1
|
Xue M, Qu Z, Moretti A, Logrieco AF, Chu H, Zhang Q, Sun C, Ren X, Cui L, Chen Q, An Y, Li C, Zhong H, Cao Z, Wang F, Sun Y, Wang L, Hou J, Zhang C, Yang M, Ding Y, Yao Y, Li P, Zhu Y. Aspergillus Mycotoxins: The Major Food Contaminants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412757. [PMID: 39921319 PMCID: PMC11884562 DOI: 10.1002/advs.202412757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Mycotoxins, a category of fungal secondary metabolites, frequently contaminate food products and pose a severe threat to human health. Aspergillus, a genus of fungi, is capable of producing mycotoxins, with aflatoxins (AFs) and ochratoxins being its principal types. Aspergillus mycotoxins can contaminate a wide range of crops and their derivatives, such as maize, wheat, rice, minor cereals, and peanuts, thereby threatening food and feed safety. In the paper, the related biosynthesis genes and multifaceted biosynthesis pathways of these mycotoxins are first discussed in detail, and elucidated several global regulators, including growth conditions, oxidative stress, and cell signal. Furthermore, how global shifts in temperature and water availability, driven by climate change (including rising temperatures, increased heavy rainfall frequency, prolonged droughts, and elevated carbon dioxide levels), are key determinants of Aspergillus proliferation and mycotoxin production are explored. Finally, to safeguard animal and human health from the detrimental impacts of Aspergillus mycotoxins, the effective and convenient analytical techniques and management strategies for the detection and prevention of contamination are analyzed. Overall, this review provides effective detection techniques and promising solutions to the global contamination of food with Aspergillus mycotoxins, which is of great significance to ensuring food security and protecting people's lives and health.
Collapse
Affiliation(s)
- Mengyao Xue
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Antonio Moretti
- Xianghu LaboratoryZhejiang Provincial Laboratory of AgricultureHangzhou311231China
| | - Antonio F. Logrieco
- Institute of Sciences of Food ProductionNational Research CouncilBari70126Italy
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable AgricultureInstitute of Soil ScienceChinese Academy of ScienceNanjingChina
| | - Qi Zhang
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
| | - Changpo Sun
- Academy National Food and Strategic Reserves AdministrationBeijing100037China
| | - Xianfeng Ren
- Institute of Agricultural Quality Standards and Testing TechnologyShandong Academy of Agricultural SciencesJinan250100China
| | - Li Cui
- Institute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| | - Qinglin Chen
- Institute of Environmental Research at Greater Bay AreaGuangzhou UniversityGuangzhou510006China
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay AreaGuangzhou UniversityGuangzhou510006China
| | - Huan Zhong
- School of EnvironmentNanjing UniversityNanjing210023China
| | - Zhiyan Cao
- College of Plant ProtectionHebei Agricultural UniversityBaoding071000China
| | - Feng Wang
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Yuebing Sun
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Lili Wang
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Chenchen Zhang
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Mengmeng Yang
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Yiming Ding
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjin300191China
| | - Peiwu Li
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
| | - Yong‐Guan Zhu
- Research Center for Eco‐Environmental Sciences Chinese Academy of SciencesBeijing100085China
| |
Collapse
|
2
|
Wyman EM, Grayburn WS, Gilbert MK, Lebar MD, Lohmar JM, Cary JW, Sauters TJC, Rokas A, Calvo AM. An environmental isolate of Pseudomonas, 20EI1, reduces Aspergillus flavus growth in an iron-dependent manner and alters secondary metabolism. Front Microbiol 2025; 15:1514950. [PMID: 39902287 PMCID: PMC11788345 DOI: 10.3389/fmicb.2024.1514950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Aspergillus flavus is an opportunistic pathogenic fungus that infects oilseed crops worldwide. When colonizing plants, it produces mycotoxins, including carcinogenic compounds such as aflatoxins. Mycotoxin contamination results in an important economic and health impact. The design of new strategies to control A. flavus colonization and mycotoxin contamination is paramount. Methods The biocontrol potential of a promising new isolate of Pseudomonas spp., 20EI1 against A. flavus was assessed using bioassays and microscopy. To further elucidate the nature of this bacterial-fungal interaction, we also performed chemical and transcriptomics analyses. Results In the present study, Pseudomonas spp., 20EI1 was able to reduce the growth of A. flavus. Furthermore, we determined that this growth inhibition is iron-dependent. In addition, Pseudomonas 20EI1 reduced or blocked the production of aflatoxin, as well as cyclopiazonic acid and kojic acid. Expression of iron-related genes was altered in the presence of the bacteria and genes involved in the production of aflatoxin were down-regulated. Iron supplementation partially reestablished their expression. Expression of other secondary metabolite (SM) genes was also reduced by the bacteria, including genes of clusters involved in cyclopiazonic acid, kojic acid and imizoquin biosynthesis, while genes of the cluster corresponding to aspergillicin, a siderophore, were upregulated. Interestingly, the global SM regulatory gene mtfA was significantly upregulated by 20EI1, which could have contributed to the observed alterations in SM. Discussion Our results suggest that Pseudomonas 20EI1 is a promising biocontrol against A. flavus, and provide further insight into this iron-dependent bacterial-fungal interaction affecting the expression of numerous genes, among them those involved in SM.
Collapse
Affiliation(s)
- Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - W. Scott Grayburn
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Matthew K. Gilbert
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Thomas J. C. Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
3
|
Wang Q, Zhang K, Yu L, Lin Q, Zhou W. Volatile Organic Compounds Produced by Bacillus sp. Strain R2 Inhibit Aspergillus flavus Growth In Vitro and in Unhulled Rice. Foods 2024; 13:2898. [PMID: 39335827 PMCID: PMC11431171 DOI: 10.3390/foods13182898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Volatile organic compounds (VOCs) produced by Bacillus species exhibit biocontrol activity against fungal pathogens of fruits and vegetables. However, research on the effect of VOCs on Aspergillus flavus in stored grains is limited. This study aimed to investigate the effects of VOCs extracted from the strain R2, which was isolated from unhulled rice and identified as Bacillus paramycoides on A. flavus in vitro and unhulled rice. R2 VOCs effectively inhibited conidial germination and the hyphal growth of A. flavus in vitro. Moreover, R2 VOCs reduced the fungal population, aflatoxin B1 (AFB1) levels, and free fatty acid (FFA) value by 90.8%, 67%, and 38.7%, respectively, in unhulled rice. Eighteen R2 VOCs were identified using headspace solid-phase micro-extraction gas chromatography-mass spectrometry, and the individual activity of the VOCs against A. flavus was tested in vitro. Benzaldehyde (Ben) and 3,7-dimethyl-1-octanol (Dmo) showed strong inhibitory activities against A. flavus on PDA plates, with inhibition rates of 100% and 91.2%, respectively, at a concentration of 20 μL/dish. Ben at the concentration of 0.09 mg/mL, Dmo at the concentration of 0.07 mg/mL, or a mixture of both at halved concentrations could reduce the fungal population, AFB1 levels, and FFA content in unhulled rice. Our findings suggest that R2 VOCs are good alternatives to traditional chemical fumigants for suppressing A. flavus in stored grains. However, further research is necessary to establish the optimal fumigation concentration of these two components in unhulled rice. The impact of their residues on grain quality should be explored through sensory evaluation and nutritional analysis, and their safety to the environment and human body should be evaluated through safety assessment.
