1
|
Cao Z, Li C, Jiang H, Secundo F, Mao X. Molecular modification of a GH84 β-N-acetylglucosaminidase from Streptomyces violascens for synthesis of lacto-N-triose II using whey powder and chitin-derived N-acetyl chitobiose. Food Chem 2025; 474:143046. [PMID: 39919427 DOI: 10.1016/j.foodchem.2025.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
β-N-acetylhexosaminidases garnered attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as the backbone precursor of human milk oligosaccharides (HMOs). In this study, β-N-acetylglucosaminidases Hex(Sv)-2557 from Streptomyces violascens ATCC 27968 was engineered based on a stabilizing intermediate strategy to improve its transglycosylation activity for LNT2 synthesis. A mutant Hex(Sv)-2557(D297K) with a transglycosylation activity of 38.4 U/mg with pNP-GlcNAc -1.9-fold higher than that of Hex(Sv)-2557- was obtained and characterized. Instead, the hydrolase activity of the mutant was 73 % lower compared to the wild-type enzyme. Importantly, the mutant can use N-acetyl chitobiose (GlcNAc2) as the donor for LNT2 synthesis. The LNT2 yield of 14.85 % was obtained when the synthetic reaction, catalyzed by the mutant Hex(Sv)-2557(D297K), started from whey powder and GlcNAc2-prepared from chitin by chitinase ChiA and ChiB. This study has altered the donor for the action by directed modification and promoting the high-value utilization of whey powder and chitin.
Collapse
Affiliation(s)
- Zhuoning Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chengqiang Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
2
|
Guang C, Du Z, Meng J, Zhu Y, Zhu Y, Mu W. Recent Progress in Physiological Significance and Biosynthesis of Lacto- N-triose II: Insights into a Crucial Biomolecule. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19539-19548. [PMID: 39188079 DOI: 10.1021/acs.jafc.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lacto-N-triose II (LNTri II), an important precursor for human milk oligosaccharide (HMOs) synthesis, has garnered significant attention due to its structural features and physiological properties. Composed of galactose (Gal), N-acetylglucosamine (GlcNAc), and glucose (Glc), with the chemical structure GlcNAcβ1,3Galβ1,4Glc, the distinctive structure of LNTri II confers various physiological functions such as promoting the growth of beneficial bacteria, regulating the infant immune system, and preventing certain gastrointestinal diseases. Extensive research efforts have been dedicated to elucidating efficient enzymatic synthesis pathways for LNTri II production, with particular emphasis on the transglycosylation activity of β-N-acetylhexosaminidases and the action of β-1,3-N-acetylglucosaminyltransferases. Additionally, metabolic engineering and cell factory approaches have been explored, harnessing the potential of engineered microbial hosts for the large-scale biosynthesis of LNTri II. This review summarizes the structure, derivatives, physiological effects, and biosynthesis of LNTri II.
Collapse
Affiliation(s)
- Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yunqi Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
3
|
Kumari R, Kumar M, Dadheech PK, Vivekanand V, Pareek N. Response surface optimization, purification, characterization and short-chain chitooligosaccharides production from an acidic, thermostable chitinase from Thermomyces dupontii. Int J Biol Macromol 2024; 267:131362. [PMID: 38583843 DOI: 10.1016/j.ijbiomac.2024.131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/10/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitin, recovered in huge amounts from coastal waste, may biocatalytically valorized for utilization in food and biotech sectors. Conventional chemical-based conversion makes use of significant volumes of hazardous acid and alkali. Alternatively, enzymes offer better process control and generation of homogeneous products. Process variables were derived to achieve augmented levels of chitinase (3.8809 Ul-1 h-1) productivity from a novel thermophilic fungal strain Thermomyces dupontii, ITCC 9104 following incubation (96 h, 45 °C). An acidic thermostable chitinase TdChiT having molecular mass of 60 kDa has been purified. Optimal TdChiT activity has been demonstrated at 70 °C and pH 5. Notably decreased activity over a broad range of temperature and pH was observed following deglycosylation. Half-life, activation energy, Gibbs free energy, enthalpy and entropy for denaturation of TdChiT at its optimum temperature were 197.40 min, 105.48 kJ mol-1, 100.59 kJ mol-1, 102.64 kJ mol-1 and 5.95 J mol-1 K-1. TdChiT has specificity towards colloidal chitin and (GlcNAc)2-4. Metal ions viz. Mn2+, Ca2+ and Co2+ and nonionic surfactants notably enhanced chitinase activity. Thin layer chromatography analysis has revealed effective hydrolysis of colloidal chitin and (GlcNAc)2-4. TdChiT may potentially be employed for design of better, eco-friendly and less resource-intensive industrial procedures for upcycling of crustacean waste into value-added organonitrogens.
