1
|
Wang X, Xie X, Wo J, Huang T, Deng Z, Lin S. A Bifunctional Methyltransferase in Biosynthesis of Antitumor Antibiotic Streptonigrin. Chembiochem 2024; 25:e202400292. [PMID: 38970452 DOI: 10.1002/cbic.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid antibiotic with broad and potent antitumor activity. STN structurally contains four methyl groups belonging to two types: C-methyl group and O-methyl groups. Here, we report the biochemical characterization of the O-methyltransferase StnQ2 that can catalyze both the methylation of a hydroxyl group and a carboxyl group in the biosynthesis of streptonigrin. This work not only provides a new insight into methyltransferases, but also advances the elucidation of the complete biosynthetic pathway of streptonigrin.
Collapse
Affiliation(s)
- Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jing Wo
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Kang Y, Qian Z, Yu H, Lu J, Zhao Q, Qiao X, Ye M, Zhou X, Cai M. Programmable Biosynthesis of Plant-Derived 4'-Deoxyflavone Glycosides by an Unconventional Yeast Consortium. SMALL METHODS 2024; 8:e2301371. [PMID: 38348919 DOI: 10.1002/smtd.202301371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Indexed: 08/18/2024]
Abstract
Previous data established 4'-deoxyflavone glycosides (4'-DFGs) as important pharmaceutical components in the roots of rare medical plants like Scutellaria baicalensis Georgi. Extracting these compounds from plants involves land occupation and is environmentally unfriendly. Therefore, a modular ("plug-and-play") yeast-consortium platform is developed to synthesize diverse 4'-DFGs de novo. By codon-optimizing glycosyltransferase genes from different organisms for Pichia pastoris, six site-specific glycosylation chassis are generated to be capable of biosynthesizing 18 different 4'-DFGs. Cellular factories showed increased 4'-DFG production (up to 18.6-fold) due to strengthened synthesis of UDP-sugar precursors and blocked hydrolysis of endogenous glycosides. Co-culturing upstream flavone-synthesis-module cells with downstream glycoside-transformation-module cells alleviated the toxicity of 4'-deoxyflavones and enabled high-level de novo synthesis of 4'-DFGs. Baicalin is produced at the highest level (1290.0 mg L-1) in a bioreactor by controlling the consortium through carbon-source shifting. These results provide a valuable reference for biosynthesizing plant-derived 4'-DFGs and other glycosides with potential therapeutic applications.
Collapse
Affiliation(s)
- Yijia Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haishuang Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd., Shenzhen, 518132, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Fujiyama K, Muranaka T, Okazawa A, Seki H, Taguchi G, Yasumoto S. Recent advances in plant-based bioproduction. J Biosci Bioeng 2024; 138:1-12. [PMID: 38614829 DOI: 10.1016/j.jbiosc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/15/2024]
Abstract
Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins. Although plant-based bioproduction has traditionally relied on classical tissue culture methods, the attraction of bioproduction by plants is increasing with the development of omics and bioinformatics and other various technologies, as well as synthetic biology. This review describes the current status and prospects of these plant-based bioproduction from five advanced research topics, (i) de novo production of plant-derived high value terpenoids in engineered yeast, (ii) biotransformation of plant-based materials, (iii) genome editing technology for plant-based bioproduction, (iv) environmental effect of metabolite production in plant factory, and (v) molecular pharming.
Collapse
Affiliation(s)
- Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Atsushi Okazawa
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
5
|
Chong Y, Kim BG, Park YJ, Yang Y, Lee SW, Lee Y, Ahn JH. Production of Four Flavonoid C-Glucosides in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5302-5313. [PMID: 36952620 DOI: 10.1021/acs.jafc.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoid C-glucosides, which are found in several plant families, are characterized by several biological properties, including antioxidant, anticancer, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, antibacterial, antihyperalgesic, antiviral, and antinociceptive activities. The biosynthetic pathway of flavonoid C-glucosides in plants has been elucidated. In the present study, a pathway was introduced to Escherichia coli to synthesize four flavonoid C-glucosides, namely, isovitexin, vitexin, kaempferol 6-C-glucoside, and kaempferol 8-C-glucoside. A five- or six-step metabolic pathway for synthesizing flavonoid aglycones from tyrosine was constructed and two regioselective flavonoid C-glycosyltransferases from Wasabia japonica (WjGT1) and Trollius chinensis (TcCGT) were used. Additionally, the best shikimate gene module construct was selected to maximize the titer of each C-glucoside flavonoid. Isovitexin (30.2 mg/L), vitexin (93.9 mg/L), kaempferol 6-C-glucoside (14.4 mg/L), and kaempferol 8-C-glucoside (38.6 mg/L) were synthesized using these approaches. The flavonoid C-glucosides synthesized in this study provide a basis for investigating and unraveling their novel biological properties.
