19
|
Zorzoli A, Grayczyk JP, Alonzo F. Staphylococcus aureus Tissue Infection During Sepsis Is Supported by Differential Use of Bacterial or Host-Derived Lipoic Acid. PLoS Pathog 2016; 12:e1005933. [PMID: 27701474 PMCID: PMC5049849 DOI: 10.1371/journal.ppat.1005933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023] Open
Abstract
To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche. Staphylococcus aureus is a predominant cause of infectious diseases ranging from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. A remarkable aspect of S. aureus pathobiology lies in the ability of the microorganism to infect a wide variety of host tissues. This infectious promiscuity implies S. aureus exhibits significant adaptability when faced with disparate environments and nutritional deficiencies. In this work, we examine the mechanisms by which S. aureus acquires lipoic acid, a key cofactor involved in maintaining metabolic flux. Our studies determine that S. aureus engages in both de novo biosynthesis and salvage of lipoic acid in a manner that is reminiscent of pathways used by both B. subtilis and L. monocytogenes combined. Further, our work suggests that the complex mechanisms of lipoic acid acquisition dictate the range of tissues S. aureus infects and identifies a lipoic acid salvage enzyme that is dispensable for growth in vitro, but required for S. aureus pathogenesis in vivo. In sum, our results highlight the adaptability of S. aureus in the face of nutrient paucity; the importance of complex nutrient acquisition/biosynthesis pathways in promoting infection; and identify potential novel therapeutic targets that may be effective against S. aureus.
Collapse
Affiliation(s)
- Azul Zorzoli
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
| | - James P. Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Quantitative Real-Time PCR (qPCR) Workflow for Analyzing Staphylococcus aureus Gene Expression. Methods Mol Biol 2016; 1373:143-54. [PMID: 25646613 DOI: 10.1007/7651_2014_193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive tool that can be used to quantify and compare the amount of specific RNA transcripts between different biological samples. This chapter describes the use of a "two-step" qPCR method to calculate the relative fold change of expression of genes of interest in S. aureus. Using this work-flow, cDNA is synthesized from RNA templates (previously checked for the absence of significant genomic DNA contamination) using a cocktail of random primers and reverse-transcriptase enzyme. The cDNA pools generated can then be assessed for expression of specific genes of interest using SYBR Green-based qPCR and quantification of relative fold-change expression.
Collapse
|
21
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
22
|
Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Mol Cell 2015; 59:309-20. [PMID: 26166706 PMCID: PMC4518038 DOI: 10.1016/j.molcel.2015.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
Abstract
Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. A class of sirtuins (SirTMs) is identified in microbial pathogens SirTMs are linked to macrodomains and act as protein ADP-ribosyltransferases Protein ADP-ribosylation by SirTMs is strictly lipoylation dependent and reversible SirTMs modulate the response to oxidative stress
Collapse
|
23
|
Hannauer M, Arifin AJ, Heinrichs DE. Involvement of reductases IruO and NtrA in iron acquisition byStaphylococcus aureus. Mol Microbiol 2015; 96:1192-210. [DOI: 10.1111/mmi.13000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Mélissa Hannauer
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - Andrew J. Arifin
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - David E. Heinrichs
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
- Centre for Human Immunology; University of Western Ontario; London ON Canada N6A 5C1
| |
Collapse
|
24
|
Safar R, Ronzani C, Diab R, Chevrier J, Bensoussan D, Grandemange S, Le Faou A, Rihn BH, Joubert O. Human Monocyte Response to S-Nitrosoglutathione-Loaded Nanoparticles: Uptake, Viability, and Transcriptome. Mol Pharm 2015; 12:554-61. [DOI: 10.1021/mp5006382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ramia Safar
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
| | - Carole Ronzani
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
| | - Roudayna Diab
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
| | - Jérôme Chevrier
- Faculté
de Médecine, Service Commun de Microscopie, Université de Lorraine, France
| | - Danièle Bensoussan
- Unité
de Thérapie Cellulaire et tissus, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | | | - Alain Le Faou
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
- Faculté
de Médecine de Nancy, Université de Lorraine, France
| | - Bertrand H. Rihn
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
| | - Olivier Joubert
- Faculté
de Pharmacie de Nancy, EA 3452 Cithéfor, Université de Lorraine, France
| |
Collapse
|
25
|
Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Front Microbiol 2014; 5:691. [PMID: 25566208 PMCID: PMC4266091 DOI: 10.3389/fmicb.2014.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress.