Collapse
Affiliation(s)
- Rajni Kumari
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Pawan K Dadheech
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India.
| |
Collapse
|
4
|
Li C, Cao Z, Jiang H, Secundo F, Mao X. Characterization of a GH20 β- N-Acetylhexosaminidase from Flavobacterium algicola Suitable to Synthesize Lacto- N-triose II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4849-4857. [PMID: 38386626 DOI: 10.1021/acs.jafc.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
β-N-Acetylhexosaminidases have attracted much attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as a backbone precursor of human milk oligosaccharides (HMOs). In this study, a novel glycoside hydrolase (GH) 20 family β-N-acetylhexosaminidase, FlaNag2353, from Flavobacterium algicola was biochemically characterized and applied to synthesize LNT2. FlaNag2353 displayed optimal activity to p-nitrophenyl N-acetyl-β-d-glucosaminide (pNP-GlcNAc) at 40 °C and pH 8.0. In addition to its excellent hydrolysis activity toward pNP-GlcNAc and chitooligosaccharides, FlaNag2353 showed trans-glycosylation activity. Under conditions of pH 9.0 and 55 °C for 2 h and utilizing 200 mM lactose and 10 mM pNP-GlcNAc, FlaNag2353 synthesized LNT2 with a conversion ratio of 4.15% calculated from pNP-GlcNAc. Moreover, when applied to LNT2 synthesis with 10 mM pNP-GlcNAc and 9.7% (w/v) industrial waste whey powder, FlaNag2353 achieved a conversion ratio of 2.39%. This study has significant implications for broadening the applications of GH20 β-N-acetylhexosaminidases and promoting the high-value utilization of whey powder.
Collapse
Affiliation(s)
- Chengqiang Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Zhuoning Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
5
|
Liu Y, Qin Z, Wang C, Jiang Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr Polym 2023; 315:121019. [PMID: 37230627 DOI: 10.1016/j.carbpol.2023.121019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No.99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing 100083, People's Republic of China.
| |
Collapse
|
6
|
Dwyer K, Bentley IS, Fitzpatrick DA, Saleh AA, Tighe E, McGleenan E, Gaffney D, Walsh G. Recombinant production, characterization and industrial application testing of a novel acidic exo/endo-chitinase from Rasamsonia emersonii. Extremophiles 2023; 27:10. [PMID: 37071215 DOI: 10.1007/s00792-023-01293-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
An acid-active exo/endo-chitinase; comprising a GH18 catalytic domain and substrate insertion domain; originating from the thermophilic filamentous fungus Rasamsonia emersonii, was expressed in Pichia pastoris. In silico analysis including phylogenetic analysis, and recombinant production, purification, biochemical characterisation, and industrial application testing, was carried out. The expressed protein was identified by SDS-PAGE as a smear from 56.3 to 125.1 kDa, which sharpens into bands at 46.0 kDa, 48.4 kDa and a smear above 60 kDa when treated with PNGase F. The acid-active chitinase was primarily a chitobiosidase but displayed some endo-chitinase and acetyl-glucosamidase activity. The enzyme was optimally active at 50 °C, and markedly low pH of 2.8. As far as the authors are aware, this is the lowest pH optima reported for any fungal chitinase. The acid-active chitinase likely plays a role in chitin degradation for cell uptake in its native environment, perhaps in conjunction with a chitin deacetylase. Comparative studies with other R. emersonii chitinases indicate that they may play a synergistic role in this. The acid-active chitinase displayed some efficacy against non-treated substrates; fungal chitin and chitin from shrimp. Thus, it may be suited to industrial chitin hydrolysis reactions for extraction of glucosamine and chitobiose at low pH.
Collapse
Affiliation(s)
- Kelly Dwyer
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland.
- Chemical Sciences Department, University of Limerick, Castletroy, Limerick, Ireland.
| | - Ian S Bentley
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | | | - Aliabbas A Saleh
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Emma Tighe
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Eibhilin McGleenan
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Darragh Gaffney
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Gary Walsh
- Chemical Sciences Department, University of Limerick, Castletroy, Limerick, Ireland.
| |
Collapse
|
7
|
Liu Y, Yan Q, Ma J, Wang J, Jiang Z, Yang S. Directed evolution of a β-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose II and lacto-N-neotetraose synthesis from chitin. Enzyme Microb Technol 2023; 164:110177. [PMID: 36549095 DOI: 10.1016/j.enzmictec.2022.110177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
In our previous study, a β-N-acetylhexosaminidase (HaHex74) from Haloferula sp. showing high human milk oligosaccharides (HMOs) synthesis ability was identified and characterized. In this study, HaHex74 was further engineered by directed evolution and site-saturation mutagenesis to improve its transglycosylation activity for HMOs synthesis. A mutant (mHaHex74) with improved transglycosylation activity (HaHex74-Asn401Ile/His394Leu) was obtained and characterized. mHaHex74 exhibited maximal activity at pH 5.5 and 35 °C, respectively, which were distinct from that of HaHex74 (pH 6.5 and 45 °C). Moreover, mHaHex74 showed the highest LNT2 conversion ratio of 28.2% from N,N'-diacetyl chitobiose (GlcNAc2), which is 2.2 folds higher than that of HaHex74. A three-enzyme cascade reaction for the synthesis of LNT2 and LNnT from chitin was performed in a 5-L reactor, and the contents of LNT2 and LNnT reached up to 15.0 g L1 and 4.9 g L1, respectively. Therefore, mHaHex74 maybe a good candidate for enzymatic synthesis of HMOs.
