1
|
Lin J, Liao Y, Yang S, Jin T, Yu B, Zhao K, Sai Y, Lin C, Song Y, Ma H, Wang Z. Identification a novel Ganoderma FIP gene from Ganoderma capense and its functional expression in Pichia pastoris. World J Microbiol Biotechnol 2024; 40:69. [PMID: 38225505 DOI: 10.1007/s11274-023-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024]
Abstract
Ganoderma capense is a precious medicinal fungus in China. In this study, a novel fungal immunomodulatory protein gene, named as FIP-gca, was cloned from G. capense by homologous cloning. Sequencing analysis indicated that FIP-gca was composed of 336 bp, which encoded a polypeptide of 110 amino acids. Protein sequence blasting and phylogenetic analysis showed that FIP-gca shared homology with other Ganoderma FIPs. FIP-gca was effectively expressed in Pichia pastoris GS115 at an expression level of 166.8 mg/L and purified using HisTrap™ fast-flow prepack columns. The immunomodulation capacity of rFIP-gca was demonstrated by that rFIP-gca could obviously stimulate cell proliferation and increase IL-2 secretion of murine spleen lymphocytes. Besides, antitumor activity of rFIP-gca towards human stomach cancer AGS cell line was evaluated in vitro. Cell wound scratch assay proved that rFIP-gca could inhibit migration of AGS cells. And flow cytometry assay revealed that rFIP-gca could significantly induce apoptosis of AGS cells. rFIP-gca was able to induce 18.12% and 22.29% cell apoptosis at 0.3 μM and 0.6 μM, respectively. Conclusively, the novel FIP-gca gene from G. capense has been functionally expressed in Pichia and rFIP-gca exhibited ideal immunomodulation and anti-tumour activities, which implies its potential application and study in future.
Collapse
Affiliation(s)
- Jingwei Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yating Liao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Sijia Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Taicheng Jin
- School of Life Science, Jilin Normal University, Siping, 136000, China
| | - Boning Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Kai Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yixiao Sai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Cheng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yanhua Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Hui Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China.
| | - Zhanyong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China.
| |
Collapse
|
2
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
3
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J Fungi (Basel) 2020; 6:E269. [PMID: 33171663 PMCID: PMC7712035 DOI: 10.3390/jof6040269] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Zhekun Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Ejike UC, Chan CJ, Okechukwu PN, Lim RLH. New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes. Crit Rev Biotechnol 2020; 40:1172-1190. [PMID: 32854547 DOI: 10.1080/07388551.2020.1808581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
Collapse
Affiliation(s)
| | - Chong Joo Chan
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Kuala Lumpur, Malaysia
| | | | - Renee Lay Hong Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Liu Y, Bastiaan-Net S, Wichers HJ. Current Understanding of the Structure and Function of Fungal Immunomodulatory Proteins. Front Nutr 2020; 7:132. [PMID: 33015115 PMCID: PMC7461872 DOI: 10.3389/fnut.2020.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fungal immunomodulatory proteins (FIPs) are a group of proteins found in fungi, which are extensively studied for their immunomodulatory activity. Currently, more than 38 types of FIPs have been described. Based on their conserved structure and protein identity, FIPs can be classified into five subgroups: Fve-type FIPs (Pfam PF09259), Cerato-type FIPs (Pfam PF07249), PCP-like FIPs, TFP-like FIPs, and unclassified FIPs. Among the five subgroups, Fve-type FIPs are the most studied for their hemagglutinating, immunomodulating, and anti-cancer properties. In general, these small proteins consist of 110–125 amino acids, with a molecular weight of ~13 kDa. The other four subgroups are relatively less studied, but also show a noticeable influence on immune cells. In this review, we summarized the protein modifications, 3-dimensional structures and bioactivities of all types of FIPs. Moreover, structure-function relationship of FIPs has been discussed, including relationship between carbohydrate binding module and hemagglutination, correlation of oligomerization and cytokine induction, relevance of glycosylation and lymphocyte activation. This summary and discussion may help gain comprehensive understanding of FIPs' working mechanisms and scope future studies.