Collapse
Affiliation(s)
- Qingyun Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| | - Kaige Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
| | - Lu Yu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| |
Collapse
|
4
|
Papp DA, Kocsubé S, Farkas Z, Szekeres A, Vágvölgyi C, Hamari Z, Varga M. Aflatoxin B1 Control by Various Pseudomonas Isolates. Toxins (Basel) 2024; 16:367. [PMID: 39195777 PMCID: PMC11358996 DOI: 10.3390/toxins16080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The climate-change-coupled fungal burden in crop management and the need to reduce chemical pesticide usage highlight the importance of finding sustainable ways to control Aspergillus flavus. This study examines the effectiveness of 50 Pseudomonas isolates obtained from corn rhizospheres against A. flavus in both solid and liquid co-cultures. The presence and quantity of aflatoxin B1 (AFB1) and AFB1-related compounds were determined using high-performance liquid chromatography-high resolution mass spectrometry analysis. Various enzymatic- or non-enzymatic mechanisms are proposed to interpret the decrease in AFB1 production, accompanied by the accumulation of biosynthetic intermediates (11-hydroxy-O-methylsterigmatocystin, aspertoxin, 11-hydroxyaspertoxin) or degradation products (the compounds C16H10O6, C16H14O5, C18H16O7, and C19H16O8). Our finding implies the upregulation or enhanced activity of fungal oxidoreductases and laccases in response to bacterial bioactive compound(s). Furthermore, non-enzymatic reactions resulted in the formation of additional degradation products due to acid accumulation in the fermented broth. Three isolates completely inhibited AFB1 or any AFB1-related compounds without significantly affecting fungal growth. These bacterial isolates supposedly block the entire pathway for AFB1 production in the fungus during interaction. Apart from identifying effective Pseudomonas isolates as potential biocontrol agents, this work lays the foundation for exploring new bacterial bioactive compounds.
Collapse
Affiliation(s)
- Dóra Anna Papp
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - András Szekeres
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsuzsanna Hamari
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Mónika Varga
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Abbas A, Prajapati RK, Aalto-Setälä E, Baykov AA, Malinen AM. Aflatoxin biosynthesis regulators AflR and AflS: DNA binding affinity, stoichiometry, and kinetics. Biochem J 2024; 481:805-821. [PMID: 38829003 DOI: 10.1042/bcj20240084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.
Collapse
Affiliation(s)
- Asmaa Abbas
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Emil Aalto-Setälä
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Han Z, Migheli Q, Kong Q. Fusion Expression of Peptides with AflR Binuclear Zinc Finger Motif and Their Enhanced Inhibition of Aspergillus flavus: A Study of Engineered Antimicrobial Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13360-13370. [PMID: 38830379 DOI: 10.1021/acs.jafc.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study reports a peptide design model for engineering fusion-expressed antimicrobial peptides (AMPs) with the AflR dinuclear zinc finger motif to improve the defense against aflatoxins and Aspergillus flavus. The study identified AflR, a Zn2Cys6-type sequence-specific DNA-binding protein, as a key player in the regulation of aflatoxin biosynthesis. By integrating the AflR motif into AMPs, we demonstrate that these novel fusion peptides significantly lower the minimum inhibitory concentrations (MICs) and reduce aflatoxin B1 and B2 levels, outperforming traditional AMPs. Comprehensive analysis, including bioinformatics and structural determination, elucidates the enhanced structure-function relationship underlying their efficacy. Furthermore, the study reveals the possibility that the fusion peptides have the potential to bind to the DNA binding sites of transcriptional regulators, binding DNA sites of key transcriptional regulators, thereby inhibiting genes critical for aflatoxin production. This research not only deepens our understanding of aflatoxin inhibition mechanisms but also presents a promising avenue for developing advanced antifungal agents, which are essential for global food safety and crop protection.
Collapse
Affiliation(s)
- Zhuoyu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Quirico Migheli
- Dipartimento di Agraria and Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| |
Collapse
|
7
|
Al-Zaban MI. Impacts of Temperature and Water Activity Interactions on Growth, Aflatoxin B1 Production and Expression of Major Biosynthetic Genes of AFB1 in Aspergillus flavus Isolates. Microorganisms 2023; 11:1199. [PMID: 37317174 DOI: 10.3390/microorganisms11051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 06/16/2023] Open
Abstract
The contamination of peanuts, with Aspergillus flavus and subsequent aflatoxins (AFs) is considered to be one of the most serious, safety problems in the world. Water activity (aw) and temperature are limiting, factors for fungal growth and aflatoxin production during storage. The objectives of this study were to integrate data on the effects of temperature (34, 37, and 42 °C) and water activity (aw; 0.85, 0.90, and 0.95) on growth rate aflatoxin B1 (AFB1) production and up- or-downregulation of the molecular expression of biosynthetic AFB1 genes divided into three types based on their A. flavus isolate composition and AFB1 capacity in vitro: A. flavus KSU114 (high producer), A. flavus KSU114 (low producer), and A. flavus KSU121 (non-producer). The A. flavus isolates were shown to be resilient in terms of growth on yeast extract sucrose agar media when exposed to temperature and water activity as pivotal environmental factors. The optimal conditions for the fungal growth of three isolates were a temperature of 34 °C and water activity of 0.95 aw; there was very slow fungal growth at the highest temperature of 42 °C, with different aw values causing inhibited fungal growth. The AFB1 production for the three isolates followed the same pattern with one exception: A. flavus KSU114 failed to produce any AFB1 at 42 °C with different aw values. All tested genes of A. flavus were significantly up- or downregulated under three levels of interaction between temperature and aw. The late structural genes of the pathway were significantly upregulated at 34 °C under aw 0.95, although aflR, aflS and most of the early structural genes were upregulated. Compared to 34 °C with an aw value of 0.95, most of the expressed genes were significantly downregulated at 37 and 42 °C with aw values of 0.85 and 0.90. Additionally, two regulatory genes were downregulated under the same conditions. The expression level of laeA was also completely associated with AFB1 production, while the expression level of brlA was linked to A. flavus colonization. This information is required to forecast the actual effects of climate change on A. flavus. The findings can be applied to improve specific food technology processes and create prevention strategies to limit the concentrations of potential carcinogenic substances in peanuts and their derivatives.
Collapse
Affiliation(s)
- Mayasar I Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Yuan S, Wu Y, Jin J, Tong S, Zhang L, Cai Y. Biocontrol Capabilities of Bacillus subtilis E11 against Aspergillus flavus In Vitro and for Dried Red Chili ( Capsicum annuum L.). Toxins (Basel) 2023; 15:toxins15050308. [PMID: 37235343 DOI: 10.3390/toxins15050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
As a condiment with extensive nutritional value, chili is easy to be contaminated by Aspergillus flavus (A. flavus) during field, transportation, and storage. This study aimed to solve the contamination of dried red chili caused by A. flavus by inhibiting the growth of A. flavus and detoxifying aflatoxin B1 (AFB1). In this study, Bacillus subtilis E11 (B. subtilis) screened from 63 candidate antagonistic bacteria exhibited the strongest antifungal ability, which could not only inhibit 64.27% of A. flavus but could also remove 81.34% of AFB1 at 24 h. Notably, scanning electron microscopy (SEM) showed that B. subtilis E11 cells could resist a higher concentration of AFB1, and the fermentation supernatant of B. subtilis E11 could deform the mycelia of A. flavus. After 10 days of coculture with B. subtilis E11 on dried red chili inoculated with A. flavus, the mycelia of A. flavus were almost completely inhibited, and the yield of AFB1 was significantly reduced. Our study first concentrated on the use of B. subtilis as a biocontrol agent for dried red chili, which could not only enrich the resources of microbial strains for controlling A. flavus but also could provide theoretical guidance to prolong the shelf life of dried red chili.
