1
|
Izquierdo M, O'Sullivan D, Uriot O, Brun M, Durif C, Denis S, Gallardo P, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S, Farfan MJ. Microbiota and metabolome dynamics induced by Shiga toxin-producing E. coli in an in vitro model of an infant's colon. MICROBIAL CELL (GRAZ, AUSTRIA) 2025; 12:76-92. [PMID: 40309356 PMCID: PMC12042126 DOI: 10.15698/mic2025.04.847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 05/02/2025]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major food-borne pathogen causing human diseases ranging from diarrhea to life-threatening complications, mainly in young children. Colonization, virulence, and interactions of STEC strains with human gut microbiota are pivotal during infection but remain poorly described, particularly in children, the most affected population. In this work, we evaluated changes in the microbiota and metabolome composition in the in vitro gut model: Toddler ARtificial COLon (T-ARCOL) infected with EHEC O157:H7 strain EDL 933. Stool samples collected from children with STEC-positive diarrhea and stool from the same children after recovery from the diarrheal episode (n=5) were used to inoculate the T-ARCOL model. STEC colonization was progressively reduced throughout fermentation in T-ARCOL with diarrhea or recovery fecal samples. Beta diversity showed that the diarrhea-associated microbiota was significantly distinct from the recovery microbiota and exhibited a lower α-diversity. In contrast to recovery conditions, diarrheal conditions were characterized by an increased abundance of potential pathobionts such as members of the Clostridiaceae family and higher acetate, succinate, and N-acetylneuraminic acid levels. Our results provide new evidence of the impact of EHEC in the microbiota and metabolome dynamics in an in vitro gut model that could be useful in understanding their physiopathology in this at-risk population, considering inter-individual variabilities in gut microbiota.
Collapse
Affiliation(s)
- Mariana Izquierdo
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
- Equal contribution as a first author
| | - Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Equal contribution as a first author
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sylvain Denis
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Pablo Gallardo
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Co-last authors
| | - Mauricio J. Farfan
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
- Co-last authors
| |
Collapse
|
2
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Li H, Ji Y, Luo H, Huizinga JD, Chen J. Ingesting yeast extract causes excitation of neurogenic and myogenic colonic motor patterns in the rat. J Cell Mol Med 2024; 28:e18343. [PMID: 38760903 PMCID: PMC11101669 DOI: 10.1111/jcmm.18343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 05/20/2024] Open
Abstract
Fermented foods play a significant role in the human diet for their natural, highly nutritious and healthy attributes. Our aim was to study the effect of yeast extract, a fermented substance extracted from natural yeast, on colonic motility to better understand its potential therapeutic role. A yeast extract was given to rats by gavage for 3 days, and myogenic and neurogenic components of colonic motility were studied using spatiotemporal maps made from video recordings of the whole colon ex vivo. A control group received saline gavages. The yeast extract caused excitation of the musculature by increasing the propagation length and duration of long-distance contractions, the major propulsive activity of the rat colon. The yeast extract also evoked rhythmic propulsive motor complexes (RPMCs) which were antegrade in the proximal and mid-colon and retrograde in the distal colon. RPMC activity was evoked by distention-induced neural activity, but it was myogenic in nature since we showed it to be generated by bethanechol in the presence of tetrodotoxin. In conclusion, ingestion of yeast extract stimulates rat colon motility by exciting neurogenic and myogenic control mechanisms.
