1
|
Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int 2025; 25:165. [PMID: 40296128 PMCID: PMC12039184 DOI: 10.1186/s12935-025-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The human microbiome has always been an important determinant of health and recently, its role has also been described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and significantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number of specific microbial species could restore the patients' response to cancer drugs and the microbial biomarkers may play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mechanisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh, 201303, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Ismael M, Huang M, Zhong Q. The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health. Foods 2024; 13:3887. [PMID: 39682959 DOI: 10.3390/foods13233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe alternative approach to conventional treatments to promote gut health is a scientific hotspot. Therefore, this review aimed to give insight into the promising applications of LAB-bacteriocins in preventing intestinal diseases, such as colonic cancer, Helicobacter pylori infections, multidrug-resistant infection-associated colitis, viral gastroenteritis, inflammatory bowel disease, and obesity disorders. Moreover, we highlighted the recent research on bacteriocins promoting gastrointestinal health. The review also provided insights into the proposed mechanisms, challenges and opportunities, trends and prospects. In addition, a SWOT analysis was conducted on the potential applications. Based on properties, biosafety, and health functions of LAB-bacteriocins, we conclude that the future applications of LAB-bacteriocins are promising in promoting gastrointestinal health. Further in vivo trials are needed to confirm these potential effects of LAB-bacteriocins interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Shi Y, Li X, Zhang J. Systematic review on the role of the gut microbiota in tumors and their treatment. Front Endocrinol (Lausanne) 2024; 15:1355387. [PMID: 39175566 PMCID: PMC11338852 DOI: 10.3389/fendo.2024.1355387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Tumors present a formidable health risk with limited curability and high mortality; existing treatments face challenges in addressing the unique tumor microenvironment (hypoxia, low pH, and high permeability), necessitating the development of new therapeutic approaches. Under certain circumstances, certain bacteria, especially anaerobes or parthenogenetic anaerobes, accumulate and proliferate in the tumor environment. This phenomenon activates a series of responses in the body that ultimately produce anti-tumor effects. These bacteria can target and colonize the tumor microenvironment, promoting responses aimed at targeting and fighting tumor cells. Understanding and exploiting such interactions holds promise for innovative therapeutic strategies, potentially augmenting existing treatments and contributing to the development of more effective and targeted approaches to fighting tumors. This paper reviews the tumor-promoting mechanisms and anti-tumor effects of the digestive tract microbiome and describes bacterial therapeutic strategies for tumors, including natural and engineered anti-tumor strategies.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, University College London, London, United Kingdom
- China Medical University Joint Queen’s University of Belfast, China Medical University, Shenyang, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Wei Y, Zhang Z, Xue T, Lin Z, Chen X, Tian Y, Li Y, Jing Z, Fang W, Fang T, Li B, Chen Q, Lan T, Meng F, Zhang X, Liang X. In Situ Synthesis of an Immune-Checkpoint Blocker from Engineered Bacteria Elicits a Potent Antitumor Response. ACS Synth Biol 2024; 13:1679-1693. [PMID: 38819389 DOI: 10.1021/acssynbio.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Immune-checkpoint blockade (ICB) reinvigorates T cells from exhaustion and potentiates T-cell responses to tumors. However, most patients do not respond to ICB therapy, and only a limited response can be achieved in a "cold" tumor with few infiltrated lymphocytes. Synthetic biology can be used to engineer bacteria as controllable bioreactors to synthesize biotherapeutics in situ. We engineered attenuated Salmonella VNP20009 with synthetic gene circuits to produce PD-1 and Tim-3 scFv to block immunosuppressive receptors on exhausted T cells to reinvigorate their antitumor response. Secreted PD-1 and Tim-3 scFv bound PD-1+ Tim-3+ T cells through their targeting receptors in vitro and potentiated the T-cell secretion of IFN-γ. Engineered bacteria colonized the hypoxic core of the tumor and synthesized PD-1 and Tim-3 scFv in situ, reviving CD4+ T cells and CD8+ T cells to execute an antitumor response. The bacteria also triggered a strong innate immune response, which stimulated the expansion of IFN-γ+ CD4+ T cells within the tumors to induce direct and indirect antitumor immunity.
Collapse
Affiliation(s)
- Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianyuan Xue
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xinyu Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhangyan Jing
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianliang Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Baoqi Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Qi Chen
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xin Liang
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
7
|
Halabian R, Jahangiri A, Sedighian H, Behzadi E, Fooladi AAI. Staphylococcal enterotoxin B as DNA vaccine against breast cancer in a murine model. Int Microbiol 2023; 26:939-949. [PMID: 36991248 PMCID: PMC10057679 DOI: 10.1007/s10123-023-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang Y, Huang R, Jiang Y, Shen W, Pei H, Wang G, Pei P, Yang K. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharm Sin B 2023; 13:4149-4171. [PMID: 37799393 PMCID: PMC10547917 DOI: 10.1016/j.apsb.2022.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteria-mediated anti-tumor therapy has received widespread attention due to its natural tumor-targeting ability and specific immune-activation characteristics. It has made significant progress in breaking the limitations of monotherapy and effectively eradicating tumors, especially when combined with traditional therapy, such as radiotherapy. According to their different biological characteristics, bacteria and their derivatives can not only improve the sensitivity of tumor radiotherapy but also protect normal tissues. Moreover, genetically engineered bacteria and bacteria-based biomaterials have further expanded the scope of their applications in radiotherapy. In this review, we have summarized relevant researches on the application of bacteria and its derivatives in radiotherapy in recent years, expounding that the bacteria, bacterial derivatives and bacteria-based biomaterials can not only directly enhance radiotherapy but also improve the anti-tumor effect by improving the tumor microenvironment (TME) and immune effects. Furthermore, some probiotics can also protect normal tissues and organs such as intestines from radiation via anti-inflammatory, anti-oxidation and apoptosis inhibition. In conclusion, the prospect of bacteria in radiotherapy will be very extensive, but its biological safety and mechanism need to be further evaluated and studied.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruizhe Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yunchun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:1086. [PMID: 37631000 PMCID: PMC10458506 DOI: 10.3390/ph16081086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people each year. Fortunately, the last decades have been marked by considerable advances in the field of cancer therapy. Researchers have discovered many natural substances, some of which are isolated from plants that have promising anti-tumor activity. Among these, essential oils (EOs) and their constituents have been widely studied and shown potent anticancer activities, both in vitro and in vivo. However, despite the promising results, the precise mechanisms of action of EOs and their bioactive compounds are still poorly understood. Further research is needed to better understand these mechanisms, as well as their effectiveness and safety in use. Furthermore, the use of EOs as anticancer drugs is complex, as it requires absolute pharmacodynamic specificity and selectivity, as well as an appropriate formulation for effective administration. In this study, we present a synthesis of recent work on the mechanisms of anticancer action of EOs and their bioactive compounds, examining the results of various in vitro and in vivo studies. We also review future research prospects in this exciting field, as well as potential implications for the development of new cancer drugs.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