Collapse
Affiliation(s)
- Yusi Liu
- Laboratory of Food Enzyme Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China.,Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
7
|
Lian D, Zhong X, Zheng Y, Zhou S, Gu L, Liu X. A New Sterol From Sporoderm-Broken Ganoderma sinense Spores and Its Anticancer Activity. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19895123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new sterol, ganodermaside E (1), and 4 known sterols, (22 E,24 R)-3β,5α-dihydroxyergosta-7,22-dien-6-one (2), (22 E,24 R)-3β,5α,9α-trihydroxyergosta-7,22-diene-6-one (3), (22 E,24 R)-ergosta-7,9(11),22-triene-3β,5α,6β-triol (4), and (22 E,24 R)-ergosta-7,22-diene-3β,5α,6α-triol (5), were isolated for the first time from the sporoderm-broken spores of Ganoderm sinense Zhao, Xu et Zhang. Their structures were determined by spectroscopic techniques such as nuclear magnetic resonance spectroscopy and mass spectrometry. Furthermore, all the compounds were evaluated for their in vitro cytotoxicity and migration inhibition on human non-small-lung cancer A549 cells. Compound 1 exhibited cytotoxicity with a half-maximal inhibitory concentration value of 21.12 ± 1.46 µM. Compound 5 exhibited the strongest and most significant antimetastatic activity at concentrations of 100 and 200 µM.
Collapse
Affiliation(s)
- Danhong Lian
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhong
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yimei Zheng
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sha Zhou
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Gu
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Liu
- Food and Health Engineering Research Centre of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Mao PW, Li LD, Wang YL, Bai XH, Zhou XW. Optimization of the fermentation parameters for the production of Ganoderma lucidum immunomodulatory protein by Pichia pastoris. Prep Biochem Biotechnol 2019; 50:357-364. [PMID: 31846385 DOI: 10.1080/10826068.2019.1703194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In order to obtain a better fermentation parameter for the production of recombinant Ganoderma lucidum immunomodulatory protein (rFIP-glu), an engineered Pichia pastoris GS115 was investigated on the fermentation time, temperature, methanol concentration and initial pH of media, while immunomodulatory activities of the rFIP-glu was confirmed. L9(33) orthogonal experiment were firstly employed to optimize various fermentation parameters in the shake-flask level. The optimized fermentation parameters were subsequently verified in a 5 L fermenter. Biological activities including cell viability and tumor necrosis factor-alpha (TNF-α) mRNA of the rFIP-glu were evaluated on murine macrophage RAW264.7 cells. The results showed that the yield of rFIP-glu was up to 368.71 μg/ml in the shake-flask, and 613.47 μg/ml in the 5 L fermenter, when the Pichia pastoris was incubated in basic media with the methanol concentration 1.0% and initial pH 6.5, and with constant shaking at 280 rpm for 4 days at 26 °C. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity against RAW264.7 cells, and possessed the ability to induce TNF-α mRNA expression in macrophage RAW264.7 cells. In conclusion, engineered P. pastoris showed a good fermentation property under the optimum fermentation parameters. It could be a candidate industrial strain for further study.