Collapse
Affiliation(s)
- Shenglan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yafei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Hu J, Dong B, Wang D, Meng H, Li X, Zhou H. Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites. Arch Microbiol 2023; 205:8. [PMID: 36454319 PMCID: PMC9715469 DOI: 10.1007/s00203-022-03351-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
We investigated the biocontrol mechanism of Bacillus cereus CF4-51 to find powerful microbes that effectively control Sclerotinia sclerotiorum. To assess its inhibitory effect on fungal growth, the plant pathogen (S. sclerotiorum) was co-cultured with Bacillus cereus. Scanning electron microscope (SEM) was used to study the morphology of S. sclerotiorum treated with CF4-51 biofumigant. The expression of sclerotium formation-related genes was analyzed by qRT-PCR. We performed whole genome sequencing of CF4-51 by PacBio Sequel platform. Lipopeptides were extracted from strain CF4-51 according to the method of hydrochloric acid precipitation and methanol dissolution. The volatiles CF4-51 were identified using gas chromatography-mass spectrometry (GC-MS). We found that the volatile organic compounds (VOCs) released by CF4-51 damaged the S. sclerotiorum hyphae and inhibited the formation of sclerotia. The qRT-PCR data revealed the down-regulated expression of the genes involved in sclerotial formation. Moreover, we analyzed the B. cereus CF4-51 genome and metabolites. The genome consisted of 5.35 Mb, with a GC content of 35.74%. An examination of the genome revealed the presence of several gene clusters for the biosynthesis of antibiotics, siderophores, and various other bioactive compounds, including those belonging to the NRPS-like, LAP, RIPP-like, NRPS, betalactone, CDPS, terpene, ladderane, ranthipeptide, and lanthipeptide (class II) categories. A gas chromatography-tandem mass spectrometry analysis identified 45 VOCs produced by strain CF4-51. Among these, technical grade formulations of five were chosen for further study: 2-Pentadecanone, 6,10,14-trimethyl-,1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, Dibutyl phthalate, Cyclododecane, Heptadecane. the five major constituents play important roles in the antifungal activity of the VOCs CF4-51 on the growth of S. sclerotiorum. The secondary metabolites produced by strain CF4-51are critical for the inhibition of S. sclerotiorum hyphal growth and sclerotial formation.
Collapse
Affiliation(s)
- Jinghan Hu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
| | - Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Huanwen Meng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| | - Xiaojuan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010020 Inner Mongolia China
- Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot, 010020 Inner Mongolia China
| |
Collapse
|
11
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
12
|
Ahmad MM, Qamar F, Saifi M, Abdin MZ. Natural inhibitors: A sustainable way to combat aflatoxins. Front Microbiol 2022; 13:993834. [PMID: 36569081 PMCID: PMC9773886 DOI: 10.3389/fmicb.2022.993834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Among a few hundred mycotoxins, aflatoxins had always posed a major threat to the world. Apart from A. flavus, A. parasiticus, and A. nomius of Aspergillus genus, which are most toxin-producing strains, several fungal bodies including Fusarium, Penicillium, and Alternaria that can biosynthesis aflatoxins. Basically, there are four different types of aflatoxins (Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2)) are produced as secondary metabolites. There are certainly other types of aflatoxins found but they are the by-products of these toxins. The fungal agents generally infect the food crops during harvesting, storing, and/or transporting; making a heavy post-harvest as well as economic loss in both developed and developing countries. And while ingesting the crop products, these toxins get into the dietary system causing aflatoxicosis, liver cirrhosis, etc. Therefore, it is imperative to search for certain ways to control the spread of infections and/or production of these toxins which may also not harm the crop harvest. In this review, we are going to discuss some sustainable methods that can effectively control the spread of infection and inhibit the biosynthesis of aflatoxins.
Collapse
Affiliation(s)
- Malik M. Ahmad
- Department of Agriculture, Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow, India
| | - Firdaus Qamar
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Monica Saifi
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Malik Zainul Abdin
- CTPD, Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India,*Correspondence: Malik Zainul Abdin,
| |
Collapse
|
13
|
Comprehensive Review of Aflatoxin Contamination, Impact on Health and Food Security, and Management Strategies in Pakistan. Toxins (Basel) 2022; 14:toxins14120845. [PMID: 36548742 PMCID: PMC9781569 DOI: 10.3390/toxins14120845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Aflatoxins (AFs) are the most important toxic, mutagenic, and carcinogenic fungal toxins that routinely contaminate food and feed. While more than 20 AFs have been identified to date, aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), and M1 (AFM1) are the most common. Over 25 species of Aspergillus have been shown to produce AFs, with Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius being the most important and well-known AF-producing fungi. These ubiquitous molds can propagate on agricultural commodities to produce AFs in fields and during harvesting, processing, transportation, and storage. Countries with warmer climates and that produce foods susceptible to AF contamination shoulder a substantial portion of the global AF burden. Pakistan's warm climate promotes the growth of toxigenic fungi, resulting in frequent AF contamination of human foods and animal feeds. The potential for contamination in Pakistan is exacerbated by improper storage conditions and a lack of regulatory limits and enforcement mechanisms. High levels of AFs in common commodities produced in Pakistan are a major food safety problem, posing serious health risks to the population. Furthermore, aflatoxin contamination contributes to economic losses by limiting exports of these commodities. In this review, recent information regarding the fungal producers of AFs, prevalence of AF contamination of foods and feed, current regulations, and AF prevention and removal strategies are summarized, with a major focus on Pakistan.
Collapse
|
14
|
Xu R, Li XP, Zhang X, Shen WH, Min CY, Wang JW. Contrasting regulation of live Bacillus cereus No.1 and its volatiles on Shiraia perylenequinone production. Microb Cell Fact 2022; 21:172. [PMID: 35999640 PMCID: PMC9396862 DOI: 10.1186/s12934-022-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal perylenequinones (PQs) are a class of photoactivated polyketide mycotoxins produced by plant-associated fungi. Hypocrellins, the effective anticancer photodynamic therapy (PDT) agents are main bioactive PQs isolated from a bambusicolous Shiraia fruiting bodies. We found previously that bacterial communities inhabiting fungal fruiting bodies are diverse, but with unknown functions. Bacillus is the most dominant genus inside Shiraia fruiting body. To understand the regulation role of the dominant Bacillus isolates on host fungus, we continued our work on co-culture of the dominant bacterium B. cereus No.1 with host fungus Shiraia sp. S9 to elucidate bacterial regulation on fungal hypocrellin production. RESULTS Results from "donut" plate tests indicated that the bacterial culture could promote significantly fungal PQ production including hypocrellin A (HA), HC and elsinochrome A-C through bacterial volatiles. After analysis by gas chromatograph/mass spectrometer and confirmation with commercial pure compounds, the volatiles produced by the bacterium were characterized. The eliciting roles of bacterial volatile organic compounds (VOCs) on HA production via transcriptional regulation of host Shiraia fungus were confirmed. In the established submerged bacterial volatile co-culture, bacterial volatiles could not only promote HA production in the mycelium culture, but also facilitate the release of HA into the medium. The total production of HA was reached to 225.9 mg/L, about 1.87 times that of the fungal mono-culture. In contrast, the live bacterium suppressed markedly fungal PQ production in both confrontation plates and mycelium cultures by direct contact. The live bacterium not only down-regulated the transcript levels of HA biosynthetic genes, but also degraded extracellular HA quickly to its reductive product. CONCLUSION Our results indicated that bacterial volatile release could be a long-distance signal to elicit fungal PQ production. Biodegradation and inhibition by direct contact on fungal PQs were induced by the dominate Bacillus to protect themselves in the fruiting bodies. This is the first report on the regulation of Bacillus volatiles on fungal PQ production. These findings could be helpful for both understanding the intimate fungal-bacterial interactions in a fruiting body and establishing novel cultures for the enhanced production of bioactive PQs.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chun Yan Min
- Suzhou Institute for Food and Drug Control, Suzhou, 215104, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Antifungal activity and detoxification by Candida albicans against Aspergillus parasiticus and aflatoxin production. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Shabeer S, Asad S, Jamal A, Ali A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins (Basel) 2022; 14:307. [PMID: 35622554 PMCID: PMC9147583 DOI: 10.3390/toxins14050307] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023] Open
Abstract
Aflatoxin, a type of mycotoxin, is mostly produced by Aspergillus flavus and Aspergillus parasiticus. It is responsible for the loss of billions of dollars to the world economy, by contaminating different crops such as cotton, groundnut, maize, and chilies, and causing immense effects on the health of humans and animals. More than eighteen different types of aflatoxins have been reported to date, and among them, aflatoxins B1, B2, G1, and G2 are the most prevalent and lethal. Early detection of fungal infection plays a key role in the control of aflatoxin contamination. Therefore, different methods, including culture, chromatographic techniques, and molecular assays, are used to determine aflatoxin contamination in crops and food products. Many countries have set a maximum limit of aflatoxin contamination (2-20 ppb) in their food and agriculture commodities for human or animal consumption, and the use of different methods to combat this menace is essential. Fungal infection mostly takes place during the pre- and post-harvest stage of crops, and most of the methods to control aflatoxin are employed for the latter phase. Studies have shown that if correct measures are adopted during the crop development phase, aflatoxin contamination can be reduced by a significant level. Currently, the use of bio-pesticides is the intervention employed in many countries, whereby atoxigenic strains competitively reduce the burden of toxigenic strains in the field, thereby helping to mitigate this problem. This updated review on aflatoxins sheds light on the sources of contamination, and the on occurrence, impact, detection techniques, and management strategies, with a special emphasis on bio-pesticides to control aflatoxins.