Collapse
Affiliation(s)
- Yoojin Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Gyu Kim
- Department of Forest Resources, Gyeongsang National University, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do 52725, Republic of Korea
| | - Yeo-Jin Park
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shin-Won Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngshim Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
7
|
Ragi C, Muraleedharan K. Antioxidant activity of Hibiscetin and Hibiscitrin: insight from DFT, NCI, and QTAIM. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
9
|
Lahlou A, Chileh-Chelh T, Lyashenko S, Rincón-Cervera MÁ, Rodríguez-García I, López-Ruiz R, Urrestarazu M, Guil-Guerrero JL. Arecaceae fruits: Fatty acids, phenolic compounds and in vitro antitumour activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Dorjjugder N, Taguchi G. Production of Flavonoid 7-O-glucosides by Bioconversion Using Escherichia coli Expressing a 7-O-glucosyltransferase from Tobacco (Nicotiana tabacum). Appl Biochem Biotechnol 2022; 194:3320-3329. [PMID: 35347669 DOI: 10.1007/s12010-022-03880-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Flavonoid 7-O-glucosides exhibit various biological activities; however, some are not abundant in nature. Therefore, a method to produce flavonoid 7-O-glucosides was investigated. Escherichia coli expressing tobacco-derived glucosyltransferase (Ec-NtGT2) converted several flavonoids (apigenin, luteolin, quercetin, kaempferol, and naringenin) to their 7-O-glucosides with conversion rates of 67-98%. In scaled-up production, Ec-NtGT2 yielded 24 mg/L of apigenin 7-O-glucoside, 41 mg/L of luteolin 7-O-glucoside, 118 mg/L of quercetin 7-O-glucoside, 40 mg/L of kaempferol 7-O-glucoside, and 75 mg/L of naringenin 7-O-glucoside through sequential administration of substrates in 4-9 h. The conversion rates of apigenin, luteolin, quercetin, kaempferol, and naringenin were 97%, 72%, 77%, 98%, and 96%, respectively. These results indicated that Ec-NtGT2 is a simple and efficient bioconversion system for the production of flavonoid 7-O-glucosides.
Collapse
Affiliation(s)
- Nasanjargal Dorjjugder
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan.
| |
Collapse
|
11
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
12
|
Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules 2022; 27:molecules27030695. [PMID: 35163960 PMCID: PMC8840080 DOI: 10.3390/molecules27030695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Feng Cao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
- Correspondence: ; Tel.: +86-0451-82197188
| |
Collapse
|
13
|
Li X, Meng X, de Leeuw TC, Te Poele EM, Pijning T, Dijkhuizen L, Liu W. Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34907830 DOI: 10.1080/10408398.2021.2016598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.