10
|
Aslam S, Rehman HM, Sarwar MZ, Ahmad A, Ahmed N, Amirzada MI, Rehman HM, Yasmin H, Nadeem T, Bashir H. Computational Modeling, High-Level Soluble Expression and In Vitro Cytotoxicity Assessment of Recombinant Pseudomonas aeruginosa Azurin: A Promising Anti-Cancer Therapeutic Candidate. Pharmaceutics 2023; 15:1825. [PMID: 37514012 PMCID: PMC10383417 DOI: 10.3390/pharmaceutics15071825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Azurin is a natural protein produced by Pseudomonas aeruginosa that exhibits potential anti-tumor, anti-HIV, and anti-parasitic properties. The current study aimed to investigate the potential of azurin protein against breast cancer using both in silico and in vitro analyses. The amino acid sequence of Azurin was used to predict its secondary and tertiary structures, along with its physicochemical properties, using online software. The resulting structure was validated and confirmed using Ramachandran plots and ERRAT2. The mature azurin protein comprises 128 amino acids, and the top-ranked structure obtained from I-TASSER was shown to have a molecular weight of 14 kDa and a quality factor of 100% by ERRAT2, with 87.4% of residues in the favored region of the Ramachandran plot. Docking and simulation studies of azurin protein were conducted using HDOCK and Desmond servers, respectively. The resulting analysis revealed that Azurin docked against p53 and EphB2 receptors demonstrated maximum binding affinity, indicating its potential to cause apoptosis. The recombinant azurin gene was successfully cloned and expressed in a BL21 (DE3) strain using a pET20b expression vector under the control of the pelB ladder, followed by IPTG induction. The azurin protein was purified to high levels using affinity chromatography, yielding 70 mg/L. In vitro cytotoxicity assay was performed using MCF-7 cells, revealing the significant cytotoxicity of the azurin protein to be 105 µg/mL. These findings highlight the potential of azurin protein as an anticancer drug candidate.
Collapse
Affiliation(s)
- Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Science, Lahore 54600, Pakistan
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
- International Center for Genetic Engineering and Biotechnology, Galleria Padriciano, 99, 34149 Trieste, TS, Italy
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214082, China
| | - Hafiz Muhammad Rehman
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Humaira Yasmin
- Department of Infectious Diseases, Faculty of Medicine, South Kensington Campus, Imperial College, London W2 1NY, UK
- Department of Biosciences, COMSATS University Islamabad, Islamabad 54000, Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
11
|
Lv Y, Pu R, Tao Y, Yang X, Mu H, Wang H, Sun W. Applications and Future Prospects of Micro/Nanorobots Utilizing Diverse Biological Carriers. MICROMACHINES 2023; 14:mi14050983. [PMID: 37241607 DOI: 10.3390/mi14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Targeted drug delivery using micro-nano robots (MNRs) is a rapidly advancing and promising field in biomedical research. MNRs enable precise delivery of drugs, addressing a wide range of healthcare needs. However, the application of MNRs in vivo is limited by power issues and specificity in different scenarios. Additionally, the controllability and biological safety of MNRs must be considered. To overcome these challenges, researchers have developed bio-hybrid micro-nano motors that offer improved accuracy, effectiveness, and safety for targeted therapies. These bio-hybrid micro-nano motors/robots (BMNRs) use a variety of biological carriers, blending the benefits of artificial materials with the unique features of different biological carriers to create tailored functions for specific needs. This review aims to give an overview of the current progress and application of MNRs with various biocarriers, while exploring the characteristics, advantages, and potential hurdles for future development of these bio-carrier MNRs.
Collapse
Affiliation(s)
- Yu Lv
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruochen Pu
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
12
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
13
|
Rybkin I, Pinyaev S, Sindeeva O, German S, Koblar M, Pyataev N, Čeh M, Gorin D, Sukhorukov G, Lapanje A. Modification of bacterial cells for in vivo remotely guided systems. Front Bioeng Biotechnol 2023; 10:1070851. [PMID: 36686260 PMCID: PMC9845715 DOI: 10.3389/fbioe.2022.1070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
It was shown recently that bacterial strains, which can act specifically against malignant cells, can be used efficiently in cancer therapy. Many appropriate bacterial strains are either pathogenic or invasive and there is a substantial shortage of methods with which to monitor in vivo the distribution of bacteria used in this way. Here, it is proposed to use a Layer-by-Layer (LbL) approach that can encapsulate individual bacterial cells with fluorescently labeled polyelectrolytes (PE)s and magnetite nanoparticles (NP)s. The NP enable remote direction in vivo to the site in question and the labeled shells in the far-red emission spectra allow non-invasive monitoring of the distribution of bacteria in the body. The magnetic entrapment of the modified bacteria causes the local concentration of the bacteria to increase by a factor of at least 5. The PEs create a strong barrier, and it has been shown in vitro experiments that the division time of bacterial cells coated in this way can be regulated, resulting in control of their invasion into tissues. That animals used in the study survived and did not suffer septic shock, which can be attributed to PE capsules that prevent release of endotoxins from bacterial cells.
Collapse
Affiliation(s)
- Iaroslav Rybkin
- Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany,Jožef Stefan Institute, Ljubljana, Slovenia,State University, Saratov, Russia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sergey Pinyaev
- National Research Ogerev Mordovia State University, Saransk, Russia
| | - Olga Sindeeva
- State University, Saratov, Russia,A.V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergey German
- Center of Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | - Maja Koblar
- Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nikolay Pyataev
- National Research Ogerev Mordovia State University, Saransk, Russia
| | - Miran Čeh
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dmitry Gorin
- Center of Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Gleb Sukhorukov
- A.V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia,Queen Mary University of London, London, United Kingdom
| | - Aleš Lapanje
- Jožef Stefan Institute, Ljubljana, Slovenia,*Correspondence: Aleš Lapanje,
| |
Collapse
|
14
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
15
|
Danaeifar M. Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 2022:10.1007/s10238-022-00925-x. [PMID: 36284069 DOI: 10.1007/s10238-022-00925-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
Genetics and molecular genetic techniques have changed many perspectives and paradigms in medicine. Using genetic methods, many diseases have been cured or alleviated. Gene therapy, in its simplest definition, is application of genetic materials and related techniques to treat various human diseases. Evaluation of the trends in the field of medicine and therapeutics clarifies that gene therapy has attracted a lot of attention due to its powerful potential to treat a number of diseases. There are various genetic materials that can be used in gene therapy such as DNA, single- and double-stranded RNA, siRNA and shRNA. The main gene editing techniques used for in vitro and in vivo gene modification are ZNF, TALEN and CRISPR-Cas9. The latter has increased hopes for more precise and efficient gene targeting as it requires two separate recognition sites which makes it more specific and can also cause rapid and sufficient cleavage within the target sequence. There must be carriers for delivering genes to the target tissue. The most commonly used carriers for this purpose are viral vectors such as adenoviruses, adeno-associated viruses and lentiviruses. Non-viral vectors consist of bacterial vectors, liposomes, dendrimers and nanoparticles.