Collapse
Affiliation(s)
- Saba Shabeer
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Shahzad Asad
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
17
|
Abstract
Aspergillus flavusaflR, a gene encoding a Zn(II)2Cys6 DNA-binding domain, is an important transcriptional regulator of the aflatoxin biosynthesis gene cluster. Our previous results of Gene ontology (GO) analysis for the binding sites of AflR in A. flavus suggest that AflR may play an integrative regulatory role. In this study the ΔaflR and overexpression (OE) strains based on the well-established double-crossover recombinational technique were constructed to investigate the integrative function of the aflR gene in A. flavus. The disruption of aflR severely affected the aflatoxin biosynthetic pathway, resulting in a significant decrease in aflatoxin production. The aflatoxin B1 (AFB1) of the ΔaflR strain was 180 ng/mL and aflatoxin B2 (AFB2) was 2.95 ng/mL on YES medium for 5 days, which was 1/1,000 of that produced by the wild-type strain (WT). In addition, the ΔaflR strain produced relatively sparse conidia and a very small number of sclerotia. On the seventh day, the sclerotia yield on each plate of the WT and OE strains exceeded 1,000, while the sclerotial formation of the ΔaflR strain was not detected until 14 days. However, the biosynthesis of cyclopiazonic acid (CPA) was not affected by aflR gene disruption. Transcriptomic analysis of the ΔaflR strain grown on potato dextrose agar (PDA) plates at 0 h, 24 h, and 72 h showed that expression of clustering genes involved in the biosynthesis of aflatoxin was significantly downregulated. Meanwhile, the ΔaflR strain compared with the WT strain showed significant expression differences in genes involved in spore germination, sclerotial development, and carbohydrate metabolism compared to the WT. The results demonstrated that the A. flavusaflR gene also played a positive role in the fungal growth and development in addition to aflatoxin biosynthesis. IMPORTANCE Past studies of the A. flavusaflR gene and its orthologues in related Aspergillus species were solely focused on their roles in secondary metabolism. In this study, we used the ΔaflR and OE strains to demonstrate the role of aflR in growth and development of A. flavus. For the first time, we confirmed that the ΔaflR strain also was defective in production of conidia and sclerotia, asexual propagules of A. flavus. Our transcriptomic analysis further showed that genes involved in spore germination, sclerotial development, aflatoxin biosynssssthesis, and carbohydrate metabolism exhibited significant differences in the ΔaflR strain compared with the WT strain. Our study indicates that AflR not only plays an important role in regulating aflatoxin synthesis but also in playing a positive role in the conidial formation and sclerotial development in A. flavus. This study reveals the critical and positive role of the aflR gene in fungal growth and development, and provides a theoretical basis for the genetic studies of other aspergilli.
Collapse
|
18
|
Ren X, Branà MT, Haidukowski M, Gallo A, Zhang Q, Logrieco AF, Li P, Zhao S, Altomare C. Potential of Trichoderma spp. for Biocontrol of Aflatoxin-Producing Aspergillus flavus. Toxins (Basel) 2022; 14:toxins14020086. [PMID: 35202114 PMCID: PMC8875375 DOI: 10.3390/toxins14020086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
The inhibitory action of 20 antagonistic Trichoderma isolates against the aflatoxigenic isolate A. flavus ITEM 9 (Af-9) and their efficacy in reducing aflatoxin formation in vitro were examined. Production of metabolites with inhibitory effect by the Trichoderma isolates was also investigated. Antagonistic effect against Af-9 was assessed by inhibition of radial growth of the colonies and by fungal interactions in dual confrontation tests. A total of 8 out of 20 isolates resulted in a significant growth inhibition of 3-day-old cultures of Af-9, ranging from 13% to 65%. A total of 14 isolates reduced significantly the aflatoxin B1 (AfB1) content of 15-day-old Af-9 cultures; 4 were ineffective, and 2 increased AfB1. Reduction of AfB1 content was up to 84.9% and 71.1% in 7- and 15-day-old cultures, respectively. Since the inhibition of Af-9 growth by metabolites of Trichoderma was not necessarily associated with inhibition of AfB1 production and vice versa, we investigated the mechanism of reduction of AfB1 content at the molecular level by examining two strains: one (T60) that reduced both growth and mycotoxin content; and the other (T44) that reduced mycotoxin content but not Af-9 growth. The expression analyses for the two regulatory genes aflR and aflS, and the structural genes aflA, aflD, aflO and aflQ of the aflatoxin biosynthesis cluster indicated that neither strain was able to downregulate the aflatoxin synthesis, leading to the conclusion that the AfB1 content reduction by these Trichoderma strains was based on other mechanisms, such as enzyme degradation or complexation. Although further studies are envisaged to identify the metabolites involved in the biocontrol of A. flavus and prevention of aflatoxin accumulation, as well as for assessment of the efficacy under controlled and field conditions, Trichoderma spp. qualify as promising agents and possible alternative options to other biocontrol agents already in use.
Collapse
Affiliation(s)
- Xianfeng Ren
- Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Maria Teresa Branà
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (M.T.B.); (M.H.)
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (M.T.B.); (M.H.)
| | - Antonia Gallo
- Institute of Sciences of Food Production, National Research Council, 73100 Lecce, Italy; (A.G.); (A.F.L.)
| | - Qi Zhang
- Oil Crops Research Institute, The Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Q.Z.); (P.L.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, 73100 Lecce, Italy; (A.G.); (A.F.L.)
| | - Peiwu Li
- Oil Crops Research Institute, The Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Q.Z.); (P.L.)
| | - Shancang Zhao
- Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
- Correspondence: (S.Z.); (C.A.); Tel.: +86-27-868-12943 (S.Z.); +39-80-592-9318 (C.A.)
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (M.T.B.); (M.H.)
- Correspondence: (S.Z.); (C.A.); Tel.: +86-27-868-12943 (S.Z.); +39-80-592-9318 (C.A.)
| |
Collapse
|
19
|
Costes LH, Lippi Y, Naylies C, Jamin EL, Genthon C, Bailly S, Oswald IP, Bailly JD, Puel O. The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus. J Fungi (Basel) 2021; 7:jof7121055. [PMID: 34947037 PMCID: PMC8703953 DOI: 10.3390/jof7121055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM “low” and 282 mM “high”), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus’ transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds.