Collapse
Affiliation(s)
- Yihao Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Jianyu Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| |
Collapse
|
8
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
9
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
10
|
Hu D, Wu H, Zhu Y, Zhang W, Mu W. Engineering Escherichia coli for highly efficient production of lacto-N-triose II from N-acetylglucosamine, the monomer of chitin. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:198. [PMID: 34625117 PMCID: PMC8501739 DOI: 10.1186/s13068-021-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lacto-N-triose II (LNT II), an important backbone for the synthesis of different human milk oligosaccharides, such as lacto-N-neotetraose and lacto-N-tetraose, has recently received significant attention. The production of LNT II from renewable carbon sources has attracted worldwide attention from the perspective of sustainable development and green environmental protection. RESULTS In this study, we first constructed an engineered E. coli cell factory for producing LNT II from N-acetylglucosamine (GlcNAc) feedstock, a monomer of chitin, by introducing heterologous β-1,3-acetylglucosaminyltransferase, resulting in a LNT II titer of 0.12 g L-1. Then, lacZ (lactose hydrolysis) and nanE (GlcNAc-6-P epimerization to ManNAc-6-P) were inactivated to further strengthen the synthesis of LNT II, and the titer of LNT II was increased to 0.41 g L-1. To increase the supply of UDP-GlcNAc, a precursor of LNT II, related pathway enzymes including GlcNAc-6-P deacetylase, glucosamine synthase, and UDP-N-acetylglucosamine pyrophosphorylase, were overexpressed in combination, optimized, and modulated. Finally, a maximum titer of 15.8 g L-1 of LNT II was obtained in a 3-L bioreactor with optimal enzyme expression levels and β-lactose and GlcNAc feeding strategy. CONCLUSIONS Metabolic engineering of E. coli is an effective strategy for LNT II production from GlcNAc feedstock. The titer of LNT II could be significantly increased by modulating the gene expression strength and blocking the bypass pathway, providing a new utilization for GlcNAc to produce high value-added products.
Collapse
Affiliation(s)
- Duoduo Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Recombinant production and characterisation of two chitinases from Rasamsonia emersonii, and assessment of their potential industrial applicability. Appl Microbiol Biotechnol 2021; 105:7769-7783. [PMID: 34581845 DOI: 10.1007/s00253-021-11578-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Rasamsonia emersonii (previously Talaromyces emersonii) is a thermophilic filamentous fungus displaying optimum growth at 45 °C. It has a history of use in commercial food enzyme production. Its unfractionated chitinolytic secretome was partially characterised in the early 1990s; however, no individual chitinase from this source has been described in literature previously. This study describes two GH18 chitinases originating from the R. emersonii genome, expressed in the methylotrophic yeast P. pastoris. Chit1 comprises of a GH18 catalytic domain and Chit2 comprises of a GH18 catalytic domain and a chitin-binding motif at the C-terminal. The chitinases were expressed as glycoproteins. The apparent molecular weight of Chit1 was 35.8-42.1 kDa with a smearing tail associated with glyco-sidechains visible up to 72.2 kDa. This became two bands of 30.8 and 29.0 kDa upon de-glycosylation. The apparent molecular weight of Chit2 was 50.4 kDa, reducing to 48.2 kDa upon de-glycosylation. Both chitinases displayed endo-chitinase and chitobiosidase activity, temperature optima of 50-55 °C and low pH optima (pH 4.5 or lower); Chit1 displayed a pH optimum of 3.5, retaining > 60% maximum activity at pH 2.2, a pH range lower than most enzymes of fungal origin. Chit2 displayed the highest chitin-degrading ability at 3456 µmol/mg on 4-NP-triacetylchitotriose, but lost activity faster than Chit1, which displayed 403 µmol/mg on the same substrate. The predicted D values (time required to reduce the enzyme activity to 10% of its original value at 50 °C) were 19.2 and 2.3 days for Chit1 and Chit2, respectively. Thus, Chit1 can be considered one of few hyperthermostable chitinase enzymes described in literature to date. Their physicochemical properties render these chitinases likely suitable for shrimp chitin processing including one-step chitin hydrolysis and alternative sustainable protein processing and the attractive emerging application of mushroom food waste valorisation.Key points• Two GH18 chitinases originating from the industrially relevant thermophilic fungus R. emersonii were cloned and expressed in P. pastoris.• The purified recombinant chitinases showed low pH and high temperature optima and appreciable thermostability at industrially relevant temperatures.• The chitinases displayed characteristics that indicate their likely suitability to several industrial applications including sustainable alternative protein processing, food waste valorisation of commercial mushroom production and one-step shrimp chitin processing.