Collapse
|
16
|
Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022; 14:1109. [PMID: 35631695 PMCID: PMC9147382 DOI: 10.3390/pharmaceutics14051109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Undesirable side effects and multidrug resistance are the major obstacles in conventional chemotherapy towards cancers. Nanomedicines provide alternative strategies for tumor-targeted therapy due to their inherent properties, such as nanoscale size and tunable surface features. However, the applications of nanomedicines are hampered in vivo due to intrinsic disadvantages, such as poor abilities to cross biological barriers and unexpected off-target effects. Fortunately, biomimetic nanomedicines are emerging as promising therapeutics to maximize anti-tumor efficacy with minimal adverse effects due to their good biocompatibility and high accumulation abilities. These bioengineered agents incorporate both the physicochemical properties of diverse functional materials and the advantages of biological materials to achieve desired purposes, such as prolonged circulation time, specific targeting of tumor cells, and immune modulation. Among biological materials, mammalian cells (such as red blood cells, macrophages, monocytes, and neutrophils) and pathogens (such as viruses, bacteria, and fungi) are the functional components most often used to confer synthetic nanoparticles with the complex functionalities necessary for effective nano-biointeractions. In this review, we focus on recent advances in the development of bioinspired and biomimetic nanomedicines (such as mammalian cell-based drug delivery systems and pathogen-based nanoparticles) for targeted cancer therapy. We also discuss the biological influences and limitations of synthetic materials on the therapeutic effects and targeted efficacies of various nanomedicines.
Collapse
Affiliation(s)
- Xiaoqiu Xu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed Pharmacother 2022; 149:112898. [PMID: 35381448 DOI: 10.1016/j.biopha.2022.112898] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is the world's second-leading cause of death, and the involvement of microbes in a range of diseases, including cancer, is well established. The gut microbiota is known to play an important role in the host's health and physiology. The gut microbiota and its metabolites may activate immunological and cellular pathways that kill invading pathogens and initiate a cancer-fighting immune response. Cancer is a multiplex illness, characterized by the persistence of several genetic and physiological anomalies in malignant tissue, complicating disease therapy and control. Humans have coevolved with a complex bacterial, fungal, and viral microbiome over millions of years. Specific long-known epidemiological links between certain bacteria and cancer have recently been grasped at the molecular level. Similarly, advances in next-generation sequencing technology have enabled detailed research of microbiomes, such as the human gut microbiome, allowing for the finding of taxonomic and metabolomic linkages between the microbiome and cancer. These investigations have found causative pathways for both microorganisms within tumors and bacteria in various host habitats far from tumors using direct and immunological procedures. Anticancer diagnostic and therapeutic solutions could be developed using this review to tackle the threat of anti-cancer medication resistance as well through the wide-ranging involvement of the microbiota in regulating host metabolic and immunological homeostasis. We reviewed the significance of gut microbiota in cancer initiation as well as cancer prevention. We look at certain microorganisms that may play a role in the development of cancer. Several bacteria with probiotic qualities may be employed as bio-therapeutic agents to re-establish the microbial population and trigger a strong immune response to remove malignancies, and further study into this should be conducted.
Collapse
|
18
|
Unver Y, Yildiz S, Acar M. Extracellular production of azurin from Pseudomonas aeruginosa in the presence of Triton X-100 or Tween 80. Bioprocess Biosyst Eng 2022; 45:553-561. [PMID: 35039942 DOI: 10.1007/s00449-021-02678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/04/2021] [Indexed: 11/02/2022]
Abstract
Azurin which is a bacterial secondary metabolite has attracted much attention as potential anticancer agent in recent years. This copper-containing periplasmic redox protein supresses the tumor growth selectively. High-level secretion of proteins into the culture medium offers a significant advantage over periplasmic or cytoplasmic expression. The aim of this study was to investigate the effect of nonionic surfactants on the expression of the Pseudomonas aeruginosa azurin. Different concentrations of Triton X-100 and Tween 80 were used as supplements in growth media and extracellular azurin production was stimulated by both surfactants. According to western blot analysis results, in the presence of Triton X-100, maximum azurin expression level was achieved with 96 h of incubation at 1% concentration, and 48 h at 2% concentration. On the other hand, maximum azurin expression level was achieved in the presence of 1% Tween 80 at 72 h incubation. This study suggested for the first time a high level of azurin secretion from P. aeruginosa in the presence of Triton X-100 or Tween 80, which would be advantageous for the purification procedure.
Collapse
Affiliation(s)
- Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Seyda Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
19
|
Al-Hazmi NE, Naguib DM. Microbial Azurin Immobilized on Nano-Chitosan as Anticancer and Antibacterial Agent Against Gastrointestinal Cancers and Related Bacteria. J Gastrointest Cancer 2021; 53:537-542. [PMID: 34159520 DOI: 10.1007/s12029-021-00654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To discover new natural effective anticancer agents and new antibacterial agents against antibiotic-resistant bacteria which are the most serious public health concern. Another important concern is drug delivery which is the transport of pharmaceutical compounds to have a therapeutic effect in organisms having a disease. Azurin is a promising anticancer agent produced from Pseudomonas aeruginosa. This study tried to test the effectiveness of the immobilization of azurin on nano-chitosan to enhance its anticancer and antibacterial activity against gastrointestinal cancer and its related bacteria. METHODS We purified azurin protein from Pseudomonas aeruginosa and then immobilized it on nano-chitosan. The anticancer activity of the free and nano-azurin is tested against a gastric cancer cell line (CLS-145), pancreatic cancer cell line (AsPC-1), colon cancer cell line (HCT116), esophagus cancer cell line (KYSE-410), and liver cancer cell line (HepG2). The antibacterial activity of both free and immobilized azurin also is tested against bacterial species related to the gastrointestinal cancer biopsies: Helicobacter pylori, Bacteroides fragilis, Salmonella enterica, Fusobacterium nucleatum, and Porphyromonas gingivalis. RESULTS Both free and nano-azurin showed high anticancer and antibacterial activity. Immobilization significantly increased the anticancer and antibacterial activity of the azurin CONCLUSION: Nano-azurin can be used as an effective anticancer and antibacterial agent against gastrointestinal cancer and bacterial species related to these cancers.
Collapse
Affiliation(s)
- Nawal E Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudhah, Umm Al-Qura University, Qunfudhah, Saudi Arabia
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt. .,Biology Department, Faculty of Science and Arts in Qilwah, Albaha University, Qilwah, Saudi Arabia.
| |
Collapse
|
20
|
Abstract
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.