Collapse
Affiliation(s)
- Laura H. Costes
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Yannick Lippi
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Claire Naylies
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Emilien L. Jamin
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Metatoul-AXIOM Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse 31000, France
| | - Clémence Genthon
- INRAE, US1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France;
| | - Sylviane Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Isabelle P. Oswald
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Jean-Denis Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Correspondence:
| | - Olivier Puel
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| |
Collapse
|
20
|
Buitimea-Cantúa GV, Magaña-Barajas E, Buitimea-Cantúa NE, Leija Gutiérrez HM, Del Refugio Rocha-Pizaña M, Rosas-Burgos EC, Hernández-Morales A, Molina-Torres J. Down-regulation of aflatoxin biosynthetic genes in Aspergillus parasiticus by Heliopsis longipes roots and affinin for reduction of aflatoxin production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:899-908. [PMID: 34487477 DOI: 10.1080/03601234.2021.1974273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Affinin present in Heliopsis longipes roots has been identified as an anti-aflatoxin molecule. However, its mechanism of action has yet to be clarified. Aflatoxins biosynthesis involves not less than 27 enzymatic reactions. In this work, the genes aflG, aflH, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ of the aflatoxins cluster and the aflS gene encoding an internal regulatory factor involved in aflatoxins biosynthesis in Aspergillus parasiticus, were studied by qRT-PCR. Results demonstrated that ethanolic extract of H. longipes roots and affinin inhibit aflatoxin biosynthesis and fungal growth in a dose-dependent manner. At 300 µg/mL, ethanolic extract and affinin presented the highest inhibition of radial growth (86% and 94%) and aflatoxin production (68% and 80%). The qRT-PCR analysis demonstrated that nine tested genes were down-regulated by affinin and ethanolic extract. The most down-regulated was the aflK, a gene that encodes an enzyme cyclase with double function during the aflatoxin biosynthesis. While no significant down-regulation was obtaining for aflH gene. Exposure to affinin also resulted in decreased transcript levels of the internal regulator factor aflS. Based on our results, a model showing the regulatory mechanism in aflatoxin biosynthesis and its role in gene expression was proposed. In conclusion, affinin modulates the expression of several aflatoxin biosynthetic genes, leading to mycotoxin biosynthesis inhibition. Therefore, H. longipes roots is a suitable candidate to developed control strategies via lowering gene expressions as a future perspective in reducing aflatoxin contamination.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, Hermosillo, México
| | - Nydia E Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, CICFM-Facultad de Ciencias Físico Matemáticas. San Nicolás de los Garza, NL, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| |
Collapse
|
21
|
Tiwari S, Singh BK, Kishore V, Dubey NK. Boosting modern technologies with emphasis on biological approaches to potentiate prevention and control of aflatoxins: recent advances. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1933534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vatsala Kishore
- Department of Pathology, Heritage Institute of Medical Sciences, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Hernandez C, Cadenillas L, Maghubi AE, Caceres I, Durrieu V, Mathieu C, Bailly JD. Mimosa tenuiflora Aqueous Extract: Role of Condensed Tannins in Anti-Aflatoxin B1 Activity in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13060391. [PMID: 34072350 PMCID: PMC8228179 DOI: 10.3390/toxins13060391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.
Collapse
Affiliation(s)
- Christopher Hernandez
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Laura Cadenillas
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Anwar El Maghubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Isaura Caceres
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Céline Mathieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), INPT, Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Correspondence: ; Tel.: +33-56-1193-229
| |
Collapse
|
23
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
24
|
Moradi M, Rohani M, Fani SR, Mosavian MTH, Probst C, Khodaygan P. Biocontrol potential of native yeast strains against Aspergillus flavus and aflatoxin production in pistachio. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1963-1973. [PMID: 32897822 DOI: 10.1080/19440049.2020.1811901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ASPERGILLUS FLAVUS is the main aflatoxin producer in food and feed and has wide ecological niches. Contamination of food products such as pistachio nuts and aflatoxin secretion directly affects food safety and international food product trades. Abilities of 13 yeast strains isolated from 200 soil and pistachio nut samples collected in Iranian orchards to reduce the growth of A. flavus as well as aflatoxin production were assessed in dual culture, volatile and non-volatile compounds tests. The growth of A. flavus was reduced by 32-60%, 13-31% and 40-61% in dual culture, volatile and non-volatile compounds, respectively, while aflatoxin B1 production was diminished by 90.6-98.3%. Based on these assays, five yeast strains were selected for co-inoculation experiments using soil, pistachio hulls and leaf. A significant reduction in colony-forming units (CFU) ranging from 23% to 110% (p < .05) was observed. Molecular, physiological and morphological identification revealed these were strains of Pichia kudriavzevii and Lachansea thermotolerans. Aflatoxin biocontrol with yeast strains possesses many advantages including the ease of commercial production and organic application which is an environmental approach. More investigation is required to understand the efficiency of selective strains to inhibit A. flavus and aflatoxin production as well as withstand predominant abiotic stress in pistachio orchards and mass production in field application.
Collapse
Affiliation(s)
- Mohammad Moradi
- Department of Production Technology and Management, Pistachio Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO) , Rafsanjan, Iran
| | - Maryam Rohani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Seyed Reza Fani
- Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO , Yazd, Iran
| | | | - Claudia Probst
- Department of Agricultural Technology and Management, University of Applied Sciences, School of Engineering , Wels, Austria
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan , Iran
| |
Collapse
|
25
|
Buitimea-Cantúa GV, Buitimea-Cantúa NE, Rocha-Pizaña MDR, Hernández-Morales A, Magaña-Barajas E, Molina-Torres J. Inhibitory effect of Capsicum chinense and Piper nigrum fruits, capsaicin and piperine on aflatoxins production in Aspergillus parasiticus by downregulating the expression of aflD, aflM, aflR, and aflS genes of aflatoxins biosynthetic pathway. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:835-843. [PMID: 32657210 DOI: 10.1080/03601234.2020.1787758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aflatoxins produced by Aspergillus parasiticus are toxic and carcinogenic metabolites. The biosynthesis of this mycotoxins is a complex process and involves at least 30 genes clustered within an approximately 82 kB gene cluster. In the present study, the effect of Capsicum chinense and Piper nigrum fruits on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of aflD, aflM, aflR, and aflS four; key genes of aflatoxins biosynthesis pathway. GC-EIMS analysis identified capsaicin (66,107 µg g-1) and piperine (1,138 µg g-1) as the most abundant compounds in C. chinense and P. nigrum fruits, respectively. The antifungal and anti-aflatoxigenic assays showed that C. chinense, P. nigrum, capsaicin, and piperine inhibited A. parasiticus growth and aflatoxins production in a dose-dependent manner. The piperine at 300 µg mL-1 produced higher radial growth inhibition (89%) and aflatoxin production inhibition (69%). The expression of aflatoxin biosynthetic genes was evaluated by quantitative real-time PCR (qRT-PCR) and revealed that aflatoxin inhibition occurring via downregulating the aflS and aflR, and subsequently aflD and aflM genes. These results will improve our understanding of the mechanism of aflatoxin regulation by C. chinense, P. nigrum, capsaicin, and piperine, and provides a reference for further study.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| | - Nydia E Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
| | | | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, San Luis Potosí, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, México
| | - Jorge Molina-Torres
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| |
Collapse
|
26
|
Ghanbari R, Rezaie S, Noorbakhsh F, Khaniki GJ, Soleimani M, Aghaee EM. Biocontrol effect of Kluyveromyces lactis on aflatoxin expression and production in Aspergillus parasiticus. FEMS Microbiol Lett 2020; 366:5499020. [PMID: 31132114 DOI: 10.1093/femsle/fnz114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
Aspergillus parasiticus is one of the most common fungi able to produce aflatoxins, which are naturally occurring carcinogenic substances. This study evaluated the effects of the safe yeast, Kluyveromyces lactis, on fungal growth, aflatoxin production and expression of aflR gene in A. parasiticus. Antifungal susceptibility was evaluated by exposing A. parasiticus to different amounts of K. lactis, and aflatoxin production was measured using high-performance liquid chromatography. Expression of the aflR gene was determined by measuring the cognate aflR mRNA level by quantitative real-time reverse-transcription polymerase chain reaction assay. The growth of A. parasiticus was inhibited by 7 days of incubation at 30°C with a minimum population of 1.5 × 105 CFU/ml of K. lactis, which also suppressed expression of the A. parasiticus aflR gene, reducing the total production of aflatoxins by 97.9% and aflatoxins B1, B2, G1 and G2 by 97.8, 98.6, 98 and 94%, respectively. Accordingly, K. lactis could be considered as a potential biocontrol agent against toxigenic molds in food and animal feed.