Collapse
Affiliation(s)
- Aurore Vermassen
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Anne de la Foye
- Institut National de la Recherche Agronomique, Plateforme d'Exploration du Métabolisme Saint-Genès-Champanelle, France
| | - Valentin Loux
- Institut National de la Recherche Agronomique, UR1077 Mathématique, Informatique et Génome Jouy-en-Josas, France
| | - Régine Talon
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Sabine Leroy
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| |
Collapse
|
26
|
Yadav R, Goldstein S, Nasef MO, Lee W, Samuni U. Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: the role of reactive nitrogen species. Free Radic Biol Med 2014; 77:291-7. [PMID: 25261226 DOI: 10.1016/j.freeradbiomed.2014.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Abstract
One-electron oxidation of acetohydroxamic acid (aceto-HX) initially gives rise to nitroxyl (HNO), which can be further oxidized to nitric oxide (NO) or react with potential biological targets such as thiols and metallo-proteins. The distinction between the effects of NO and HNO in vivo is masked by the reversible redox exchange between the two congeners and by the Janus-faced behavior of NO and HNO. The present study examines the ability of aceto-HX to serve as an HNO donor or an NO donor when added to Escherichia coli and Bacillus subtilis subjected to oxidative stress by comparing its effects to those of NO and commonly used NO and HNO donors. The results demonstrate that: (i) the effects of NO and HNO on the viability of prokaryotes exposed to H2O2 depend on the type of the bacterial cell; (ii) NO synergistically enhances H2O2-induced killing of E. coli, but protects B. subtilis depending on the extent of cell killing by H2O2; (iii) the HNO donor Angeli׳s salt alone has no effect on the viability of the cells; (iv) Angeli׳s salt synergistically enhances H2O2-induced killing of B. subtilis, but not of E. coli; (v) aceto-HX alone (1-4 mM) has no effect on the viability of the cells; (vi) aceto-HX enhances the killing of both cells induced by H2O2 and metmyoglobin, which may be attributed in the case of B. subtilis to the formation of HNO and to further oxidation of HNO to NO in the case of E. coli; (vii) the synergistic activity of aceto-HX on the killing of both cells induced by H2O2 alone does not involve reactive nitrogen species. The effect of aceto-HX on prokaryotes under oxidative stress is opposite to that of other hydroxamic acids on mammalian cells.
Collapse
Affiliation(s)
- Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Sara Goldstein
- Chemistry Institute, the Accelerator Laboratory, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mohamed O Nasef
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Wendy Lee
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
27
|
Justino MC, Parente MR, Boneca IG, Saraiva LM. FrxA is an S-nitrosoglutathione reductase enzyme that contributes to Helicobacter pylori pathogenicity. FEBS J 2014; 281:4495-505. [PMID: 25132107 DOI: 10.1111/febs.12958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori is a pathogen that infects the gastric mucosa of a large percentage of the human population worldwide, and predisposes to peptic ulceration and gastric cancer. Persistent colonization of humans by H. pylori triggers an inflammatory response that leads to the production of reactive nitrogen species. However, the mechanisms of H. pylori defence against nitrosative stress remain largely unknown. In this study, we show that the NADH-flavin oxidoreductase FrxA of H. pylori, besides metabolizing nitrofurans and metronidazole, has S-nitrosoglutathione reductase activity. In agreement with this, inactivation of the FrxA-encoding gene resulted in a strain that was more sensitive to S-nitrosoglutathione. FrxA was also shown to contribute to the proliferation of H. pylori in macrophages, which are key phagocytic cells of the mammalian innate immune system. Moreover, FrxA was shown to support the virulence of the pathogen upon mouse infection. Altogether, we provide evidence for a new function of FrxA that contributes to the successful chronic colonization ability that characterizes H. pylori.
Collapse
Affiliation(s)
- Marta C Justino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Barreiro, Portugal
| | | | | | | |
Collapse
|
28
|
Role of the siderophore transporter SirABC in the Staphylococcus aureus resistance to oxidative stress. Curr Microbiol 2014; 69:164-8. [PMID: 24682218 DOI: 10.1007/s00284-014-0567-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus.
Collapse
|
29
|
Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye T. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. BIOFOULING 2014; 30:377-383. [PMID: 24579656 DOI: 10.1080/08927014.2013.878333] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial biofilms are a serious threat to human health. Recent studies have indicated that many clinically relevant biofilms are polymicrobial. In the present study, multispecies biofilms were grown in a reproducible manner in a 96-well microtiter plate. The efficacy of nine commercially available disinfectants against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa in multispecies biofilms was determined and compared. The results showed that the direction and the magnitude of the effect in a multispecies biofilm depend on the strain and the disinfectant used and challenge the common belief that organisms in multispecies biofilms are always less susceptible than in monospecies biofilms.
Collapse
Affiliation(s)
- Didem Kart
- a Laboratory of Pharmaceutical Microbiology , Ghent University , Ghent , Belgium
| | | | | | | | | |
Collapse
|
30
|
Yadav R, Samuni Y, Abramson A, Zeltser R, Casap N, Kabiraj TK, L Banach M, Samuni U. Pro-oxidative synergic bactericidal effect of NO: kinetics and inhibition by nitroxides. Free Radic Biol Med 2014; 67:248-54. [PMID: 24140438 DOI: 10.1016/j.freeradbiomed.2013.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a "shoulder" sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-μM/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (•)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed.
Collapse
Affiliation(s)
- Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Yuval Samuni
- Department of Oral and Maxillofacial Surgery, Barzilai Medical Center, Ashkelon, Israel; School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Alex Abramson
- Department of Oral and Maxillofacial Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Rephael Zeltser
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Nardi Casap
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Tonmoy K Kabiraj
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Maureen L Banach
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|