Collapse
Affiliation(s)
- Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Pihl
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Liu X, Wu M, Wang M, Duan Y, Phan C, Qi G, Tang G, Liu B. Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. MATERIALS HORIZONS 2021; 8:1454-1460. [PMID: 34846453 DOI: 10.1039/d0mh01582b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A living therapeutic system based on attenuated Salmonella was developed via metabolic engineering using an aggregation-induced emission (AIE) photosensitizer MA. The engineered bacteria could localize in the tumor tissues and continue to colonize and express exogenous genes. Under light irradiation, the encoded VEGFR2 gene was released and expressed in tumor tissues, which can suppress angiogenesis induced by a T cell-mediated autoimmune response and inhibit tumor growth.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003572. [PMID: 33854892 PMCID: PMC8025040 DOI: 10.1002/advs.202003572] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.
Collapse
Affiliation(s)
- Xuehui Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Binfen Shao
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Wang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
23
|
Bacteria in Carcinogenesis and Cancer Prevention: A Review Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Context: Although conventional therapies improve the conditions of patients with cancer, adverse side effects, and resistance to different therapies have convinced scientists to use alternative methods to overcome these problems. One of the most promising research directions is the application of specific types of bacteria and their components to prevent and treat different cancers. Apart from the ability of bacteria to modulate immune responses, various particular properties such as toxin production and anaerobic lifestyle, have made them one of the potential candidates to help cancer therapy. Evidence Acquisition: In this review, the latest information on the role of bacteria in carcinogenesis and cancer prevention in PubMed, Google scholar, and Science Direct databases in 2020 were considered using a combination of keywords “bacteria”, “carcinogenesis”, “cancer” and “prevention”. Results: Bacteria-cancer interactions can be studied in 2 areas of bacteria and carcinogenesis and the other bacteria and cancer treatment or prevention. In this review, bacterial carcinogenicity has been mentioned with 3 main mechanisms: bacterial toxin, bacterial metabolites, and chronic inflammation caused by bacteria. Bacterial-mediated tumor therapy (BMTT) is briefly discussed in 8 mechanisms including tumor-targeting bacterial therapy, gene therapy and vectors, bacterial products, arginine metabolism, magnetotactic bacteria, combination bacteriolytic therapy (COBALT), immunomodulation of bacteria in cancer, and immune survival. Conclusions: The importance of bacteria in terms of diversity in their interaction with humans, as well as their components that can affect homeostasis and the immune system, has made them a powerful factor in describing the human condition in health and disease. These important elements can be used in the prevention and treatment of many complex diseases with different origins like cancer. The present study can provide an overview of the role of bacteria in cancer development or prevention and potential approaches for bacteria in cancer therapy.
Collapse
|
24
|
Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27:e3300. [DOI: 10.1002/psc.3300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Siegmund Reissmann
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics Friedrich Schiller University Dornburger Str. 25 Jena Thueringia 07743 Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
25
|
Unver Y, Sensoy Gun B, Acar M, Yildiz S. Heterologous expression of azurin from Pseudomonas aeruginosa in the yeast Pichia pastoris. Prep Biochem Biotechnol 2020; 51:723-730. [PMID: 33346686 DOI: 10.1080/10826068.2020.1855444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Azurin, which is a bacterial secondary metabolite has been attracted as a potential anticancer agent in recent years because induced death of cancer cells and inhibited their growth. In this study, the production of azurin under the control of the alcohol oxidase promoter which is frequently used in the Pichia pastoris expression system was performed. The azurin gene amplified from Pseudomonas aeruginosa genomic DNA and inserted into the pPICZαA was cloned in Escherichia coli cells. Then, a linearized recombinant vector was transferred to the P. pastoris X-33 cells. Antibiotic resistance test and colony PCR were performed for the selection of multicopy transformants. Protein expression capacities of selected transformants were compared at the end of 48 h incubation. Both extracellular and intracellular protein expressions were observed in all of them by Western blot analysis. The relative expression levels of both intracellular and extracellular protein that belongs to the first clone were higher than the others. On the other hand, it was seen that the 4th clone had the highest protein secretion ability. The molecular mass of the extracellular azurin protein which is produced by recombinant clones was found to be about 20 kDa. This is the first report on azurin expression in P. pastoris.
Collapse
Affiliation(s)
- Yagmur Unver
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Busra Sensoy Gun
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Melek Acar
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Seyda Yildiz
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [PMID: 32926886 DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
27
|
Wang W, Liu X, Zheng X, Jin HJ, Li X. Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Adv Healthc Mater 2020; 9:e2001117. [PMID: 33043640 DOI: 10.1002/adhm.202001117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is a common process in organisms to produce hard biomaterials by combining inorganic ions with biomacromolecules. Multifunctional nanoplatforms are developed based on the mechanism of biomineralization in many biomedical applications. In the past few years, biomineralization-based nanoparticle drug delivery systems for the cancer treatment have gained a lot of research attention due to the advantages including simple preparation, good biocompatibility, degradability, easy modification, versatility, and targeting. In this review, the research trends of biomineralization-based nanoparticle drug delivery systems and their applications in cancer therapy are summarized. This work aims to promote future researches on cancer therapy based on biomineralization. Rational design of nanoparticle drug delivery systems can overcome the bottleneck in the clinical transformation of nanomaterials. At the same time, biomineralization has also provided new research ideas for cancer treatment, i.e., targeted therapy, which has significantly better performance.
Collapse
Affiliation(s)
- Weicai Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiaofan Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology The University of Suwon Hwaseong Gyeonggi‐Do 18323 Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| |
Collapse
|
28
|
Roy H, Nayak BS, Nandi S. Chitosan Anchored Nanoparticles in Current Drug Development Utilizing Computer-Aided Pharmacokinetic Modeling: Case Studies for Target Specific Cancer Treatment and Future Prospective. Curr Pharm Des 2020; 26:1666-1675. [DOI: 10.2174/1381612826666200203121241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023]
Abstract
Background:
Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for
chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions,
and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical
and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes
the subtle instruments, precise research strategies and most significantly the excipients.
Method:
Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for
chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions,
and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical
and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes
the subtle instruments, precise research strategies and most significantly the excipients.
Results:
The most remarkable point is that chitosan-drug conjugated nanoparticles (CDNP) can target cancer
affected cells with the least attempt to killing the neighbor host cell. It is already proved that the CDNP facilitate
the more drugs uptaking or cytotoxicity to a cancerous cell. This overcomes the dosage form designing problems
of complexity in the biological mechanism and cell specificity. A computer-aided pharmacokinetic study as well
as in-silico design with model fitting can provide the possible finding related to target selectivity and interaction.