Collapse
Affiliation(s)
- Hongfei Li
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yanzhao Ji
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Hesheng Luo
- Department of Gastroenterology and HepatologyRenmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System DiseasesWuhanHubeiChina
| | - Jan D. Huizinga
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| | - Ji‐Hong Chen
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
4
|
Etienne-Mesmin L, Meslier V, Uriot O, Fournier E, Deschamps C, Denis S, David A, Jegou S, Morabito C, Quinquis B, Thirion F, Plaza Oñate F, Le Chatelier E, Ehrlich SD, Blanquet-Diot S, Almeida M. In Vitro Modelling of Oral Microbial Invasion in the Human Colon. Microbiol Spectr 2023; 11:e0434422. [PMID: 36971547 PMCID: PMC10100946 DOI: 10.1128/spectrum.04344-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advances in the human microbiome characterization have revealed significant oral microbial detection in stools of dysbiotic patients. However, little is known about the potential interactions of these invasive oral microorganisms with commensal intestinal microbiota and the host. In this proof-of-concept study, we proposed a new model of oral-to-gut invasion by the combined use of an in vitro model simulating both the physicochemical and microbial (lumen- and mucus-associated microbes) parameters of the human colon (M-ARCOL), a salivary enrichment protocol, and whole-metagenome shotgun sequencing. Oral invasion of the intestinal microbiota was simulated by injection of enriched saliva in the in vitro colon model inoculated with a fecal sample from the same healthy adult donor. The mucosal compartment of M-ARCOL was able to retain the highest species richness levels over time, while species richness levels decreased in the luminal compartment. This study also showed that oral microorganisms preferably colonized the mucosal microenvironment, suggesting potential oral-to-intestinal mucosal competitions. This new model of oral-to-gut invasion can provide useful mechanistic insights into the role of oral microbiome in various disease processes. IMPORTANCE Here, we propose a new model of oral-to-gut invasion by the combined use of an in vitro model simulating both the physicochemical and microbial (lumen- and mucus-associated microbes) parameters of the human colon (M-ARCOL), a salivary enrichment protocol, and whole-metagenome shotgun sequencing. Our study revealed the importance of integrating the mucus compartment, which retained higher microbial richness during fermentation, showed the preference of oral microbial invaders for the mucosal resources, and indicated potential oral-to-intestinal mucosal competitions. It also underlined promising opportunities to further understand mechanisms of oral invasion into the human gut microbiome, define microbe-microbe and mucus-microbe interactions in a compartmentalized fashion, and help to better characterize the potential of oral microbial invasion and their persistence in the gut.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Victoria Meslier
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Ophélie Uriot
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Elora Fournier
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charlotte Deschamps
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sylvain Denis
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aymeric David
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Sarah Jegou
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Christian Morabito
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Florence Thirion
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | | | | | - S. Dusko Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| | - Stéphanie Blanquet-Diot
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Almeida
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
| |
Collapse
|
5
|
Melchior K, Salgaço MK, Sivieri K, Moreira CG. QseC sensor kinase modulates the human microbiota during enterohemorrhagic Escherichia coli O157:H7 infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Braz J Microbiol 2023; 54:1-14. [PMID: 36469301 PMCID: PMC9943815 DOI: 10.1007/s42770-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important gastrointestinal pathogen known for its ability to cause hemorrhagic colitis and induce hemolytic-uremic syndrome. The inner membrane QseC histidine kinase sensor has shown to be an important regulator of the locus of enterocyte effacement (LEE) island, where important EHEC key virulence genes are located. However, the QseC role during EHEC infection in human microbiota remains unknown. Herein, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), we investigated whether the QseC sensor has a role in human microbiota modulation by EHEC in a dynamic model. Our data demonstrated that the QseC sensor modulates human microbiota during EHEC infection, and its absence leads to an increase in Lactobacillaceae and Bifidobacterium genus predominance, although non-effect on Bacteroides genus by EHEC strains was observed. In co-culture, the Lactobacillus acidophilus has affected EHEC growth and impaired the EHEC growth under space-niche competition, although no growth difference was observed in the QseC sensor presence. Also, differences in EHEC growth were not detected in competition with Bacteroides thetaiotaomicron and EHEC strains did not affect B. thetaiotaomicron growth either. When investigating the mechanisms behind the SHIME results, we found that hcp-2 expression for the type 6 secretion system, known to be involved in bacterial competition, is under QseC sensor regulation beneath different environmental signals, such as glucose and butyrate. Our findings broaden the knowledge about the QseC sensor in modulating the human microbiota and its importance for EHEC pathogenesis.