Collapse
Affiliation(s)
- Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | | | | | - Tjaard Pijning
- Biomolecular X-ray Crystallography, University of Groningen, Groningen, The Netherlands
| | | | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
14
|
Jung J, Schachtschabel D, Speitling M, Nidetzky B. Controllable Iterative β-Glucosylation from UDP-Glucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14630-14642. [PMID: 34817995 PMCID: PMC8662728 DOI: 10.1021/acs.jafc.1c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Glycosylation in natural product metabolism and xenobiotic detoxification often leads to disaccharide-modified metabolites. The chemical synthesis of such glycosides typically separates the glycosylation steps in space and time. The option to perform the two-step glycosylation in one pot, and catalyzed by a single permissive enzyme, is interesting for a facile access to disaccharide-modified products. Here, we reveal the glycosyltransferase GT1 from Bacillus cereus (BcGT1; gene identifier: KT821092) for iterative O-β-glucosylation from uridine 5'-diphosphate (UDP)-glucose to form a β-linked disaccharide of different metabolites, including a C15 hydroxylated detoxification intermediate of the agricultural herbicide cinmethylin (15HCM). We identify thermodynamic and kinetic requirements for the selective formation of the disaccharide compared to the monosaccharide-modified 15HCM. As shown by NMR and high-resolution MS, β-cellobiosyl and β-gentiobiosyl groups are attached to the aglycone's O15 in a 2:1 ratio. Glucosylation reactions on methylumbelliferone and 4-nitrophenol involve reversible glycosyl transfer from and to UDP as well as UDP-glucose hydrolysis, both catalyzed by BcGT1. Collectively, this study delineates the iterative β-d-glucosylation of aglycones by BcGT1 and demonstrates applicability for the programmable one-pot synthesis of disaccharide-modified 15HCM.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| |
Collapse
|
15
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
16
|
Yuan JC, Xiong RL, Zhu TT, Ni R, Fu J, Lou HX, Cheng AX. Cloning and functional characterization of three flavonoid O-glucosyltransferase genes from the liverworts Marchantia emarginata and Marchantia paleacea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:495-504. [PMID: 34166976 DOI: 10.1016/j.plaphy.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Flavonoid glycosides are important plant secondary metabolites with broad pharmacological activities. Flavonoid glycosides are generated from aglycones, in reactions catalyzed by typical uridine diphosphate-dependent glycosyltransferases (UGTs). Liverworts produce various types of flavonoid glycosides; however, only two UGTs have been characterized from liverworts to date. Here, we isolated three genes encoding UGTs (MeUGT1, MeUGT2, and MpalUGT1) from the liverwort species Marchantia emarginata and Marchantia paleacea through transcriptome sequencing. Recombinant MeUGT1, MeUGT2, and MpalUGT1 proteins heterologously produced in Escherichia coli exhibited catalytic activity towards multiple flavonoids. MeUGT1 and MpalUGT1 catalyzed the glycosylation of flavonols into the corresponding 3-O-glucosides with UDP-glucose as the sugar donor, while MeUGT2 exhibited a wider substrate specificity that included flavonols, flavones, and flavanones. When MeUGT2 was expressed in E. coli, the yield of flavonol 3-O-glucosides reached to 40-60% with feeding of the substrates kaempferol or quercetin under optimal conditions. Furthermore, heterologous expression of MeUGT1 in Arabidopsis thaliana increased the flavonol glycoside contents in the plants. Therefore, the UGTs characterized in this study could provide new data that will be useful for examining flavonoid biosynthesis in liverworts.
Collapse
Affiliation(s)
- Jing-Cong Yuan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
17
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
18
|
Lou H, Hu L, Lu H, Wei T, Chen Q. Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review. Molecules 2021; 26:4522. [PMID: 34361675 PMCID: PMC8348848 DOI: 10.3390/molecules26154522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, pharmaceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review.
Collapse
Affiliation(s)
- Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Lifei Hu
- Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China;
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (T.W.)
| |
Collapse
|
19
|
Jung J, Schmölzer K, Schachtschabel D, Speitling M, Nidetzky B. Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5491-5499. [PMID: 33973475 PMCID: PMC8278484 DOI: 10.1021/acs.jafc.1c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cinmethylin is a well-known benzyl-ether derivative of the natural terpene 1,4-cineole that is used industrially as a pre-emergence herbicide in grass weed control for crop protection. Cinmethylin detoxification in plants has not been reported, but in animals, it prominently involves hydroxylation at the benzylic C15 methyl group. Here, we show enzymatic β-glycosylation of synthetic 15-hydroxy-cinmethylin to prepare a putative phase II detoxification metabolite of the cinmethylin in plants. We examined eight Leloir glycosyltransferases for reactivity with 15-hydroxy cinmethylin and revealed the selective formation of 15-hydroxy cinmethylin β-d-glucoside from uridine 5'-diphosphate (UDP)-glucose by the UGT71E5 from safflower (Carthamus tinctorius). The UGT71E5 showed a specific activity of 431 mU/mg, about 300-fold higher than that of apple (Malus domestica) UGT71A15 that also performed the desired 15-hydroxy cinmethylin mono-glycosylation. Bacterial glycosyltransferases (OleD from Streptomyces antibioticus, 2.9 mU/mg; GT1 from Bacillus cereus, 60 mU/mg) produced mixtures of 15-hydroxy cinmethylin mono- and disaccharide glycosides. Using UDP-glucose recycling with sucrose synthase, 15-hydroxy cinmethylin conversion with UGT71E5 efficiently provided the β-mono-glucoside (≥95% yield; ∼9 mM) suitable for biological studies.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
| | | | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, Graz A-8010, Austria
| |
Collapse
|
20
|
Fermentation as an Alternative Process for the Development of Bioinsecticides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, insect pest control is carried out through the application of synthetic insecticides which have been related to harmful effects on both human and environmental health, as well as to the development of resistant pest populations. In this context, the development of new and natural insecticides is necessary. Agricultural and forestry waste or by-products are very low-cost substrates that can be converted by microorganisms into useful value-added bioactive products through fermentation processes. In this review we discuss recent discoveries of compounds obtained from fermented substrates along with their insecticidal, antifeedant, and repellent activities. Fermentation products obtained from agricultural and forestry waste are described in detail. The fermentation of the pure secondary metabolite such as terpenes and phenols is also included.