The computer aided study also reduces time and could make the entire process much cheaper till today, very
few research has been reported, such as PyRx with AutoDock, response surface methodology and molecular
dynamic simulation in drug delivery for chitosan-drug conjugated nanoparticles.
Conclusion:
Therefore, cancer cell target-specific drug delivery using a natural biopolymer conjugate with a
computer-aided pharmacokinetic model will be the thirst area of future research. To get successful anticancer
drug formulation, in-silico pharmacokinetic modeling would minimize labor, and expenses, during and prior to
the experiment has been extensively discussed in the present review.
Collapse
Affiliation(s)
- Harekrishna Roy
- Biju Patnaik University of Technology, Rourkela, Odisha-769004, India
| | - Bhabani S. Nayak
- Institute of Pharmacy and Technology, Salipur, Cuttack - 754202, Odisha, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
29
|
Alizadeh S, Esmaeili A, Barzegari A, Rafi MA, Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target 2020; 28:700-713. [PMID: 32116051 DOI: 10.1080/1061186x.2020.1737087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many endeavours for the development of new anticancer drugs, effective therapy of solid tumours remains a challenging issue. The current cancer chemotherapies may associate with two important limitations, including the lack/trivial specificity of treatment modalities towards diseased cells/tissues resulting in undesired side effects, and the emergence of drug-resistance mechanisms by tumour cells causing the failure of the treatment. Much attention, therefore, has currently been paid to develop smart and highly specific anticancer agents with maximal therapeutic impacts and minimal side effects. Among various strategies used to target cancer cells, bacteria-based cancer therapies (BCTs) have been validated as potential gene/drug delivery carriers, which can also be engineered to be used in diagnosis processes. They can be devised to selectively target the tumour microenvironment (TME), within which they may preferentially proliferate in the necrotic and anaerobic parts - often inaccessible to other therapeutics. BCTs are capable to sense and respond to the environmental signals, upon which they are considered as smart microrobots applicable in the controlled delivery of therapeutic agents to the TME. In this review, we aimed to provide comprehensive insights into the potentials of the bioengineered bacteria as smart and targeted bio-carriers and discuss their applications in cancer therapy.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Bacteria and cancer: Different sides of the same coin. Life Sci 2020; 246:117398. [PMID: 32032647 DOI: 10.1016/j.lfs.2020.117398] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
Conventional cancer therapies such as chemotherapy, radiation therapy, and immunotherapy due to the complexity of cancer have been unsuccessful in the complete eradication of tumor cells. Thus, there is a need for new therapeutic strategies toward cancer. Recently, the therapeutic role of bacteria in different fields of medicine and pharmaceutical research has attracted attention in recent decades. Although several bacteria are notorious as cancer-causing agents, recent research revealed intriguing results suggesting the bacterial potential in cancer therapy. Thus, bacterial cancer therapy is an alternative anticancer approach that has promising results on tumor cells in-vivo. Moreover, with the aid of genetic engineering, some natural or genetically modified bacterial strains can directly target hypoxic regions of tumors and secrete therapeutic molecules leading to cancer cell death. Additionally, stimulation of immune cells by bacteria, bacterial cancer DNA vaccine and antitumor bacterial metabolites are other therapeutic applications of bacteria in cancer therapy. The present study is a comprehensive review of different aspects of bacterial cancer therapy alone and in combination with conventional methods, for improving cancer therapy.
Collapse
|
31
|
Chen Q, Bai H, Wu W, Huang G, Li Y, Wu M, Tang G, Ping Y. Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. NANO LETTERS 2020; 20:11-21. [PMID: 31858807 DOI: 10.1021/acs.nanolett.9b02182] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We herein propose a bioengineering approach where bacterial outer membrane vesicles (OMVs) were coated on drug-loaded polymeric micelles to generate an innovative nanomedicine for effective cancer immunotherapy and metastasis prevention. Whereas OMVs could activate the host immune response for cancer immunotherapy, the loaded drug within polymeric micelles would exert both chemotherapeutic and immunomodulatory roles to sensitize cancer cells to cytotoxic T lymphocytes (CTLs) and to kill cancer cells directly. We demonstrated that the systemic injection of such a bioinspired immunotherapeutic agent would not only provide effective protective immunity against melanoma occurrence but also significantly inhibited tumor growth in vivo and extended the survival rate of melanoma mice. Importantly, the nanomedicine could also effectively inhibit tumor metastasis to the lung. The bioinspired immunomodulatory nanomedicine we have developed repurposes the bacterial-based formulation for cancer immunotherapy, which also defines a useful bioengineering strategy to the improve current cancer immunotherapeutic agents and delivery systems.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Wangteng Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Guojun Huang
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Yang Li
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Min Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Yuan Ping
- College of Pharmaceutical Science , Zhejiang University , Hangzhou 310013 , People's Republic of China
| |
Collapse
|
32
|
Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial Proteinaceous Compounds With Multiple Activities Toward Cancers and Microbial Infection. Front Microbiol 2019; 10:1690. [PMID: 31447795 PMCID: PMC6691048 DOI: 10.3389/fmicb.2019.01690] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like Streptococcus pneumoniae, Stomatococcus mucilaginous, Staphylococcus spp., E. coli. Klebsiella spp., Pseudomonas aeruginosa, Candida spp., Helicobacter pylori, hepatitis B and C, and human papillomaviruses (HPV) have been associated with the development of cancer. Chemotherapy, radiotherapy and antibiotics are the conventional treatment for cancer and infectious disease. This treatment causes damage in healthy cells and tissues, and usually triggers systemic side-effects, as well as drug resistance. Therefore, the search for new treatments is urgent, in order to improve efficacy and also reduce side-effects. Proteins and peptides originating from bacteria can thus be a promising alternative to conventional treatments used nowadays against cancer and infectious disease. These molecules have demonstrated specific activity against cancer cells and bacterial infection; indeed, proteins and peptides can be considered as future antimicrobial and anticancer drugs. In this context, this review will focus on the desirable characteristics of proteins and peptides from bacterial sources that demonstrated activity against microbial infections and cancer, as well as their efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Pós-Graduação em Biologia Animal, Universidade de Brasilia, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
33
|
Janosch D, Dubbert S, Eiteljörge K, Diehl BWK, Sonnenborn U, Passchier LV, Wassenaar TM, von Bünau R. Anti-genotoxic and anti-mutagenic activity of Escherichia coli Nissle 1917 as assessed by in vitro tests. Benef Microbes 2019; 10:449-461. [PMID: 30957533 DOI: 10.3920/bm2018.0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anti-genotoxic or anti-mutagenic activity has been described for a number of Gram-positive probiotic bacterial species. Here we present evidence that Gram-negative Escherichia coli Nissle 1917 (EcN) also displays anti-genotoxic/anti-mutagenic activity, as assessed in vitro by the Comet Assay and the Ames Test, respectively. This activity was demonstrated by use of the mutagens 4-nitroquinoline-1-oxide (NQO), hydrogen peroxide (H2O2) and benzo(a) pyrene (B[a]P). For both assays and all three test agents the anti-genotoxic/anti-mutagenic activity of EcN was shown to be concentration dependent. By the use of extracts of bacteria that were inactivated by various procedures (heat treatment, ultrasound sonication or ultraviolet light irradiation), mechanistic explanations could be put forward. The proposed mechanisms were enforced by treating the bacterial material with proteinase K prior to testing. The mutagen H2O2 is most likely inactivated by enzymic activity, with catalase a likely candidate, while several explanations can be put forward for inactivation of B[a]P. NQO is most likely inactivated by metabolising enzymes, since the formation of the metabolite 4-aminoquinoline could be demonstrated. In conclusion, the in vitro results presented here make a strong case for antimutagenic properties of EcN.