Collapse
Affiliation(s)
- Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
6
|
Fournier E, Leveque M, Ruiz P, Ratel J, Durif C, Chalancon S, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Lagarde F, Engel E, Etienne-Mesmin L, Blanquet-Diot S, Mercier-Bonin M. Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130010. [PMID: 36182891 DOI: 10.1016/j.jhazmat.2022.130010] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Erwan Engel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| |
Collapse
|
7
|
Biagini F, Daddi C, Calvigioni M, De Maria C, Zhang YS, Ghelardi E, Vozzi G. Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe human gut microbiota is widely considered to be a metabolic organ hidden within our bodies, playing a crucial role in the host’s physiology. Several factors affect its composition, so a wide variety of microbes residing in the gut are present in the world population. Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies, and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed. In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns, community composition, and host-microbe interactions. Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with. In this review, we will describe the overall elements required to create a functioning, reproducible, and accurate in vitro culture of the human gut microbiota. In addition, we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
Graphic abstract
Collapse
|
8
|
A child is not an adult: development of a new in vitro model of the toddler colon. Appl Microbiol Biotechnol 2022; 106:7315-7336. [PMID: 36202936 DOI: 10.1007/s00253-022-12199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Early life is a critical period where gut ecosystem and functions are being established with significant impact on health. For regulatory, technical, and cost reasons, in vitro gut models can be used as a relevant alternative to in vivo assays. An exhaustive literature review was conducted to adapt the Mucosal Artificial Colon (M-ARCOL) to specific physicochemical (pH, transit time, and nutritional composition of ileal effluents) and microbial parameters from toddlers in the age range of 6 months-3 years, resulting in the Tm-ARCOL. In vitro fermentations were performed to validate this newly developed colonic model compared to in vivo toddler data. Results were also compared to those obtained with the classical adult configuration. Fecal samples from 5 toddlers and 4 adults were used to inoculate bioreactors, and continuous fermentations were performed for 8 days. Gut microbiota structure (lumen and mucus-associated microbiota) and functions (gas and short-chain fatty acids) were monitored. Clearly distinct microbial signatures were obtained between the two in vitro conditions, with lower α-diversity indices and higher abundances of infant-related microbial populations (e.g., Bifidobacteriaceae, Enterobacteriaceae) in toddler versus adult conditions. In accordance with in vivo data, methane was found only in adult bioreactors, while higher percentage of acetate but lower proportions of propionate and butyrate was measured in toddlers compared to adults. This new in vitro model will provide a powerful platform for gut microbiome mechanistic studies in a pediatric context, both in nutritional- (e.g., nutrients, probiotics, prebiotics) and health-related (e.g., drugs, enteric pathogens) studies. KEY POINTS: • Development of a novel in vitro colonic model recapitulating the toddler environment. • Specific toddler versus adult digestive conditions are preserved in vitro. • The new model provides a powerful platform for microbiome mechanistic studies.