Collapse
|
21
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
22
|
Ahmad N, Xu K, Wang JN, Li C. Novel catalytic glycosylation of Glycyrrhetinic acid by UDP-glycosyltransferases from Bacillus subtilis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Marsafari M, Samizadeh H, Rabiei B, Mehrabi A, Koffas M, Xu P. Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnol J 2020; 15:e1900432. [DOI: 10.1002/biot.201900432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Monireh Marsafari
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Habibollah Samizadeh
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Babak Rabiei
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | | | - Mattheos Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Peng Xu
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
| |
Collapse
|
24
|
Wang J, Chen L, Qu L, Li K, Zhao Y, Wang Z, Li Y, Zhang X, Jin Y, Liang X. Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J Chromatogr A 2019; 1601:224-231. [DOI: 10.1016/j.chroma.2019.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
|
25
|
Thapa SB, Pandey RP, Bashyal P, Yamaguchi T, Sohng JK. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose. Appl Microbiol Biotechnol 2019; 103:7953-7969. [DOI: 10.1007/s00253-019-10060-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
|
26
|
Microbial Transformation of Flavonoids by Isaria fumosorosea ACCC 37814. Molecules 2019; 24:molecules24061028. [PMID: 30875913 PMCID: PMC6471136 DOI: 10.3390/molecules24061028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is an efficient strategy to modulate the solubility, stability, bioavailability and bioactivity of drug-like natural products. Biological methods, such as whole-cell biocatalyst, promise a simple but highly effective approach to glycosylate biologically active small molecules with remarkable regio- and stereo-selectivity. Herein, we use the entomopathogenic filamentous fungus Isaria fumosorosea ACCC 37814 to biotransform a panel of phenolic natural products, including flavonoids and anthraquinone, into their glycosides. Six new flavonoid (4-O-methyl)glucopyranosides are obtained and structurally characterized using high resolution mass and nuclear magnetic resonance spectroscopic techniques. These compounds further expand the structural diversity of flavonoid glycosides and may be used in biological study.
Collapse
|
27
|
Lemmerer M, Mairhofer J, Lepak A, Longus K, Hahn R, Nidetzky B. Decoupling of recombinant protein production from Escherichia coli cell growth enhances functional expression of plant Leloir glycosyltransferases. Biotechnol Bioeng 2019; 116:1259-1268. [PMID: 30659592 PMCID: PMC6767175 DOI: 10.1002/bit.26934] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Sugar nucleotide‐dependent (Leloir) glycosyltransferases from plants are important catalysts for the glycosylation of small molecules and natural products. Limitations on their applicability for biocatalytic synthesis arise because of low protein expression (≤10 mg/L culture) in standard microbial hosts. Here, we showed two representative glycosyltransferases: sucrose synthase from soybean and UGT71A15 from apple. A synthetic biology‐based strategy of decoupling the enzyme expression from the
Escherichia coli BL21(DE3) cell growth was effective in enhancing their individual (approximately fivefold) or combined (approximately twofold) production as correctly folded, biologically active proteins. The approach entails a synthetic host cell, which is able to shut down the production of host messenger RNA by inhibition of the
E. coli RNA polymerase. Overexpression of the enzyme(s) of interest is induced by the orthogonal T7 RNA polymerase. Shutting down of the host RNA polymerase is achieved by
l‐arabinose‐inducible expression of the T7 phage‐derived Gp2 protein from a genome‐integrated site. The glycosyltransferase genes are encoded on conventional pET‐based expression plasmids that allow T7 RNA polymerase‐driven inducible expression by isopropyl‐β‐
d‐galactoside. Laboratory batch and scaled‐up (20 L) fed‐batch bioreactor cultivations demonstrated improvements in an overall yield of active enzyme by up to 12‐fold as a result of production under growth‐decoupled conditions. In batch culture, sucrose synthase and UGT71A15 were obtained, respectively, at 115 and 2.30 U/g cell dry weight, corresponding to ∼5 and ∼1% of total intracellular protein. Fed‐batch production gave sucrose synthase in a yield of 2,300 U/L of culture (830 mg protein/L). Analyzing the isolated glycosyltransferase, we showed that the improvement in the enzyme production was due to the enhancement of both yield (5.3‐fold) and quality (2.3‐fold) of the soluble sucrose synthase. Enzyme preparation from the decoupled production comprised an increased portion (61% compared with 26%) of the active sucrose synthase homotetramer. In summary, therefore, we showed that the expression in growth‐arrested