Collapse
Affiliation(s)
- D Janosch
- 1 Ardeypharm GmbH, Loerfeldstraβe 20, 58313 Herdecke, Germany
| | - S Dubbert
- 1 Ardeypharm GmbH, Loerfeldstraβe 20, 58313 Herdecke, Germany
| | - K Eiteljörge
- 1 Ardeypharm GmbH, Loerfeldstraβe 20, 58313 Herdecke, Germany
| | - B W K Diehl
- 2 Spectral Service AG, Emil-Hoffmann-Straβe 33, 50996 Köln, Germany
| | - U Sonnenborn
- 1 Ardeypharm GmbH, Loerfeldstraβe 20, 58313 Herdecke, Germany
| | - L V Passchier
- 3 Molecular Microbiology and Genomics Consultants, Tannenstraβe 7, 55576 Zotzenheim, Germany
| | - T M Wassenaar
- 3 Molecular Microbiology and Genomics Consultants, Tannenstraβe 7, 55576 Zotzenheim, Germany
| | - R von Bünau
- 1 Ardeypharm GmbH, Loerfeldstraβe 20, 58313 Herdecke, Germany
| |
Collapse
|
34
|
Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol Biol Rep 2019; 46:3129-3140. [DOI: 10.1007/s11033-019-04767-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/14/2019] [Indexed: 01/24/2023]
|
35
|
Nguyen VD, Nguyen TT, Pham TT, Packianather M, Le CH. Molecular screening and genetic diversity analysis of anticancer Azurin-encoding and Azurin-like genes in human gut microbiome deduced through cultivation-dependent and cultivation-independent studies. Int Microbiol 2019; 22:437-449. [PMID: 30895406 DOI: 10.1007/s10123-019-00070-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 02/03/2023]
Abstract
Azurin, a bacteriocin produced by a human gut bacterium Pseudomonas aeruginosa, can reveal selectively cytotoxic and induce apoptosis in cancer cells. After overcoming two phase I trials, a functional region of Azurin called p28 has been approved as a drug for the treatment of brain tumor glioma by FDA. The present study aims to improve a screening procedure and assess genetic diversity of Azurin genes in P. aeruginosa and Azurin-like genes in the gut microbiome of a specific population in Vietnam and global populations. Firstly, both cultivation-dependent and cultivation-independent techniques based on genomic and metagenomic DNAs extracted from fecal samples of the healthy specific population were performed and optimized to detect Azurin genes. Secondly, the Azurin gene sequences were analyzed and compared with global populations by using bioinformatics tools. Finally, the screening procedure improved from the first step was applied for screening Azurin-like genes, followed by the protein synthesis and NCI in vitro screening for anticancer activity. As a result, this study has successfully optimized the annealing temperatures to amplify DNAs for screening Azurin genes and applying to Azurin-like genes from human gut microbiota. The novelty of this study is the first of its kind to classify Azurin genes into five different genotypes at a global scale and confirm the potential anticancer activity of three Azurin-like synthetic proteins (Cnazu1, Dlazu11, and Ruazu12). The results contribute to the procedure development applied for screening anticancer proteins from human microbiome and a comprehensive understanding of their therapeutic response at a genetic level.
Collapse
Affiliation(s)
- Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam. .,School of Engineering, Cardiff University, Cardiff, UK. .,Faculty of Engineering and Science, University of Greenwich, Chatham, Kent, UK.
| | - Thanh Tra Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | | | - Chi Hieu Le
- Faculty of Engineering and Science, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
36
|
Li D, Liu J, Wang X, Kong D, Du W, Li H, Hse CY, Shupe T, Zhou D, Zhao K. Biological Potential and Mechanism of Prodigiosin from Serratia marcescens Subsp. lawsoniana in Human Choriocarcinoma and Prostate Cancer Cell Lines. Int J Mol Sci 2018; 19:E3465. [PMID: 30400387 PMCID: PMC6274741 DOI: 10.3390/ijms19113465] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Tripyrrole molecules have received renewed attention due to reports of numerous biological activities, including antifungal, antibacterial, antiprotozoal, antimalarial, immunosuppressive, and anticancer activities. In a screen of bacterial strains with known toxicities to termites, a red pigment-producing strain, HDZK-BYSB107, was isolated from Chamaecyparis lawsoniana, which grows in Oregon, USA. Strain HDZK-BYSB107 was identified as Serratia marcescens subsp. lawsoniana. The red pigment was identified as prodigiosin using ultraviolet absorption, LC-MS, and 1H-NMR spectroscopy. The bacterial prodigiosin had an inhibitory effect on both Gram-negative and Gram-positive bacteria. The main objective of this study was to explore the anticancer activities and mechanism of strain HDZK-BYSB107 prodigiosin by using human choriocarcinoma (JEG3) and prostate cancer cell lines (PC3) in vitro and JEG3 and PC3 tumor-bearing nude mice in vivo. In vitro anticancer activities showed that the bacterial prodigiosin induced apoptosis in JEG3 cells. In vivo anticancer activities indicated that the prodigiosin significantly inhibited the growth of JEG3 and PC3 cells, and the inhibitory activity was dose and time dependent. The anticancer efficacy of the bacterial prodigiosin on JEG3 and PC3 cells, JEG3 and PC3 tumor exhibited a correlation with the down regulation of the inhibitor of IAP family, including XIAP, cIAP-1 and cIAP-2, and the activation of caspase-9 and caspase-3 accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. The expressions of P53 and Bax/Bcl-2 in JEG3 and PC3 cells were significantly higher than in untreated groups. Our results indicated that the bacterial prodigiosin extracted from C. lawsoniana is a promising molecule due to its potential for therapeutic applications.