Collapse
Affiliation(s)
- Pei-Wen Mao
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liu-Dingji Li
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiao-Hui Bai
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Shao KD, Mao PW, Li QZ, Li LDJ, Wang YL, Zhou XW. Characterization of a novel fungal immunomodulatory protein, FIP-SJ75 shuffled from Ganoderma lucidum, Flammulina velutipes and Volvariella volvacea. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1686467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ke-Di Shao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Pei-Wen Mao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qi-Zhang Li
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liu-Ding-Ji Li
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yu-liang Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xuan-Wei Zhou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Li LD, Mao PW, Shao KD, Bai XH, Zhou XW. Ganoderma proteins and their potential applications in cosmetics. Appl Microbiol Biotechnol 2019; 103:9239-9250. [PMID: 31659419 DOI: 10.1007/s00253-019-10171-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Ganoderma have been regarded as a traditional source of natural bioactive compounds for centuries and have recently been exploited for potential components in the cosmetics industry. Besides Ganoderma polysaccharides and triterpenes, multiple proteins have been found in Ganoderma. With the in-depth study of these proteins, various pharmacological functions of Ganoderma have become important in the discovery and development of new products. In the review, we summarized and discussed the kinds and characteristics of Ganoderma proteins, especially on fungal immunomodulatory proteins (FIPs) which can be potentially developed into cosmeceuticals or nutricosmetics and are a suitable target for production using established biotechnological methods. Furthermore, we discuss their pharmacological activities of the proteins with a focus on their pharmacological functions related to cosmetics, such as antioxidant activity, inhibition of melanin, antibacterial activity, and regulation of inflammatory mediators. Numerous other questions also are addressed before the proteins can be widely accepted and used as cosmetic additives.
Collapse
Affiliation(s)
- Liu-Dingji Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Pei-Wen Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ke-Di Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao-Hui Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Xuan-Wei Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
11
|
Wang JJ, Wang Y, Hou L, Xin F, Fan B, Lu C, Zhang L, Wang F, Li S. Immunomodulatory Protein from Nectria haematococca Induces Apoptosis in Lung Cancer Cells via the P53 Pathway. Int J Mol Sci 2019; 20:ijms20215348. [PMID: 31661772 PMCID: PMC6862031 DOI: 10.3390/ijms20215348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
Our previous research has shown that a fungal immunomodulatory protein from Nectria haematococca (FIP-nha) possesses a wide spectrum of anti-tumor activities, and FIP-nha induced A549 apoptosis by negatively regulating the PI3K/Akt signaling pathway based on comparative quantitative proteomics. This study further confirmed that the anti-lung cancer activity of FIP-nha was significantly stronger than that of the reported LZ-8 and FIP-fve. Subsequently, 1H NMR-based metabolomics was applied to comprehensively investigate the underlying mechanism, and a clear separation of FIP-nha-treated and untreated groups was achieved using pattern recognition analysis. Four potential pathways associated with the anti-tumor effect of FIP-nha on A549 cells were identified, and these were mainly involved in glycolysis, taurine and hypotaurine metabolism, fructose and mannose metabolism, and glycerolipid metabolism. Metabolic pathway analysis demonstrated that FIP-nha could induce A549 cell apoptosis partly by regulating the p53 inhibition pathway, which then disrupted the Warburg effect, as well as through other metabolic pathways. Using RT-PCR analysis, FIP-nha-induced apoptosis was confirmed to occur through upregulation of p53 expression. This work highlights the possible use of FIP-nha as a therapeutic adjuvant for lung cancer treatment.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Lijing Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
12
|
Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov Today 2019; 24:307-314. [DOI: 10.1016/j.drudis.2018.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022]
|
13
|
Fungal Immunomodulatory Protein from Nectria haematococca Suppresses Growth of Human Lung Adenocarcinoma by Inhibiting the PI3K/Akt Pathway. Int J Mol Sci 2018; 19:ijms19113429. [PMID: 30388826 PMCID: PMC6274709 DOI: 10.3390/ijms19113429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is a common disease that is associated with poor prognosis. Fungal immunomodulatory protein from Nectria haematococca (FIP-nha) has potential as a lung cancer therapeutic; as such, illuminating its anti-tumor mechanism is expected to facilitate novel treatment options. Here, we showed that FIP-nha affects lung adenocarcinoma growth ex vivo and in vivo. Comparative quantitative proteomics showed that FIP-nha negatively regulates PI3K/Akt signaling and induces cell cycle arrest, autophagy, and apoptosis. We further demonstrated that FIP-nha suppresses Akt phosphorylation, leading to upregulation of p21 and p27 and downregulation of cyclin B1, cyclin D1, CDK2, and CDK4 expression, ultimately resulting in G1/S and G2/M cell cycle arrest. Meanwhile, FIP-nha-induced PI3K/Akt downregulation promotes A549 apoptosis by increasing the expression ratio of Bax/Bcl-2 and c-PARP and autophagy by decreasing the phosphorylation of mTOR. Thus, we comprehensively revealed the anti-tumor mechanism of FIP-nha, which inhibits tumor growth by modulating PI3K/Akt-regulated cell cycle arrest, autophagy, and apoptosis, and provided the basis for further application of fungal immunomodulatory proteins, especially FIP-nha.