Collapse
|
12
|
Zhu Y, Luo G, Wan L, Meng J, Lee SY, Mu W. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- N-tetraose, and lacto- N-neotetraose. Crit Rev Biotechnol 2021; 42:578-596. [PMID: 34346270 DOI: 10.1080/07388551.2021.1944973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human milk oligosaccharides (HMOs) have recently attracted ever-increasing interest because of their versatile physiological functions. In HMOs, two tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), constitute the essential components, each accounting 6% (w/w) of total HMOs. Also, they serve as core structures for fucosylation and sialylation, generating functional derivatives and elongation generating longer chains of core structures. LNT, LNnT, and their fucosylated and/or sialylated derivatives account for more than 30% (w/w) of total HMOs. For derivatization, LNT and LNnT can be modified into a series of complex fucosylated and/or sialylated HMOs by transferring fucose residues at α1,2-, α1,3-, and α1,3/4-linkage and/or sialic acid residues at α2,3- and α2,6-linkage. Such structural diversity allows these HMOs to possess great commercial value and an application potential in the food and pharmaceutical industries. In this review, we first elaborate the physiological functions of these tetrasaccharides and derivatives. Next, we extensively review recent developments in the biosynthesis of LNT, LNnT, and their derivatives in vitro and in vivo by employing advanced enzymatic reaction systems and metabolic engineering strategies. Finally, future perspectives in the synthesis of these HMOs using enzymatic and metabolic engineering approaches are presented.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Calzoni E, Cesaretti A, Montegiove N, Di Michele A, Emiliani C. Enhanced Stability of Long-Living Immobilized Recombinant β-d- N-Acetyl-Hexosaminidase A on Polylactic Acid (PLA) Films for Potential Biomedical Applications. J Funct Biomater 2021; 12:jfb12020032. [PMID: 34064736 PMCID: PMC8162980 DOI: 10.3390/jfb12020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/24/2023] Open
Abstract
β-d-N-acetyl-hexosaminidase (Hex, EC 3.2.1.52) is an acid hydrolase that catalyzes the cleavage of the β-1,4 bond in N-acetyl-d-galactosamine (Gal-NAc) and N-acetyl-d-glucosamine (Glc-NAc) from the non-reducing end of oligosaccharides and glycoconjugates. It is widely expressed in both the prokaryotic and eukaryotic world, where it performs multiple and important functions. Hex has antifungal activity in plants, is capable of degrading many biological substrates, and can play an important role in the biomedical field for the treatment of Tay-Sachs and Sandhoff diseases. With the aim being able to obtain a device with a stable enzyme, a method of covalent immobilization on polylactic acid (PLA) films was developed for the A isoform of the β-d-N-acetyl-hexosaminidase enzyme (HexA), produced in a recombinant way from Human Embryonic Kidney-293 (HEK-293) cells and suitably purified. An in-depth biochemical characterization of the immobilized enzyme was carried out, evaluating the optimal temperature, thermal stability, pH parameters, and Km value. Moreover, the stability of the enzymatic activity over time was assessed. The results obtained showed an improvement in terms of kinetic parameters and stability to heat for the enzyme following immobilization and the presence of HexA in two distinct immobilized forms, with an unexpected ability for one of them to maintain its functionality for a long period of time (over a year). The stability and functionality of the enzyme in its immobilized form are therefore extremely promising for potential biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (E.C.); (N.M.); (C.E.)
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (E.C.); (N.M.); (C.E.)
- Center of Excellence on Innovative Nanostructured Materials—CEMIN, University of Perugia, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-7436
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (E.C.); (N.M.); (C.E.)
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (E.C.); (N.M.); (C.E.)