Collapse
Affiliation(s)
- Dan Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Jun Liu
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xin Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Di Kong
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Wei Du
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Hongbo Li
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Chung-Yun Hse
- USDA Forest Service Southern Research Station, Adhesive and Composite Laboratory, Pineville, LA 71360, USA.
| | - Todd Shupe
- Louisiana Forest Products Development Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Dongpo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
37
|
Bernardes N, Garizo AR, Pinto SN, Caniço B, Perdigão C, Fernandes F, Fialho AM. Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle 2018; 17:1649-1666. [PMID: 29963969 DOI: 10.1080/15384101.2018.1489178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Membrane lipid rafts are highly ordered microdomains and essential components of plasma membranes. In this work, we demonstrate that azurin uptake by cancer cells is, in part, mediated by caveolin-1 and GM-1, lipid rafts' markers. This recognition is mediated by a surface exposed hydrophobic core displayed by azurin since the substitution of a phenylalanine residue in position 114 facing the hydrophobic cavity by alanine impacts such interactions, debilitating the uptake of azurin by cancer cells. Treating of cancer cells with azurin leads to a sequence of events: alters the lipid raft exposure at plasma membranes, causes a decrease in the plasma membrane order as examined by Laurdan two-photon imaging and leads to a decrease in the levels of caveolin-1. Caveolae, a subset of lipid rafts characterized by the presence of caveolin-1, are gaining increasing recognition as mediators in tumor progression and resistance to standard therapies. We show that azurin inhibits growth of cancer cells expressing caveolin-1, and this inhibition is only partially observed with mutant azurin. Finally, the simultaneous administration of azurin with anticancer therapeutic drugs (paclitaxel and doxorubicin) results in an enhancement in their activity, contrary to the mutated protein.
Collapse
Affiliation(s)
- Nuno Bernardes
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Ana Rita Garizo
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Sandra N Pinto
- b Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico , Lisbon , Portugal
| | - Bernardo Caniço
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Catarina Perdigão
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Fábio Fernandes
- b Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico , Lisbon , Portugal.,c UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Arsenio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal.,d Department of Bioengineering , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
38
|
Karpiński TM, Adamczak A. Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018; 10:54. [PMID: 29710857 PMCID: PMC6027124 DOI: 10.3390/pharmaceutics10020054] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland.
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland.
| |
Collapse
|
39
|
Fan JX, Li ZH, Liu XH, Zheng DW, Chen Y, Zhang XZ. Bacteria-Mediated Tumor Therapy Utilizing Photothermally-Controlled TNF-α Expression via Oral Administration. NANO LETTERS 2018; 18:2373-2380. [PMID: 29558152 DOI: 10.1021/acs.nanolett.7b05323] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral drug administration is widely adopted for diverse drugs and is convenient to use due to the capability of reaching different parts of the body via the bloodstream. However, it is generally not feasible for biomacromolecular antitumor drugs such as protein and nucleic acids due to the limited absorption through gastrointestinal tract (GIT) and the poor tumor targeting. Here, we report a noninvasive thermally sensitive programmable therapetic system using bacteria E. coli MG1655 as an vehicle for tumor treatments via oral administration. Thermally sensitive programmable bacteria (TPB) are transformed with plasmids expressing therapeutic protein TNF-α and then decorated with biomineralized gold nanoparticles (AuNPs) to obtain TPB@Au. AuNPs and TNF-α plasmids efficaciously protected by TPB in the gut can be transported into internal microcirculation via transcytosis of microfold cells (M cells). After that, the bacteria-based antitumor vehicles accumulate at tumor sites due to the anaerobic bacterial feature of homing to tumor microenvironments. In vitro and in vivo experiments verify the successful delivery of AuNPs and TNF-α plasmids by TPB. Importantly, under remote activation the expression of TNF-α in tumor sites can be procisely controlled by the heat generated from photothermal AuNPs to exert therapeutic actions. The biological security evaluation demonstrates that this strategy would not disturb the balance of intestinal flora.
Collapse
Affiliation(s)
- Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
40
|
Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci 2018; 6:958-973. [DOI: 10.1039/c8bm00175h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bio-inspired platforms directly derived from biological sources are becoming a rapidly emerging field in the development of future anticancer therapeutics. The various platforms discussed are bacteria-based, virus-inspired, cell-derived, nanostructured lipid nanoparticles, and biomacromolecular drug delivery systems.
Collapse
Affiliation(s)
- Gella Maelys Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yaw Opoku-Damoah
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaochen Gu
- Faculty of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
41
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
42
|
Shi L, Yu B, Cai CH, Huang JD. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice. AMB Express 2016; 6:56. [PMID: 27558018 PMCID: PMC4996802 DOI: 10.1186/s13568-016-0226-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.
Collapse
|
43
|
Kazmierczak RA, Gentry B, Mumm T, Schatten H, Eisenstark A. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model. PLoS One 2016; 11:e0160926. [PMID: 27504973 PMCID: PMC4978392 DOI: 10.1371/journal.pone.0160926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression.
Collapse
Affiliation(s)
- Robert A. Kazmierczak
- Cancer Research Center, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Bettina Gentry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tyler Mumm
- Cancer Research Center, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Heide Schatten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Abraham Eisenstark
- Cancer Research Center, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
44
|
Engineering Salmonella as intracellular factory for effective killing of tumour cells. Sci Rep 2016; 6:30591. [PMID: 27464652 PMCID: PMC4964584 DOI: 10.1038/srep30591] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
Salmonella have many desirable properties as antitumour-agent due to its ability to proliferate inside tumours and induce tumour regression. Additionally, this bacterium can be genetically engineered to deliver therapeutic proteins intratumourally. The main limitation of this approach is the efficient release of therapeutic molecules from intratumoural bacteria. Here we have developed an inducible autolysis system based in the lysis operon of the lambda phage that, in response to anhydrotetracycline, lysates Salmonella thus releasing its content. The system was combined with a salicylate cascade system that allows efficient production of therapeutic molecules in response to aspirin and with a sifA mutation that liberates bacteria from the vacuoles to a cytosolic location. The combination of these three elements makes this strain a putative powerful instrument in cancer treatment. We have used this engineered strain for the intracellular production and delivery of Cp53 peptide. The engineered strain is able to sequentially produce and release the cytotoxic peptide while proliferating inside tumour cells, thus inducing host cell death. Our results show that temporal separation of protein production from protein release is essential to efficiently kill tumour cells. The combined system is a further step in the engineering of more efficient bacteria for cancer therapy.