Collapse
|
14
|
Qiao M, Tu M, Wang Z, Mao F, Chen H, Qin L, Du M. Identification and Antithrombotic Activity of Peptides from Blue Mussel (Mytilus edulis) Protein. Int J Mol Sci 2018; 19:E138. [PMID: 29300301 PMCID: PMC5796087 DOI: 10.3390/ijms19010138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
The blue mussel (Mytilus edulis) reportedly contains many bioactive components of nutritional value. Water-, salt- and acid-soluble M. edulis protein fractions were obtained and the proteins were trypsinized. The resultant peptides were analyzed by ultra-performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). 387 unique peptides were identified that matched 81 precursor proteins. Molecular mass distributions of the proteins and peptides were analyzed by sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE). The differences between the three protein samples were studied by Venn diagram of peptide and protein compositions. Toxicity, allergic and antithrombotic activity of peptides was predicted using database website and molecular docking respectively. The antithrombotic activity of enzymatic hydrolysate from water-, salt- and acid-soluble M. edulis protein were 40.17%, 85.74%, 82.00% at 5 mg/mL, respectively. Active mechanism of antithrombotic peptide (ELEDSLDSER) was also research about amino acid binding sites and interaction, simultaneously.
Collapse
Affiliation(s)
- Meiling Qiao
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Maolin Tu
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhenyu Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Fengjiao Mao
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Hui Chen
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
15
|
Characterization of a new fungal immunomodulatory protein, FIP-dsq2 from Dichomitus squalens. J Biotechnol 2017; 246:45-51. [PMID: 28202377 DOI: 10.1016/j.jbiotec.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/15/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
Abstract
FIP-dsq2, a new immunomodulatory protein, was identified in Basidiomycota Dichomitus squalens by gene mining. FIP-dsq2 contained 111 amino acids with a molecular weight of 12.51kDa. FIP-dsq2 had a homology range of 51-65% to the reported FIPs. The predicted 3-dimensional model had more similar identical folding patterns in LZ-8 than for FIP-fve. Evolutionary analysis indicated substantial phylogenetic differences were existed with the other FIPs. Overexpression of a 14.07kDa soluble recombinant FIP-dsq2 (rFIP-dsq2) was achieved in Rosetta (pGEX-6P-1) and the purified recombinant protein was homodimer verified by gel filtration chromatography analysis. Antitumour ability of rFIP-dsq2 to human lung adenocarcinoma A549 cells was between LZ-8 and FIP-fve. The cytotoxic effect of rFIP-dsq2 in A549 cancer cells was dose-dependent and the half-maximal inhibitory concentration (IC50) was 15.08μg/mL. Furthermore, rFIP-dsq2 at 8μg/mL could significantly induce apoptosis and interrupt migration in A549 cells. In addition, the antitumour-mechanism exploration suggested that rFIP-dsq2 inhibited A549 proliferation uniquely via apoptotic cell death pathway. The results stated that rFIP-dsq2 was a promising candidate for use in future lung cancer therapy.