Collapse
Affiliation(s)
- Rooholla Ghanbari
- Food Safety & Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poursina St., Qods Ave., Tehran, postal code:1417613151, Iran
| | - Sassan Rezaie
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Poursina St., Qods Ave., Tehran, postal code:1417613151, Iran
| | - Fatemeh Noorbakhsh
- Department of Microbiology, Biological Science College, Islamic Azad University, Varamin-Pishva Branch, 9 Dey Square, Pishva road, Varamin, Iran
| | - Gholamreza Jahed Khaniki
- Food Safety & Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poursina St., Qods Ave., Tehran, postal code:1417613151, Iran
| | - Mina Soleimani
- Food Safety & Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poursina St., Qods Ave., Tehran, postal code:1417613151, Iran
| | - Ebrahim Molaee Aghaee
- Food Safety & Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poursina St., Qods Ave., Tehran, postal code:1417613151, Iran
| |
Collapse
|
27
|
Raksha Rao K, Vipin AV, Venkateswaran G. Mechanism of inhibition of aflatoxin synthesis by non-aflatoxigenic strains of Aspergillus flavus. Microb Pathog 2020; 147:104280. [PMID: 32505654 DOI: 10.1016/j.micpath.2020.104280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/04/2023]
Abstract
Aflatoxins are toxic secondary metabolites primarily produced by Aspergillus flavus and A. paraciticus. Exposure to these mycotoxins through contaminated food and feed may cause oxidative stress and liver toxicity in animals. One of the promising strategies to mitigate aflatoxin accumulation is the biological management during pre-harvest using non-aflatoxigenic A. flavus. The mechanism offered by these strains in mitigating aflatoxin is still unclear. Thus, the aim of the present study is to delineate the mechanism of intraspecific inhibition of aflatoxin production. Among the 18 non-aflatoxigenic strains evaluated, six strains were able to reduce more than 50% of the aflatoxins produced by the native aflatoxigenic strains. The non-aflatoxigenic strains used in this study failed to degrade the aflatoxins. Eventhough, the non-aflatoxigenic strains were not able to inhibit the synthesis of aflatoxins completely. Four non-aflatoxigenic isolates could competitively excluded the aflatoxigenic strain. Furthermore, when non-aflatoxigenic and an aflatoxigenic isolate were separated by 0.4 and 3 μm filters, aflatoxin synthesis was not significantly reduced. However, when the pore size was 8 μm, there was a significant decrease in aflatoxin production. This results suggest the role of physical contact between the hyphae, thigmoregulation, in the inhibition of aflatoxin production. Additionally, to better understand the transcriptional level control of this phenomenon, we analyzed the gene expression profile of aflatoxin biosynthesis genes in the aflatoxigenic strain. The aflatoxin biosynthesis genes were down regulated in the aflatoxigenic strain in contact with non-aflatoxigenic strain group when compared to the control. This is the first evidence of the combined action of competitive exclusion and thigmodownregulation which led to the intraspecific inhibition of aflatoxin production.
Collapse
Affiliation(s)
- K Raksha Rao
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India
| | - A V Vipin
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India
| | - G Venkateswaran
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysore, 570 020, Karnataka, India.
| |
Collapse
|
28
|
Zhao Q, Qiu Y, Wang X, Gu Y, Zhao Y, Wang Y, Yue T, Yuan Y. Inhibitory Effects of Eurotium cristatum on Growth and Aflatoxin B 1 Biosynthesis in Aspergillus flavus. Front Microbiol 2020; 11:921. [PMID: 32477315 PMCID: PMC7242626 DOI: 10.3389/fmicb.2020.00921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotic strain Eurotium cristatum was isolated from Chinese Fuzhuan brick-tea and tested for its in vitro activity against aflatoxigenic Aspergillus flavus. Results indicated that E. cristatum can inhibit the radial growth of A. flavus. Furthermore, this inhibition might be caused by E. cristatum secondary metabolites. The ability of culture filtrate of strain E. cristatum against growth and aflatoxin B1 production by toxigenic A. flavus was evaluated in vitro. Meanwhile, the influence of filtrate on spore morphology of A. flavus was analyzed by scanning electron microscopy (SEM). Results demonstrated that both radial growth of A. flavus and aflatoxin B1 production were significantly weakened following increases in the E. cristatum culture filtrate concentration. In addition, SEM showed that the culture filtrate seriously damaged hyphae morphology. Gas chromatography mass spectrometry (GC/MS) analysis of the E. cristatum culture supernatant revealed the presence of multiple antifungal compounds. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that the expression of aflatoxin biosynthesis-related genes (aflD, aflQ, and aflS) were down-regulated. Importantly, this latter occurrence resulted in a reduction of the AflS/AflR ratio. Interestingly, cell-free supernatants of E. cristatum facilitated the effective degradation of aflatoxin B1. In addition, two degradation products of aflatoxin B1 lacking the toxic and carcinogenic lactone ring were identified. A toxicity study on the HepG2 cells showed that the degradation compounds were less toxic when compared with AFB1.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuzhu Zhao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yidi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China.,College of Enology, Northwest A&F University, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| |
Collapse
|
29
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
30
|
Ren X, Zhang Q, Zhang W, Mao J, Li P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins (Basel) 2020; 12:E24. [PMID: 31906282 PMCID: PMC7020460 DOI: 10.3390/toxins12010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin contamination has been causing great concern worldwide due to the major economic impact on crop production and their toxicological effects to human and animals. Contamination can occur in the field, during transportation, and also in storage. Post-harvest contamination usually derives from the pre-harvest infection of aflatoxigenic molds, especially aflatoxin-producing Aspergilli such as Aspergillusflavus and A. parasiticus. Many strategies preventing aflatoxigenic molds from entering food and feed chains have been reported, among which biological control is becoming one of the most praised strategies. The objective of this article is to review the biocontrol strategy for inhibiting the growth of and aflatoxin production by aflatoxigenic fungi. This review focuses on comparing inhibitory behaviors of different antagonistic microorganisms including various bacteria, fungi and yeasts. We also reviewed the bioactive compounds produced by microorganisms and the mechanisms leading to inhibition. The key factors influencing antifungal activities of antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
31
|
Wang P, Chang PK, Kong Q, Shan S, Wei Q. Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT. Int J Food Microbiol 2019; 310:108313. [DOI: 10.1016/j.ijfoodmicro.2019.108313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
|
32
|
Guan X, Zhao Y, Liu X, Shang B, Xing F, Zhou L, Wang Y, Zhang C, Bhatnagar D, Liu Y. The bZIP transcription factor Afap1 mediates the oxidative stress response and aflatoxin biosynthesis in Aspergillus flavus. Rev Argent Microbiol 2019; 51:292-301. [DOI: 10.1016/j.ram.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/26/2018] [Accepted: 07/15/2018] [Indexed: 11/28/2022] Open
|
33
|
Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. J Microbiol 2019; 57:396-404. [PMID: 31062286 DOI: 10.1007/s12275-019-8517-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 10/26/2022]
Abstract
Aspergillus flavus is a saprophytic fungus that contaminates crops with carcinogenic aflatoxin. In the present work, the antifungal effects of volatile organic compounds (VOCs) from Streptomyces alboflavus TD-1 against A. flavus were investigated. VOCs from 8-day-old wheat bran culture of S. alboflavus TD-1 displayed strong inhibitory effects against mycelial growth, sporulation, and conidial germination of A. flavus. Severely misshapen conidia and hyphae of A. flavus were observed by scanning electron microscopy after exposure to VOCs for 6 and 12 h, respectively. Rhodamine 123 staining of mitochondria indicated that mitochondria may be a legitimate antifungal target of the VOCs from S. alboflavus TD-1. Furthermore, the VOCs effectively inhibited aflatoxin B1 production by downregulating genes involved in aflatoxin biosynthesis. Dimethyl trisulfide and benzenamine may play important roles in the suppression of A. flavus growth and production of aflatoxin. The results indicate that VOCs from S. alboflavus TD-1 have tremendous potential to be developed as a useful bio-pesticide for controlling A. flavus.