E. coli is promising for recombinant production of plant Leloir glycosyltransferases.
Collapse
Affiliation(s)
| | | | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Karin Longus
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Rainer Hahn
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| |
Collapse
|
28
|
Uridine Diphosphate-Dependent Glycosyltransferases from Bacillus subtilis ATCC 6633 Catalyze the 15- O-Glycosylation of Ganoderic Acid A. Int J Mol Sci 2018; 19:ijms19113469. [PMID: 30400606 PMCID: PMC6275011 DOI: 10.3390/ijms19113469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 02/04/2023] Open
Abstract
Bacillus subtilis ATCC (American type culture collection) 6633 was found to biotransform ganoderic acid A (GAA), which is a major lanostane triterpenoid from the medicinal fungus Ganoderma lucidum. Five glycosyltransferase family 1 (GT1) genes of this bacterium, including two uridine diphosphate-dependent glycosyltransferase (UGT) genes, BsUGT398 and BsUGT489, were cloned and overexpressed in Escherichia coli. Ultra-performance liquid chromatography confirmed the two purified UGT proteins biotransform ganoderic acid A into a metabolite, while the other three purified GT1 proteins cannot biotransform GAA. The optimal enzyme activities of BsUGT398 and BsUGT489 were at pH 8.0 with 10 mM of magnesium or calcium ion. In addition, no candidates showed biotransformation activity toward antcin K, which is a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea. One biotransformed metabolite from each BsUGT enzyme was then isolated with preparative high-performance liquid chromatography. The isolated metabolite from each BsUGT was identified as ganoderic acid A-15-O-β-glucoside by mass and nuclear magnetic resonance spectroscopy. The two BsUGTs in the present study are the first identified enzymes that catalyze the 15-O-glycosylation of triterpenoids.
Collapse
|
29
|
Antunes-Ricardo M, García-Cayuela T, Mendiola JA, Ibañez E, Gutiérrez-Uribe JA, Cano MP, Guajardo-Flores D. Supercritical CO2 enzyme hydrolysis as a pretreatment for the release of isorhamnetin conjugates from Opuntia ficus-indica (L.) Mill. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Zhang TT, Gong T, Hu ZF, Gu AD, Yang JL, Zhu P. Enzymatic Synthesis of Unnatural Ginsenosides Using a Promiscuous UDP-Glucosyltransferase from Bacillus subtilis. Molecules 2018; 23:E2797. [PMID: 30373312 PMCID: PMC6278262 DOI: 10.3390/molecules23112797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
Glycosylation, which is catalyzed by UDP-glycosyltransferases (UGTs), is an important biological modification for the structural and functional diversity of ginsenosides. In this study, the promiscuous UGT109A1 from Bacillus subtilis was used to synthesize unnatural ginsenosides from natural ginsenosides. UGT109A1 was heterologously expressed in Escherichia coli and then purified by Ni-NTA affinity chromatography. Ginsenosides Re, Rf, Rh1, and R1 were selected as the substrates to produce the corresponding derivatives by the recombinant UGT109A1. The results showed that UGT109A1 could transfer a glucosyl moiety to C3-OH of ginsenosides Re and R1, and C3-OH and C12-OH of ginsenosides Rf and Rh1, respectively, to produce unnatural ginsenosides 3,20-di-O-β-d-glucopyranosyl-6-O-[α-l-rhamnopyrano-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (1), 3,20-di-O-β-d-glucopyranosyl-6-O-[β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (6), 3-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (3), 3,12-di-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (2), 3,6-di-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (5), and 3,6,12-tri-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (4). Among the above products, 1, 2, 3, and 6 are new compounds. The maximal activity of UGT109A1 was achieved at the temperature of 40 °C, in the pH range of 8.0⁻10.0. The activity of UGT109A1 was considerably enhanced by Mg2+, Mn2+, and Ca2+, but was obviously reduced by Cu2+, Co2+, and Zn2+. The study demonstrated that UGT109A1 was effective in producing a series of unnatural ginsenosides through enzymatic reactions, which could pave a way to generate promising leads for new drug discovery.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Zong-Feng Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - An-Di Gu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
31
|
Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts 2018. [DOI: 10.3390/catal8090387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe) has been proven to possess some important bioactivities; however, the low aqueous solubility and stability of 8-OHDe limit its pharmaceutical and cosmeceutical applications. The present study focuses on glycosylation of 8-OHDe to improve its drawbacks in solubility and stability. According to the results of phylogenetic analysis with several identified flavonoid-catalyzing glycosyltransferases (GTs), three glycosyltransferase genes (BsGT110, BsGT292 and BsGT296) from the genome of the Bacillus subtilis ATCC 6633 strain were cloned and expressed in Escherichia coli. The three BsGTs were then purified and the glycosylation activity determined toward 8-OHDe. The results showed that only BsGT110 possesses glycosylation