- Center of Excellence on Innovative Nanostructured Materials—CEMIN, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
15
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
16
|
Liu Y, Ma J, Shi R, Li T, Yan Q, Jiang Z, Yang S. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Liu YH, Wang L, Huang P, Jiang ZQ, Yan QJ, Yang SQ. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem 2020; 332:127438. [DOI: 10.1016/j.foodchem.2020.127438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
|
18
|
Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, Salazar-Pereda V, Bautista-Ávila M, Cruz-Guerrero AE, Flores-Aguilar JF, González-Olivares LG. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr 2020; 62:181-214. [DOI: 10.1080/10408398.2020.1813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel Pérez-Escalante
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Sergio Alatorre-Santamaría
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Araceli Castañeda-Ovando
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Verónica Salazar-Pereda
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Mirandeli Bautista-Ávila
- Universidad Autónoma del Estado de Hidalgo. Área Académica de Farmacia, Instituto de Ciencias de la Salud. Ex-Hacienda la Concepción. San Agustín Tlaxiaca, Hidalgo, México
| | - Alma Elizabeth Cruz-Guerrero
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Juan Francisco Flores-Aguilar
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Luis Guillermo González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
19
|
Zhang A, Mo X, Zhou N, Wang Y, Wei G, Chen J, Chen K, Ouyang P. A novel bacterial β- N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:115. [PMID: 32612678 PMCID: PMC7324980 DOI: 10.1186/s13068-020-01754-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND N-Acetyl glucosamine (GlcNAc) and N-Acetyl chitooligosaccharides (N-Acetyl COSs) exhibit many biological activities, and have been widely used in the pharmaceutical, agriculture, food, and chemical industries. Particularly, higher N-Acetyl COSs with degree of polymerization from 4 to 7 ((GlcNAc)4-(GlcNAc)7) show good antitumor and antimicrobial activity, as well as possessing strong stimulating activity toward natural killer cells. Thus, it is of great significance to discover a β-N-acetyl glucosaminidase (NAGase) that can not only produce GlcNAc, but also synthesize N-Acetyl COSs. RESULTS The gene encoding the novel β-N-acetyl glucosaminidase, designated CmNAGase, was cloned from Chitinolyticbacter meiyuanensis SYBC-H1. The deduced amino acid sequence of CmNAGase contains a glycoside hydrolase family 20 catalytic module that shows low identity (12-35%) with the corresponding domain of most well-characterized NAGases. The CmNAGase gene was highly expressed with an active form in Escherichia coli BL21 (DE3) cells. The specific activity of purified CmNAGase toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) was 4878.6 U/mg of protein. CmNAGase had a molecular mass of 92 kDa, and its optimum activity was at pH 5.4 and 40 °C. The V max, K m, K cat, and K cat/K m of CmNAGase for pNP-GlcNAc were 16,666.67 μmol min-1 mg-1, 0.50 μmol mL-1, 25,555.56 s-1, and 51,111.12 mL μmol-1 s-1, respectively. Analysis of the hydrolysis products of N-Acetyl COSs and colloidal chitin revealed that CmNAGase is a typical exo-acting NAGase. Particularly, CmNAGase can synthesize higher N-Acetyl COSs ((GlcNAc)3-(GlcNAc)7) from (GlcNAc)2-(GlcNAc)6, respectively, showed that it possesses transglycosylation activity. In addition, CmNAGase also has reverse hydrolysis activity toward GlcNAc, synthesizing various linked GlcNAc dimers. CONCLUSIONS The observations recorded in this study that CmNAGase is a novel NAGase with exo-acting, transglycosylation, and reverse hydrolysis activities, suggest a possible application in the production of GlcNAc or higher N-Acetyl COSs.
Collapse
Affiliation(s)
- Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Xiaofang Mo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Jie Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|
20
|
Abstract
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in cell wall peptidoglycan synthesis, analogously, fungal β-N-acetylhexosaminidases act on cell wall chitin. The enzymes work via a distinct substrate-assisted mechanism that utilizes the 2-acetamido group as nucleophile. Curiously, the β-N-acetylhexosaminidases possess an inherent trans-glycosylation ability which is potentially useful for biocatalytic synthesis of functional carbohydrates, including biomimetic synthesis of human milk oligosaccharides and other glycan-functionalized compounds. In this review, we summarize the reaction engineering approaches (donor substrate activation, additives, and reaction conditions) that have proven useful for enhancing trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. We provide comprehensive overviews of reported synthesis reactions with GH20 enzymes, including tables that list the specific enzyme used, donor and acceptor substrates, reaction conditions, and details of the products and yields obtained. We also describe the active site traits and mutations that appear to favor trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. Finally, we discuss novel protein engineering strategies and suggest potential “hotspots” for mutations to promote trans-glycosylation activity in GH20 for efficient synthesis of specific functional carbohydrates and other glyco-engineered products.
Collapse
|
21
|
Identification and Characterization of a β- N-Acetylhexosaminidase with a Biosynthetic Activity from the Marine Bacterium Paraglaciecola hydrolytica S66 T. Int J Mol Sci 2020; 21:ijms21020417. [PMID: 31936522 PMCID: PMC7014002 DOI: 10.3390/ijms21020417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
β-N-Acetylhexosaminidases are glycoside hydrolases (GHs) acting on N-acetylated carbohydrates and glycoproteins with the release of N-acetylhexosamines. Members of the family GH20 have been reported to catalyze the transfer of N-acetylglucosamine (GlcNAc) to an acceptor, i.e., the reverse of hydrolysis, thus representing an alternative to chemical oligosaccharide synthesis. Two putative GH20 β-N-acetylhexosaminidases, PhNah20A and PhNah20B, encoded by the marine bacterium Paraglaciecola hydrolytica S66T, are distantly related to previously characterized enzymes. Remarkably, PhNah20A was located by phylogenetic analysis outside clusters of other studied β-N-acetylhexosaminidases, in a unique position between bacterial and eukaryotic enzymes. We successfully produced recombinant PhNah20A showing optimum activity at pH 6.0 and 50 °C, hydrolysis of GlcNAc β-1,4 and β-1,3 linkages in chitobiose (GlcNAc)2 and GlcNAc-1,3-β-Gal-1,4-β-Glc (LNT2), a human milk oligosaccharide core structure. The kinetic parameters of PhNah20A for p-nitrophenyl-GlcNAc and p-nitrophenyl-GalNAc were highly similar: kcat/KM being 341 and 344 mM−1·s−1, respectively. PhNah20A was unstable in dilute solution, but retained full activity in the presence of 0.5% bovine serum albumin (BSA). PhNah20A catalyzed the formation of LNT2, the non-reducing trisaccharide β-Gal-1,4-β-Glc-1,1-β-GlcNAc, and in low amounts the β-1,2- or β-1,3-linked trisaccharide β-Gal-1,4(β-GlcNAc)-1,x-Glc by a transglycosylation of lactose using 2-methyl-(1,2-dideoxy-α-d-glucopyrano)-oxazoline (NAG-oxazoline) as the donor. PhNah20A is the first characterized member of a distinct subgroup within GH20 β-N-acetylhexosaminidases.