Collapse
|
34
|
Zhou Y, Wang J, Gao X, Wang K, Wang W, Wang Q, Yan P. Isolation of a novel deep-sea Bacillus circulus strain and uniform design for optimization of its anti-aflatoxigenic bioactive metabolites production. Bioengineered 2019; 10:13-22. [PMID: 30836830 PMCID: PMC6527075 DOI: 10.1080/21655979.2019.1586055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep-sea bacterium strain FA13 was isolated from the sediment of the South Atlantic Ocean and identified as Bacillus circulans based on 16S ribosomal DNA sequence. Through liquid fermentation with five media, the cell-free supernatant fermented with ISP2 showed the highest inhibition activities against mycelial growth of Aspergillus parasiticus mutant strain NFRI-95 and accumulation of norsolorinic acid, a precursor for aflatoxin production. Based on ISP2, uniform design was used to optimize medium formula and fermentation conditions. After optimization, the inhibition efficacy of the 20-time diluted supernatant against A. parasiticus NFRI-95 mycelial growth and aflatoxin production was increased from 0–23.1% to 100%. Moreover, compared to the original protocol, medium cost and fermentation temperature were significantly reduced, and dependence on seawater was completely relieved, thus preventing the fermentor from corrosion. This is the first report of a deep-sea microorganism which can inhibit A. parasiticus NFRI-95 mycelial growth and aflatoxin production.
Collapse
Affiliation(s)
- Ying Zhou
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China.,b Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography, State Oceanic Administration , Xiamen , China
| | - Jingying Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Xiujun Gao
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Kai Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Wenwei Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Qi Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Peisheng Yan
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| |
Collapse
|
35
|
Peromingo B, Andrade MJ, Delgado J, Sánchez-Montero L, Núñez F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol 2019; 82:269-276. [PMID: 31027783 DOI: 10.1016/j.fm.2019.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
Dry-cured meat products, such as dry-cured ham or dry-fermented sausages, are characterized by their particular ripening process, where a mould population grows on their surface. Some of these moulds are hazardous to the consumers because of their ability to produce mycotoxins including aflatoxins (AFs). The use of native yeasts could be considered a potential strategy for controlling the presence of AFs in dry-cured meat products. The aim of this work was to evaluate the antagonistic activity of two native Debaryomyces hansenii strains on the relative growth rate and the AFs production in Aspergillus parasiticus. Both D. hansenii strains significantly reduced the growth rates of A. parasiticus when grown in a meat-model system at different water activity (aw) conditions. The presence of D. hansenii strains caused a stimulation of AFs production by A. parasiticus at 0.99 aw. However, at 0.92 aw the yeasts significantly reduced the AFs concentration in the meat-model system. The relative expression levels of the aflR and aflS genes involved in the AFs biosynthetic pathway were also repressed at 0.92 aw in the presence of both D. hansenii strains. These satisfactory results were confirmed in dry-cured ham and dry-fermented sausage slices inoculated with A. parasiticus, since both D. hansenii strains significantly reduced AFs amounts in these matrices. Therefore, both tested D. hansenii strains could be proposed as biocontrol agents within a HACCP framework to minimize the hazard associated with the presence of AFs in dry-cured meat products.
Collapse
Affiliation(s)
- Belén Peromingo
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - María J Andrade
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Lourdes Sánchez-Montero
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Félix Núñez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain.
| |
Collapse
|
36
|
Chen Y, Kong Q, Liang Y. Three newly identified peptides from Bacillus megaterium strongly inhibit the growth and aflatoxin B1 production of Aspergillus flavus. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Caceres I, Snini SP, Puel O, Mathieu F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B₁ Producer. Toxins (Basel) 2018; 10:toxins10110442. [PMID: 30380704 PMCID: PMC6267218 DOI: 10.3390/toxins10110442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.
Collapse
Affiliation(s)
- Isaura Caceres
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, 31300 Toulouse, France.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| |
Collapse
|
38
|
Liang Y, Kong Q, Yao Y, Xu S, Xie X. Fusion expression and anti-Aspergillus flavus activity of a novel inhibitory protein DN-AflR. Int J Food Microbiol 2018; 290:184-192. [PMID: 30347354 DOI: 10.1016/j.ijfoodmicro.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023]
Abstract
The regulatory gene (aflR) encodes AflR, a positive regulator of transcriptional pathway that activates aflatoxin biosynthesis. It has been demonstrated in our laboratory that L-Asp-L-Asn (DN) extracted from Bacillus megaterium inhibited the growth of Aspergillus flavus. We fused gene encoding DN with the gene encoding specific dinuclear zinc finger cluster protein of AflR, then fusion protein competed with the AflS-AflR complex for the AflR binding site and significantly improved anti-A. flavus activity (growth of A. flavus and biosynthesis of aflatoxin B1) of DN. The fusion gene dn-aflR was cloned into pET32a and recombinant plasmid was introduced into Escherichia coli BL21. The highest expression was observed after 10 h induction and fusion protein was purified by affinity chromatography column. Compared with DN, the novel fusion protein DN-AflR significantly inhibited the growth of A. flavus and biosynthesis of aflatoxin B1 (P < 0.05). This study promoted the use of competitive inhibition of fusion proteins to reduce the expression of regulatory genes in the biosynthetic pathway of aflatoxin. Moreover, it provided more supports for deep research and industrialization of such novel anti-A. flavus bio-inhibitors and biological control of microbial contamination.
Collapse
Affiliation(s)
- Yuan Liang
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| | - Yao Yao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shujing Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xie
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
39
|
Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens ( Aspergillus flavus and Aspergillus ochraceus). Molecules 2018; 23:molecules23092108. [PMID: 30131466 PMCID: PMC6225121 DOI: 10.3390/molecules23092108] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/05/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
The grain contamination by Aspergillus spp. has been a serious issue. This study exhibited the excellent antifungal effects of the essential oil compounds (EOCs) geraniol and citral against common grain pathogens (A. flavus and A. ochraceus) in vitro and in situ. The inhibitory mechanisms were also evaluated from the perspective of cell membrane permeability, reactive oxygen species (ROS) generation, and Aspergillus spp. growth-related gene expression. Meanwhile, the combined effects of EOCs in the vapor phase and modified atmosphere packaging (MAP) were examined to find an alternative preservation method for controlling Aspergillus spp. The results indicated that citral exhibited the antifungal activity mainly by downregulating the sporulation- and growth-related genes for both pathogens. Geraniol displayed inhibitory effectiveness against A. flavus predominantly by inducing the intracellular ROS accumulation and showed toxicity against A. ochraceus principally by changing cell membrane permeability. Furthermore, the synthetic effects of EOCs and MAP (75% CO2 and 25% N2) induced better grain quality than the current commercial fumigant AlP. These findings reveal that EOCs have potential to be a novel grain preservative for further application.