activity. The glycosylated metabolites were then isolated with preparative high-performance liquid chromatography and identified as two new isoflavone glucosides, 8-OHDe-7-O-β-glucoside and8-OHDe-8-O-β-glucoside, whose identity was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. The aqueous solubility of 8-OHDe-7-O-β-glucoside and 8-OHDe-8-O-β-glucoside is 9.0- and 4.9-fold, respectively, higher than that of 8-OHDe. Moreover, more than 90% of the initial concentration of the two 8-OHDe glucoside derivatives remained after 96 h of incubation in 50 mM of Tris buffer at pH 8.0. In contrast, the concentration of 8-OHDe decreased to 0.8% of the initial concentration after 96 h of incubation. The two new isoflavone glucosides might have potential in pharmaceutical and cosmeceutical applications.
Collapse
|
32
|
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Abstract
The biotransformation of antcin K, a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea, by Bacillus subtilis (B. subtilis) ATCC 6633 was studied. Four metabolites from the biotransformation were isolated with preparative high-performance liquid chromatography and identified as 25S-antcin K 26-O-β-glucoside, 25R-antcin K 26-O-β-glucoside, 25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside, and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside with mass and nuclear magnetic resonance spectral analysis. By using either 25S-antcin K 26-O-β-glucoside or 25R-antcin K 26-O-β-glucoside as the biotransformation precursor, it was proven that 25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside were biotransformed from 25S-antcin K 26-O-β-glucoside and 25R-antcin K 26-O-β-glucoside, respectively. To the best of our knowledge, this is the first study on the glycosylation of triterpenoids from A. cinnamomea, and the first time the succinylation of triterpenoid glycosides by microorganisms has been found. In addition, all four antcin K glucoside derivatives are new compounds.
Collapse
|
34
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
35
|
Chen D, Chen R, Xie K, Duan Y, Dai J. Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Chen D, Fan S, Chen R, Xie K, Yin S, Sun L, Liu J, Yang L, Kong J, Yang Z, Dai J. Probing and Engineering Key Residues for Bis-C-glycosylation and Promiscuity of a C-Glycosyltransferase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00376] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing 100050, People’s Republic of China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Sen Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Lili Sun
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong Guan Cun Southern Street, Beijing 100081, People’s Republic of China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Lin Yang
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhong Guan Cun Southern Street, Beijing 100081, People’s Republic of China
| | - Jianqiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing 100050, People’s Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, People’s Republic of China
| |
Collapse
|
37
|
Kim KM, Park JS, Choi H, Kim MS, Seo JH, Pandey RP, Kim JW, Hyun CG, Kim SY. Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1461212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kyu-Min Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin-Soo Park
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - HaeRi Choi
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Min-Seon Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Joo-Hyun Seo
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin Woo Kim
- Department of Food Science, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| | - Seung-Young Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
38
|
Pandey RP. Diversifying Natural Products with Promiscuous Glycosyltransferase Enzymes via a Sustainable Microbial Fermentation Approach. Front Chem 2017; 5:110. [PMID: 29255706 PMCID: PMC5722797 DOI: 10.3389/fchem.2017.00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ramesh P Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan, South Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Korea
| |
Collapse
|
39
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
40
|
Dai L, Li J, Yao P, Zhu Y, Men Y, Zeng Y, Yang J, Sun Y. Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. J Biotechnol 2017; 248:69-76. [DOI: 10.1016/j.jbiotec.2017.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 03/11/2017] [Indexed: 12/24/2022]
|
41
|
Pandey RP, Sohng JK. Glycosyltransferase-Mediated Exchange of Rare Microbial Sugars with Natural Products. Front Microbiol 2016; 7:1849. [PMID: 27899922 PMCID: PMC5110563 DOI: 10.3389/fmicb.2016.01849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ramesh P Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae K Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| |
Collapse
|
42
|
Pandey RP, Parajuli P, Chu LL, Kim SY, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Yin S, Kong JQ. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-D-apiose/UDP-D-xylose synthase families from Ornithogalum caudatum Ait. PLANT CELL REPORTS 2016; 35:2403-2421. [PMID: 27591771 DOI: 10.1007/s00299-016-2044-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.