Collapse
|
22
|
Schmölzer K, Weingarten M, Baldenius K, Nidetzky B. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org Biomol Chem 2020; 17:5661-5665. [PMID: 31094393 DOI: 10.1039/c9ob00424f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lacto-N-biose 1,2-oxazoline was prepared chemo-enzymatically and shown to be a donor substrate for β-1,3-glycosylation of lactose by the wild-type and glycosynthase variants (D320E, D320A, Y419F) of Bifidobacterium bifidum β-N-hexosaminidase. Lacto-N-tetraose, a core structure of human milk oligosaccharides, was formed in 20-60% yield of donor substrate (up to 8 mM product titre), depending on the degree of selectivity control by the enzyme used.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010 Graz, Austria.
| | | | | | | |
Collapse
|
23
|
Chen X, Jin L, Jiang X, Guo L, Gu G, Xu L, Lu L, Wang F, Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl Microbiol Biotechnol 2019; 104:661-673. [PMID: 31822984 DOI: 10.1007/s00253-019-10253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
We have recently derived a β-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcβ1-3Galβ1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcβ1-3Galβ1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-β-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-β-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.
Collapse
Affiliation(s)
- Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xukai Jiang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Longcheng Guo
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Guofeng Gu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
24
|
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 2019; 37:667-697. [DOI: 10.1016/j.biotechadv.2019.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
|
25
|
β-N-Acetylhexosaminidases-the wizards of glycosylation. Appl Microbiol Biotechnol 2019; 103:7869-7881. [PMID: 31401752 DOI: 10.1007/s00253-019-10065-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
β-N-Acetylhexosaminidases (EC 3.2.1.52) are a unique family of glycoside hydrolases with dual substrate specificity and a particular reaction mechanism. Though hydrolytic enzymes per se, their good stability, easy recombinant production, absolute stereoselectivity, and a broad substrate specificity predestine these enzymes for challenging applications in carbohydrate synthesis. This mini-review aims to demonstrate the catalytic potential of β-N-acetylhexosaminidases in a range of unusual reactions, processing of unnatural substrates, formation of unexpected products, and demanding reaction designs. The use of unconventional media can considerably alter the progress of transglycosylation reactions. By means of site-directed mutagenesis, novel catalytic machineries can be constructed. Glycosylation of difficult substrates such as sugar nucleotides was accomplished, and the range of afforded glycosidic bonds comprises unique non-reducing sugars. Specific functional groups may be tolerated in the substrate molecule, which makes β-N-acetylhexosaminidases invaluable allies in difficult synthetic problems.
Collapse
|
26
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
27
|
Muschiol J, Meyer AS. A chemo-enzymatic approach for the synthesis of human milk oligosaccharide backbone structures. ACTA ACUST UNITED AC 2018; 74:85-89. [DOI: 10.1515/znc-2018-0149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/16/2018] [Indexed: 11/15/2022]
Abstract
Abstract
The ability of an engineered β-N-acetylhexosaminidase to utilize a reactive oxazoline as donor molecule for transglycosylation reaction to synthesize human milk oligosaccharide backbone structures was studied. The human milk oligosaccharide precursor lacto-N-triose II and three regioisomers could be synthesized using the oxazoline, which was either in situ-generated resulting in a chemo-enzymatic sequential cascade or was used as a purified compound. The highest observed concentration of overall transglycosylation products in a cascade reaction was 13.7 mM after 18.5 h, whereas the use of purified oxazoline resulted in 25.0 mM of transglycosylation products after 6.5 h. Remarkably, the in situ-generated oxazoline could be used without any further purification and it was shown that the used enzyme tolerated significant amounts of reagents such as triethylamine, which is reported for the first time for an enzyme from the glycoside hydrolase family 20.