Collapse
|
40
|
Khalid S, Baccile JA, Spraker JE, Tannous J, Imran M, Schroeder FC, Keller NP. NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. ACS Chem Biol 2018; 13:171-179. [PMID: 29182847 DOI: 10.1021/acschembio.7b00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial-fungal interactions are presumed to be mediated chiefly by small-molecule signals; however, little is known about the signaling networks that regulate antagonistic relationships between pathogens. Here, we show that the ralstonins, lipopeptides produced by the plant pathogenic bacteria Ralstonia solanacearum, interfere with germination of the plant-pathogenic fungus Aspergillus flavus by down-regulating expression of a cryptic biosynthetic gene cluster (BGC), named imq. Comparative metabolomic analysis of overexpression strains of the transcription factor ImqK revealed imq-dependent production of a family of tripeptide-derived alkaloids, the imizoquins. These alkaloids are produced via a nonribosomal peptide synthetase- (NRPS-)derived tripeptide and contain an unprecedented tricyclic imidazo[2,1-a]isoquinoline ring system. We show that the imizoquins serve a protective role against oxidative stress that is essential for normal A. flavus germination. Supplementation of purified imizoquins restored wildtype germination to a ΔimqK A. flavus strain and protected the fungus from ROS damage. Whereas the bacterial ralstonins retarded A. flavus germination and suppressed expression of the imq cluster, the fungal imizoquins in turn suppressed growth of R. solanacearum. We suggest such reciprocal small-molecule-mediated antagonism is a common feature in microbial encounters affecting pathogenicity and survival of the involved species.
Collapse
Affiliation(s)
- Saima Khalid
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
- Department
of Microbiology, Qauid-i-Azam University, Islamabad, Pakistan
| | - Joshua A. Baccile
- Boyce
Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| | - Joseph E. Spraker
- Department
of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Joanna Tannous
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Muhammad Imran
- Department
of Microbiology, Qauid-i-Azam University, Islamabad, Pakistan
| | - Frank C. Schroeder
- Boyce
Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| | - Nancy P. Keller
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| |
Collapse
|
41
|
Xing F, Wang L, Liu X, Selvaraj JN, Wang Y, Zhao Y, Liu Y. Aflatoxin B 1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB 1 degradation by atoxigenic A. flavus. Int J Food Microbiol 2017; 256:1-10. [PMID: 28578264 DOI: 10.1016/j.ijfoodmicro.2017.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/29/2022]
Abstract
Twenty Aspergillus niger strains were isolated from peanuts and 14 strains were able to completely inhibit AFB1 production with co-cultivation. By using a Spin-X centrifuge system, it was confirmed that there are some soluble signal molecules or antibiotics involved in the inhibition by A. niger, although they are absent during the initial 24h of A. flavus growth when it is sensitive to inhibition. In A. flavus, 19 of 20 aflatoxin biosynthetic genes were down-regulated by A. niger. Importantly, the expression of aflS was significantly down-regulated, resulting in a reduction of AflS/AflR ratio. The results suggest that A. niger could directly inhibit AFB1 biosynthesis through reducing the abundance of aflS to aflR mRNAs. Interestingly, atoxigenic A. flavus JZ2 and GZ15 effectively degrade AFB1. Two new metabolites were identified and the key toxic lactone and furofuran rings both were destroyed and hydrogenated, meaning that lactonase and reductase might be involved in the degradation process.
Collapse
Affiliation(s)
- Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China.
| | - Limin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Xiao Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Jonathan Nimal Selvaraj
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China.
| |
Collapse
|
42
|
Gummadidala PM, Chen YP, Beauchesne KR, Miller KP, Mitra C, Banaszek N, Velez-Martinez M, Moeller PDR, Ferry JL, Decho AW, Chanda A. Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors. Front Microbiol 2016; 7:814. [PMID: 27375561 PMCID: PMC4891353 DOI: 10.3389/fmicb.2016.00814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio’s silent genome for generating new modulators of fungal secondary metabolism.
Collapse
Affiliation(s)
- Phani M Gummadidala
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Yung Pin Chen
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | | | - Kristen P Miller
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Chandrani Mitra
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Nora Banaszek
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Michelle Velez-Martinez
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Peter D R Moeller
- National Ocean Service, Hollings Marine Laboratory, Charleston SC, USA
| | - John L Ferry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC, USA
| | - Alan W Decho
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Anindya Chanda
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| |
Collapse
|
43
|
Mannaa M, Kim KD. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition. MYCOBIOLOGY 2016; 44:67-78. [PMID: 27433116 PMCID: PMC4945540 DOI: 10.5941/myco.2016.44.2.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 05/09/2023]
Abstract
Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
44
|
Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach. Toxins (Basel) 2016; 8:toxins8050123. [PMID: 27128940 PMCID: PMC4885038 DOI: 10.3390/toxins8050123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
Produced by several species of Aspergillus, Aflatoxin B₁ (AFB₁) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB₁ is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B₁ cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB₁ inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA) medium resulted in a complete inhibition of the expression of all but one gene of the AFB₁ biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB₁ cluster regulation.
Collapse
|
45
|
Zhi Y, Wu Q, Du H, Xu Y. Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor. Int J Food Microbiol 2016; 231:1-9. [PMID: 27161758 DOI: 10.1016/j.ijfoodmicro.2016.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
Abstract
Streptomyces spp. producing geosmin have been regarded as the most frequent and serious microbial contamination causing earthy off-flavor in Chinese liquor. It is therefore necessary to control the Streptomyces community during liquor fermentation. Biological control, using the native microbiota present in liquor making, appears to be a better solution than chemical methods. The objective of this study was to isolate native microbiota antagonistic toward Streptomyces spp. and then to evaluate the possible action mode of the antagonists. Fourteen Bacillus strains isolated from different Daqu (the fermentation starter) showed antagonistic activity against Streptomyces sampsonii, which is one of the dominant geosmin producers. Bacillus subtilis 2-16 and Bacillus amyloliquefaciens 1-45 from Maotai Daqu significantly inhibited the growth of S. sampsonii by 57.8% and 84.3% respectively, and effectively prevented the geosmin production in the simulated fermentation experiments (inoculation ratio 1:1). To probe the biocontrol mode, the ability of strain 2-16 and 1-45 to produce antimicrobial metabolites and to reduce geosmin in the fermentation system was investigated. Antimicrobial substances were identified as lipopeptides by ultra-performance liquid chromatography tandem electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI/Q-TOF MS) and in vitro antibiotic assay. In addition, strains 2-16 and 1-45 were able to remove 45% and 15% of the geosmin respectively in the simulated solid-state fermentation. This study highlighted the potential of biocontrol, and how the use of native Bacillus species in Daqu could provide an eco-friendly method to prevent growth of Streptomyces spp. and geosmin contamination in Chinese liquor fermentation.
Collapse
Affiliation(s)
- Yan Zhi
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China
| | - Qun Wu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China.
| |
Collapse
|
46
|
Liang D, Xing F, Selvaraj JN, Liu X, Wang L, Hua H, Zhou L, Zhao Y, Wang Y, Liu Y. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus. J Food Sci 2015; 80:M2917-24. [PMID: 26556681 DOI: 10.1111/1750-3841.13144] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/12/2015] [Indexed: 11/27/2022]
Abstract
In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.
Collapse
Affiliation(s)
- Dandan Liang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Fuguo Xing
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Jonathan Nimal Selvaraj
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Xiao Liu
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Limin Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Huijuan Hua
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Lu Zhou
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yueju Zhao
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yan Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yang Liu
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| |
Collapse
|
47
|
Al-Saad LA, Al-Badran AI, Al-Jumayli SA, Magan N, Rodríguez A. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes. Int J Food Microbiol 2015; 217:123-9. [PMID: 26513252 DOI: 10.1016/j.ijfoodmicro.2015.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022]
Abstract
The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1.
Collapse
Affiliation(s)
- Labeed A Al-Saad
- University of Basrah, College of sciences, Dept. of Biology, Iraq
| | | | | | - Naresh Magan
- Cranfield University, AgriFood Department, Applied Mycology Group, UK
| | - Alicia Rodríguez
- Cranfield University, AgriFood Department, Applied Mycology Group, UK.
| |
Collapse
|
48
|
Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Int J Food Microbiol 2015; 211:1-5. [DOI: 10.1016/j.ijfoodmicro.2015.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
|