Collapse
Affiliation(s)
- Sen Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Qiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Cho AR, Lee SJ, Kim BG, Ahn JH. Biosynthesis of three N-acetylaminosugar-conjugated flavonoids using engineered Escherichia coli. Microb Cell Fact 2016; 15:182. [PMID: 27776529 PMCID: PMC5078965 DOI: 10.1186/s12934-016-0582-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars. A novel nucleotide sugar can be synthesized in Escherichia coli by introducing nucleotide biosynthetic genes from other microorganisms into E. coli. The engineered E. coli strains can be used as a platform for the synthesis of novel glycones. Results Four genes, Pdeg (UDP-N-acetylglucosamine C4,6-dehydratase), Preq (UDP-4-reductase), UDP-GlcNAc 6-DH (UDP-N-acetylglucosamine 6-dehydrogenase), and UXNAcS (UDP-N-acetylxylosamine synthase), were employed to synthesize UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid, and UDP-N-acetylxylosamine in E. coli. We engineered an E. coli nucleotide sugar biosynthetic pathway to increase the pool of substrate for the target nucleotide sugars. Uridine diphosphate dependent glycosyltransferase (UGT) was also selected and introduced into E. coli. Using engineered E. coli, high levels of three novel flavonoid glycosides were obtained; 158.3 mg/L quercetin 3-O-(N-acetyl)quinovosamine, 172.5 mg/L luteolin 7-O-(N-acetyl)glucosaminuronic acid, and 160.8 mg/L quercetin 3-O-(N-acetyl)xylosamine. Conclusions We reconstructed an E. coli nucleotide pathway for the synthesis of UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid and UDP-N-acetylxylosamine in an E. coli galU (UDP-glucose 1-phosphate uridylyltransferase) or pgm (phosphoglucomutase) deletion mutant. Using engineered E. coli strains harboring a specific UGT, three novel flavonoids glycones were synthesized. The E. coli strains used in this study can be used for the synthesis of diverse glycones. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0582-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Ra Cho
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea
| | - Su Jin Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea
| | - Bong Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju, Gyeongsangman-do, 660-758, South Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
45
|
Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. J Biotechnol 2016; 233:121-8. [DOI: 10.1016/j.jbiotec.2016.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
|
46
|
Wang H, Yang Y, Lin L, Zhou W, Liu M, Cheng K, Wang W. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb Cell Fact 2016; 15:134. [PMID: 27491546 PMCID: PMC4973555 DOI: 10.1186/s12934-016-0535-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Glycosylation of flavonoids is a promising approach to improve the pharmacokinetic properties and biological activities of flavonoids. Recently, many efforts such as enzymatic biocatalysis and the engineered Escherichia coli biotransformation have increased the production of flavonoid glucosides. However, the low yield of flavonoid glucosides can not meet the increasing demand for human medical and dietary needs. Saccharomyces cerevisiae is a generally regarded as safe (GRAS) organism that has several attractive characteristics as a metabolic engineering platform for the production of flavonoid glucosides. However, endogenous glucosidases of S. cerevisiae as a whole-cell biocatalyst reversibly hydrolyse the glucosidic bond and hinder the biosynthesis of the desired products. In this study, a model flavonoid, scutellarein, was used to exploit how to enhance the production of flavonoid glucosides in the engineered S. cerevisiae. RESULTS To produce flavonoid glucosides, three flavonoid glucosyltransferases (SbGTs) from Scutellaria baicalensis Georgi were successfully expressed in E. coli, and their biochemical characterizations were identified. In addition, to synthesize the flavonoid glucosides in whole-cell S. cerevisiae, SbGT34 was selected for constructing the engineering yeast. Three glucosidase genes (EXG1, SPR1, YIR007W) were knocked out using homologous integration, and the EXG1 gene was determined to be the decisive gene of S. cerevisiae in the process of hydrolysing flavonoid glucosides. To further enhance the potential glycosylation activity of S. cerevisiae, two genes encoding phosphoglucomutase and UTP-glucose-1-phosphate