Collapse
Affiliation(s)
- Jan Muschiol
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering , Technical University of Denmark , Søltofts Plads 221 , 2800 Kongens Lyngby , Denmark
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering , Technical University of Denmark , Søltofts Plads 221 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
28
|
Jamek SB, Muschiol J, Holck J, Zeuner B, Busk PK, Mikkelsen JD, Meyer AS. Loop Protein Engineering for Improved Transglycosylation Activity of a β‐
N
‐Acetylhexosaminidase. Chembiochem 2018; 19:1858-1865. [DOI: 10.1002/cbic.201800181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Shariza B. Jamek
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
- Faculty of Chemical and Natural Resources EngineeringUniversity Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang, Kuantan, Pahang Malaysia
| | - Jan Muschiol
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jesper Holck
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Birgitte Zeuner
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Peter K. Busk
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jørn D. Mikkelsen
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Anne S. Meyer
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| |
Collapse
|
29
|
Enzymatic properties of β-N-acetylglucosaminidases. Appl Microbiol Biotechnol 2017; 102:93-103. [PMID: 29143882 DOI: 10.1007/s00253-017-8624-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce N-acetylglucosamine (GlcNAc) and have a wide range of promising applications in the food, energy, and pharmaceutical industries, such as synergistic degradation of chitin with endo-chitinases and using GlcNAc to produce sialic acid, bioethanol, single-cell proteins, and pharmaceutical therapeutics. GlcNAcases also play an important role in the dynamic balance of cellular O-linked GlcNAc levels, catabolism of ganglioside storage in Tay-Sachs disease, and bacterial cell wall recycling and flagellar assembly. In view of these important biological functions and the wide range of industrial applications of GlcNAcases, this review aims to provide a better understanding of various advances for these enzymes. It focuses on enzymatic properties of GlcNAcases, including substrate specificity, catalytic activity, pH optimum, temperature optimum, thermostability, the effects of various metal ions and organic reagents, and transglycosylation.
Collapse
|
30
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
31
|
Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 2017; 258:79-91. [PMID: 28764968 DOI: 10.1016/j.jbiotec.2017.07.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive.
Collapse
Affiliation(s)
- Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Florian Baumgärtner
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Christoph Albermann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
32
|
Zhou J, Song Z, Zhang R, Liu R, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Distinctive molecular and biochemical characteristics of a glycoside hydrolase family 20 β-N-acetylglucosaminidase and salt tolerance. BMC Biotechnol 2017; 17:37. [PMID: 28399848 PMCID: PMC5387316 DOI: 10.1186/s12896-017-0358-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/04/2017] [Indexed: 12/05/2022] Open
Abstract
Background Enzymatic degradation of chitin has attracted substantial attention because chitin is an abundant renewable natural resource, second only to lignocellulose, and because of the promising applications of N-acetylglucosamine in the bioethanol, food and pharmaceutical industries. However, the low activity and poor tolerance to salts and N-acetylglucosamine of most reported β-N-acetylglucosaminidases limit their applications. Mining for novel enzymes from new microorganisms is one way to address this problem. Results A glycoside hydrolase family 20 (GH 20) β-N-acetylglucosaminidase (GlcNAcase) was identified from Microbacterium sp. HJ5 harboured in the saline soil of an abandoned salt mine and was expressed in Escherichia coli. The purified recombinant enzyme showed specific activities of 1773.1 ± 1.1 and 481.4 ± 2.3 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and N,N'-diacetyl chitobiose, respectively, a Vmax of 3097 ± 124 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and a Ki of 14.59 mM for N-acetylglucosamine inhibition. Most metal ions and chemical reagents at final concentrations of 1.0 and 10.0 mM or 0.5 and 1.0% (v/v) had little or no effect (retaining 84.5 − 131.5% activity) on the enzyme activity. The enzyme can retain more than 53.6% activity and good stability in 3.0–20.0% (w/v) NaCl. Compared with most GlcNAcases, the activity of the enzyme is considerably higher and the tolerance to salts and N-acetylglucosamine is much better. Furthermore, the enzyme had higher proportions of aspartic acid, glutamic acid, alanine, glycine, random coils and negatively charged surfaces but lower proportions of cysteine, lysine, α-helices and positively charged surfaces than its homologs. These molecular characteristics were hypothesised as potential factors in the adaptation for salt tolerance and high activity of the GH 20 GlcNAcase. Conclusions Biochemical characterization revealed that the GlcNAcase had novel salt–GlcNAc tolerance and high activity. These characteristics suggest that the enzyme has versatile potential in biotechnological applications, such as bioconversion of chitin waste and the processing of marine materials and saline foods. Molecular characterization provided an understanding of the molecular–function relationships for the salt tolerance and high activity of the GH 20 GlcNAcase. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhifeng Song
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Rui Liu
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
33
|
|
34
|
Jamek SB, Nyffenegger C, Muschiol J, Holck J, Meyer AS, Mikkelsen JD. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules. Appl Microbiol Biotechnol 2017; 101:4533-4546. [PMID: 28280871 DOI: 10.1007/s00253-017-8198-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-D-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N'-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-D-glucosaminide (1 → 4)-β-linkages and are thus "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic β/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.