Collapse
|
16
|
Li S, Jiang Z, Xu W, Xie Y, Zhao L, Tang X, Wang F, Xin F. FIP-sch2, a new fungal immunomodulatory protein from Stachybotrys chlorohalonata, suppresses proliferation and migration in lung cancer cells. Appl Microbiol Biotechnol 2017; 101:3227-3235. [PMID: 28078399 DOI: 10.1007/s00253-016-8030-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/09/2023]
Abstract
Fungal immunomodulatory protein (FIP)-sch2, an immunomodulatory protein identified in the ascomycete Stachybotrys chlorohalonata by a sequence similarity search, is a novel member of the FIP family. FIP-sch2 shares high sequence identity, structure, and evolutionary conservation with previously reported FIPs. It was satisfactorily expressed in Escherichia coli with a glutathione S-transferase (GST) tag and purified by GST-affinity magnetic beads. To characterize the direct antitumor effects, human lung adenocarcinoma A549 cells were treated with different concentrations of recombinant FIP (rFIP)-sch2 in vitro, and the results showed that rFIP-sch2 could reduce cell viability dose-dependently with a half-maximal inhibitory concentration (IC50) of 9.48 μg/mL. Furthermore, rFIP-sch2 at 8 μg/mL could significantly induce apoptosis and interrupt migration in A549 cells. Notably, the antitumor effect of rFIP-sch2 was equivalent to that of rLZ-8 but was obviously increased compared to rFIP-fve. In addition, the exploration of the antitumor mechanism suggested that rFIP-sch2 induced lung cancer cell death by activating apoptosis and inhibiting migration. Our results indicated that rFIP-sch2 was a promising candidate for use in future cancer therapy.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhonghao Jiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenyi Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingying Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Leiming Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuanming Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
Li S, Zhao L, Xu W, Jiang Z, Kang J, Wang F, Xin F. Identification and Characterisation of a Novel Protein FIP-sch3 from Stachybotrys chartarum. PLoS One 2016; 11:e0168436. [PMID: 27997578 PMCID: PMC5173029 DOI: 10.1371/journal.pone.0168436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, a novel FIP named FIP-sch3 has been identified and characterised. FIP-sch3 was identified in the ascomycete Stachybotrys chartarum, making it the second FIP to be identified outside the order of Basidiomycota. Recombinant FIP-sch3 (rFIP-shc3) was produced in Escherichia coli and purified using GST-affinity magnetic beads. The bioactive characteristics of FIP-sch3 were compared to those of well-known FIPs LZ-8 from Ganoderma lucidum and FIP-fve from Flammulina velutipes, which were produced and purified using the same method. The purified rFIP-sch3 exhibited a broad spectrum of anti-tumour activity in several types of tumour cells but had no cytotoxicity in normal human embryonic kidney 293 cells. Assays that were implemented to study these properties indicated that rFIP-sch3 significantly suppressed cell proliferation, induced apoptosis and inhibited cell migration in human lung adenocarcinoma A549 cells. The anti-tumour effects of rFIP-sch3 in A549 cells were comparable to those of rLZ-8, but they were significantly greater than those of rFIP-fve. Molecular assays that were built on real-time PCR further revealed potential mechanisms related to apoptosis and migration and that underlie phenotypic effects. These results indicate that FIP-shc3 has a unique anti-tumour bioactive profile, as do other FIPs, which provide a foundation for further studies on anti-tumour mechanisms. Importantly, this study also had convenient access to FIP-sch3 with potential human therapeutic applications.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiming Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyi Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghao Jiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (FW); (FX)
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (FW); (FX)
| |
Collapse
|
18
|
Xu H, Kong YY, Chen X, Guo MY, Bai XH, Lu YJ, Li W, Zhou XW. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2690-2698. [PMID: 26996414 DOI: 10.1021/acs.jafc.6b00539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Ying-Yu Kong
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Xin Chen
- Department of Immunology, University of Connecticut Health Center , Farmington, Connecticut 06032, United States
| | - Meng-Yuan Guo
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Xiao-Hui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yu-Jia Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Xuan-Wei Zhou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| |
Collapse
|