Collapse
|
45
|
M. Fialho A, Bernardes N, M Chakrabarty A. Exploring the anticancer potential of the bacterial protein azurin. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
47
|
Leten C, Trekker J, Struys T, Dresselaers T, Gijsbers R, Vande Velde G, Lambrichts I, Van Der Linden A, Verfaillie CM, Himmelreich U. Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach. Stem Cell Res Ther 2015; 6:163. [PMID: 26345383 PMCID: PMC4562202 DOI: 10.1186/s13287-015-0157-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/04/2014] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction In this study, we planned to assess if adult stem cell-based suicide gene therapy can efficiently eliminate glioblastoma cells in vivo. We investigated the therapeutic potential of mouse Oct4− bone marrow multipotent adult progenitor cells (mOct4− BM-MAPCs) in a mouse glioblastoma model, guided by multimodal in vivo imaging methods to identify therapeutic windows. Methods Magnetic resonance imaging (MRI) of animals, wherein 5 × 105 syngeneic enhanced green fluorescent protein-firefly luciferase-herpes simplex virus thymidine kinase (eGFP-fLuc-HSV-TK) expressing and superparamagnetic iron oxide nanoparticle labeled (1 % or 10 %) mOct4− BM-MAPCs were grafted in glioblastoma (GL261)-bearing animals, showed that labeled mOct4− BM-MAPCs were located in and in close proximity to the tumor. Subsequently, ganciclovir (GCV) treatment was commenced and the fate of both the MAPCs and the tumor were followed by multimodal imaging (MRI and bioluminescence imaging). Results In the majority of GCV-treated, but not phosphate-buffered saline-treated animals, a significant difference was found in mOct4− BM-MAPC viability and tumor size at the end of treatment. Noteworthy, in some phosphate-buffered saline-treated animals (33 %), a significant decrease in tumor size was seen compared to sham-operated animals, which could potentially also be caused by a synergistic effect of the immune-modulatory stem cells. Conclusions Suicide gene therapy using mOct4− BM-MAPCs as cellular carriers was effective in reducing the tumor size in the majority of the GCV-treated animals leading to a longer progression-free survival compared to sham-operated animals. This treatment could be followed and guided noninvasively in vivo by MRI and bioluminescence imaging. Noninvasive imaging is of particular interest for a rapid and efficient validation of stem cell-based therapeutic approaches for glioblastoma and hereby contributes to a better understanding and optimization of a promising therapeutic approach for glioblastoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cindy Leten
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Jesse Trekker
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Imec, Department of Life Science Technology, 3001, Leuven, Belgium.
| | - Tom Struys
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Tom Dresselaers
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene therapy, KU Leuven, 3000, Leuven, Belgium. .,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Ivo Lambrichts
- Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Annemie Van Der Linden
- BioImaging Laboratory, University of Antwerp, Campus Drie Eiken, 2610, Antwerpen, Belgium.
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
48
|
de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N, Auada AVV, Farias CF, Pasqualoto KFM, Rodrigues CP, Barbuto JA, Levy D, Bydlowski SP, de Sá-Junior PL, Travassos LR, Lebrun I. Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 2015; 68:113-9. [PMID: 25305549 DOI: 10.1016/j.peptides.2014.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Mastoparan is an α-helical and amphipathic tetradecapeptide obtained from the venom of the wasp Vespula lewisii. This peptide exhibits a wide variety of biological effects, including antimicrobial activity, increased histamine release from mast cells, induction of a potent mitochondrial permeability transition and tumor cell cytotoxicity. Here, the effects of mastoparan in malignant melanoma were studied using the murine model of B16F10-Nex2 cells. In vitro, mastoparan caused melanoma cell death by the mitochondrial apoptosis pathway, as evidenced by the Annexin V-FITC/PI assay, loss of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species, DNA degradation and cell death signaling. Most importantly, mastoparan reduced the growth of subcutaneous melanoma in syngeneic mice and increased their survival. The present results show that mastoparan induced caspase-dependent apoptosis in melanoma cells through the intrinsic mitochondrial pathway protecting the mice against tumor development.
Collapse
Affiliation(s)
| | - Carlos R Figueiredo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Adilson K Ferreira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Mariana H Massaoka
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Natalia Girola
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Aline V V Auada
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
| | - Camyla F Farias
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | | | - Cecília P Rodrigues
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - José A Barbuto
- Cell and Molecular Therapy Center NUCEL-NETCEM, University of Sao Paulo, Sao Paulo, Brazil
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, SP, Brazil
| | - Sérgio P Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, SP, Brazil
| | | | - Luiz R Travassos
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Ivo Lebrun
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
| |
Collapse
|
49
|
Yousefi F, Mousavi SF, Siadat SD, Aslani MM, Amani J, Rad HS, Fooladi AAI. Preparation and In Vitro Evaluation of Antitumor Activity of TGFαL3-SEB as a Ligand-Targeted Superantigen. Technol Cancer Res Treat 2015; 15:215-26. [DOI: 10.1177/1533034614568753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/19/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor-targeted superantigens (TTSs) have been used to treat a variety of tumors in preclinical studies. The TTS utilizes the powerful T-cell activation strategy by means of staphylococcal enterotoxins (SEs) as superantigens (Sags) to target tumor cells. Monoclonal antibodies and tumor-related ligands have been used as targeting molecules of Sag. In this study, we assessed the antitumor potency of tumor-targeted superantigen (TTS) strategy to design and produce fusion protein as a new antitumor candidate. The third loop (L3) of transforming growth factor α (TGF-α) was genetically conjugated to staphylococcal enterotoxin type B (TGFαL3-SEB), and its in vitro antitumor activity against murine breast cancer cells (A431 cell line) was evaluated. We designed and prepared TGFαL3-SEB chimeric protein and evaluated superantigenic activity, binding property to cancer cells, overexpression of epidermal growth factor receptor (EGFR), and in vitro antitumor activities. Cloning of tgfαl3-seb was confirmed by colony-polymerase chain reaction, enzymatic digestion, and sequencing. The recombinant TGFαL3-SEB fusion protein with molecular weight of 31 kDa was expressed and confirmed by anti-His Western-blot analysis. The TGFαL3-SEB fusion protein attached to A431 cell line with proper affinity and induced dose-dependent cytotoxicity against EGFR-expressing cancer cells in vitro. The TGFαL3-SEB chimeric protein exhibited potent in vitro antitumor activity. Our findings indicated that TGFαL3-SEB may be a promising anticancer candidate in cancer immunotherapy, and further studies are required to explore its potential in vivo therapeutic applications.
Collapse
Affiliation(s)
- Forough Yousefi
- Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian Rad
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Sun W, Lu Y, Gu Z. Advances in Anticancer Protein Delivery Using Micro-/ Nanoparticles. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2014; 31:1204-1222. [PMID: 27642232 PMCID: PMC5026193 DOI: 10.1002/ppsc.201400140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Indexed: 04/14/2023]
Abstract
Proteins exhibiting anticancer activities, especially those capable of discriminately killing cancer cells, have attracted increasing interest in developing protein-based anticancer therapeutics. This progress report surveys recent advances in delivering anticancer proteins directly to tumor tissue for inducing apoptosis/necrosis or indirectly to antigen presenting cells for provoking immune responses. Protein delivery carriers such as inorganic particles, lipid particles, polymeric particles, DNA/protein based biomacromolecular particles as well as cell based carriers are reviewed with comments on their advantages and limitations. Future challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|