uridylyltransferase involved in the synthetic system of uridine diphosphate glucose were over-expressed in S. cerevisiae. Consequently, approximately 4.8 g (1.2 g/L) of scutellarein 7-O-glucoside (S7G) was produced in 4 L of medium after 54 h of incubation in a 10-L fermenter while being supplied with ~3.5 g of scutellarein. CONCLUSIONS The engineered yeast harbouring SbGT with a deletion of glucosidases produced more flavonoid glucosides than strains without a deletion of glucosidases. This platform without glucosidase activity could be used to modify a wide range of valued plant secondary metabolites and to explore of their biological functions using whole-cell S. cerevisiae as a biocatalyst.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Lin Lin
- College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Wenlong Zhou
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Minzhi Liu
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Kedi Cheng
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China.
| |
Collapse
|
47
|
An DG, Yang SM, Kim BG, Ahn JH. Biosynthesis of two quercetin O-diglycosides in Escherichia coli. ACTA ACUST UNITED AC 2016; 43:841-9. [DOI: 10.1007/s10295-016-1750-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/15/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.
Collapse
Affiliation(s)
- Dae Gyun An
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| | - So Mi Yang
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| | - Bong Gyu Kim
- grid.440929.2 0000000417707889 Department of Forest Resources Gyeongnam National University of Science and Technology 33 Dongjin-ro, Jinju-si 660-758 Gyeongsangman-do Republic of Korea
| | - Joong-Hoon Ahn
- grid.258676.8 0000000405328339 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University 05029 Seoul Korea
| |
Collapse
|
48
|
Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol 2016; 100:4269-81. [PMID: 27029191 DOI: 10.1007/s00253-016-7465-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/04/2023]
Abstract
The glycosylation of bioactive compounds, such as flavonoids, is of particular relevance, as it modulates many of their pharmacokinetic parameters. This article reviews the literature between 2010 and the end of 2015 that deals with the enzymatic O-glycosylation of this class of compounds. Enzymes of glycosyltransferase family 1 remain the biocatalysts of choice for glycodiversification of flavonoids, in spite of relatively low yields. Transfers of 14 different sugars, in addition to glucose, were reported. Several Escherichia coli strains were metabolically engineered to enable a (more efficient) synthesis of the required donor during in vivo glycosylations. For the transfer of glucose, enzymes of glycoside hydrolase families 13 and 70 were successfully assayed with several flavonoids. The number of acceptor substrates and of regiospecificities characterized so far is smaller than for glycosyltransferases. However, their glycosyl donors are much cheaper and yields are considerably higher. A few success stories of enzyme engineering were reported. These improved the catalytic efficiency as well as donor, acceptor, or product ranges. Currently, the development of appropriate high-throughput screening systems appears to be the major bottleneck for this powerful technology.
Collapse
|
49
|
Byeon Y, Back K. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase. Appl Microbiol Biotechnol 2016; 100:6683-6691. [PMID: 27005412 DOI: 10.1007/s00253-016-7458-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms.
Collapse
Affiliation(s)
- Yeong Byeon
- Department of Biotechnology, Bioenergy Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
50
|
Yin S, Kong JQ. Transcriptome-guided discovery and functional characterization of two UDP-sugar 4-epimerase families involved in the biosynthesis of anti-tumor polysaccharides in Ornithogalum caudatum. RSC Adv 2016. [DOI: 10.1039/c6ra03817d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A transcriptome-guided discovery and functional identification of UGE and UXE families were presented. Importantly, OcUGE1/2 and OcUXE1 were preliminarily revealed to be responsible for the biosynthesis of anticancer polysaccharides inO. caudatum.
Collapse
Affiliation(s)
- Sen Yin
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing
- China
| | - Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing
- China
| |
Collapse
|