Collapse
Affiliation(s)
- Shariza B Jamek
- Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.,Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Christian Nyffenegger
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Jan Muschiol
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Jesper Holck
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark.
| | - Jørn D Mikkelsen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum. Appl Environ Microbiol 2016; 82:5642-52. [PMID: 27422836 DOI: 10.1128/aem.01325-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED β-N-Acetylhexosaminidases have attracted interest particularly for oligosaccharide synthesis, but their use remains limited by the rarity of enzyme sources , low efficiency, and relaxed regioselectivity of transglycosylation. In this work, genes of 13 β-N-acetylhexosaminidases, including 5 from Bacteroides fragilis ATCC 25285, 5 from Clostridium perfringens ATCC 13124, and 3 from Bifidobacterium bifidum JCM 1254, were cloned and heterogeneously expressed in Escherichia coli The resulting recombinant enzymes were purified and screened for transglycosylation activity. A β-N-acetylhexosaminidase named BbhI, which belongs to glycoside hydrolase family 20 and was obtained from B. bifidum JCM 1254, possesses the bifunctional property of efficiently transferring both GalNAc and GlcNAc residues through β1-3 linkage to the Gal residue of lactose. The effects of initial substrate concentration, pH, temperature, and reaction time on transglycosylation activities of BbhI were studied in detail. With the use of 10 mM pNP-β-GalNAc or 20 mM pNP-β-GlcNAc as the donor and 400 mM lactose as the acceptor in phosphate buffer (pH 5.8), BbhI synthesized GalNAcβ1-3Galβ1-4Glc and GlcNAcβ1-3Galβ1-4Glc at maximal yields of 55.4% at 45°C and 4 h and 44.9% at 55°C and 1.5 h, respectively. The model docking of BbhI with lactose showed the possible molecular basis of strict regioselectivity of β1-3 linkage in β-N-acetylhexosaminyl lactose synthesis. IMPORTANCE Oligosaccharides play a crucial role in many biological events and therefore are promising potential therapeutic agents. However, their use is limited because large-scale production of oligosaccharides is difficult. The chemical synthesis requires multiple protecting group manipulations to control the regio- and stereoselectivity of glycosidic bonds. In comparison, enzymatic synthesis can produce oligosaccharides in one step by using glycosyltransferases and glycosidases. Given the lower price of their glycosyl donor and their broader acceptor specificity, glycosidases are more advantageous than glycosyltransferases for large-scale synthesis. β-N-Acetylhexosaminidases have attracted interest particularly for β-N-acetylhexosaminyl oligosaccharide synthesis, but their application is affected by having few enzyme sources, low efficiency, and relaxed regioselectivity of transglycosylation. In this work, we describe a microbial β-N-acetylhexosaminidase that exhibited strong transglycosylation activity and strict regioselectivity for β-N-acetylhexosaminyl lactose synthesis and thus provides a powerful synthetic tool to obtain biologically important GalNAcβ1-3Lac and GlcNAcβ1-3Lac.
Collapse
|
36
|
Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. N Biotechnol 2016; 33:355-60. [PMID: 26802542 DOI: 10.1016/j.nbt.2016.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Human milk oligosaccharides (HMOs) designate a unique family of bioactive lactose-based molecules present in human breast milk. Using lactose as a cheap donor, some β-galactosidases (EC 3.2.1.23) can catalyze transgalactosylation to form the human milk oligosaccharide lacto-N-neotetraose (LNnT; Gal-β(1,4)-GlcNAc-β(1,3)-Gal-β(1,4)-Glc). In order to reduce reaction times and be able to work at temperatures, which are less welcoming to microbial growth, the current study investigates the possibility of using thermostable β-galactosidases for synthesis of LNnT and N-acetyllactosamine (LacNAc; Gal-β(1,4)-GlcNAc), the latter being a core structure in HMOs. Two hyperthermostable GH 1 β-galactosidases, Ttβ-gly from Thermus thermophilus HB27 and CelB from Pyrococcus furiosus, were codon-optimized for expression in Escherichia coli along with BgaD-D, a truncated version of the GH 42 β-galactosidase from Bacillus circulans showing high transgalactosylation activity at low substrate concentrations. The three β-galactosidases were compared in the current study in terms of their transgalactosylation activity in the formation of LacNAc and LNnT. In all cases, BgaD-D was the most potent transgalactosidase, but both thermostable GH 1 β-galactosidases could catalyze formation of LNnT and LacNAc, with Ttβ-gly giving higher yields than CelB. The thermal stability of the three β-galactosidases was elucidated and the results were used to optimize the reaction efficiency in the formation of LacNAc, resulting in 5-6 times higher reaction yields and significantly shorter reaction times.
Collapse
|
37
|
Abstract
The important roles played by human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized, as the structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advances in the development of enzymatic, chemoenzymatic, whole-cell, and living-cell systems allow for the production of a growing number of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles of HMOS and allow exploration into the applications of HMOS both as individual compounds and as mixtures of defined structures with desired functions. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and developing HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|