Collapse
|
9
|
Koupaei M, Saderi H, Amin Marashi SM, Fathizadeh H, Owlia P. Evaluation of the effect of Saccharomyces cerevisiae on the expression of enterotoxin genes in Escherichia coli O157: H7 (EHEC) and Escherichia coli H10407 (ETEC). Microb Pathog 2022; 164:105450. [DOI: 10.1016/j.micpath.2022.105450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
|
10
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
11
|
Roussel C, De Paepe K, Galia W, de Bodt J, Chalancon S, Denis S, Leriche F, Vandekerkove P, Ballet N, Blanquet-Diot S, Van de Wiele T. Multi-targeted properties of the probiotic saccharomyces cerevisiae CNCM I-3856 against enterotoxigenic escherichia coli (ETEC) H10407 pathogenesis across human gut models. Gut Microbes 2021; 13:1953246. [PMID: 34432600 PMCID: PMC8405159 DOI: 10.1080/19490976.2021.1953246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of acute traveler's diarrhea. Adhesins and enterotoxins constitute the major ETEC virulence traits. With the dramatic increase in antibiotic resistance, probiotics are considered a wholesome alternative to prevent or treat ETEC infections. Here, we examined the antimicrobial properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 against ETEC H10407 pathogenesis upon co-administration in the TNO gastrointestinal Model (TIM-1), simulating the physicochemical and enzymatic conditions of the human upper digestive tract and preventive treatment in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), integrating microbial populations of the ileum and ascending colon. Interindividual variability was assessed by separate M-SHIME experiments with microbiota from six human individuals. The probiotic did not affect ETEC survival along the digestive tract. However, ETEC pathogenicity was significantly reduced: enterotoxin encoding virulence genes were repressed, especially in the TIM-1 system, and a lower enterotoxin production was noted. M-SHIME experiments revealed that 18-days probiotic treatment stimulate the growth of Bifidobacterium and Lactobacillus in different gut regions (mucosal and luminal, ileum and ascending colon) while a stronger metabolic activity was noted in terms of short-chain fatty acids (acetate, propionate, and butyrate) and ethanol production. Moreover, the probiotic pre-treated microbiota displayed a higher robustness in composition following ETEC challenge compared to the control condition. We thus demonstrated the multi-inhibitory properties of the probiotic S. cerevisiae CNCM I-3856 against ETEC in the overall simulated human digestive tract, regardless of the inherent variability across individuals in the M-SHIME.
Collapse
Affiliation(s)
- Charlène Roussel
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France,CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kim De Paepe
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wessam Galia
- UMR 5557 Microbial Ecology, Research Group On Bacterial Opportunistic Pathogens And Environment, CNRS, VetAgro Sup, Lyon, France
| | - Jana de Bodt
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sandrine Chalancon
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | | | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, Marcq-en-Baroeul, France
| | - Stéphanie Blanquet-Diot
- CONTACT Stéphanie Blanquet-Diot Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
SOUZA HFD, CAROSIA MF, PINHEIRO C, CARVALHO MVD, OLIVEIRA CAFD, KAMIMURA ES. On probiotic yeasts in food development: Saccharomyces boulardii, a trend. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.92321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
14
|
Abstract
The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health.
Collapse
|
15
|
DehghanZadeh Z, Koupaei M, Ghorbani Z, Saderi H, Marashi SMA, Owlia P. Inhibitory effect of Saccharomyces cerevisiae supernatant and lysate on expression of lasB and apl genes of Pseudomonas aeruginosa. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
17
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Yeni F, Samut H, Soyer Y. Effect of Non-LAB Probiotics on Foodborne Enteric Pathogens: A Systematic Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filiz Yeni
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Hilal Samut
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Yeşim Soyer
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
19
|
Arnal ME, Denis S, Uriot O, Lambert C, Holowacz S, Paul F, Kuylle S, Pereira B, Alric M, Blanquet-Diot S. Impact of oral galenic formulations of Lactobacillus salivarius on probiotic survival and interactions with microbiota in human in vitro gut models. Benef Microbes 2021; 12:75-90. [PMID: 34109893 DOI: 10.3920/bm2020.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Health benefits of probiotics in humans essentially depend on their ability to survive during gastrointestinal (GI) transit and to modulate gut microbiota. To date, there is few data on the impact of galenic formulations of probiotics on these parameters. Even if clinical studies remain the gold standard to evaluate the efficacy of galenic forms, they stay hampered by technical, ethical and cost reasons. As an alternative approach, we used two complementary in vitro models of the human gut, the TNO gastrointestinal (TIM-1) model and the Artificial Colon (ARCOL), to study the effect of three oral formulations of a Lactobacillus salivarius strain (powder, capsule and sustained-release tablet) on its viability and interactions with gut microbiota. In the TIM-1 stomach, no or low numbers of bacteria were respectively released from the capsule and tablet, confirming their gastro-resistance. The capsule was disintegrated in the jejunum on average 76 min after administration while the core of sustained-release tablet was still intact at the end of digestion. Viability in TIM-1 was significantly influenced by the galenic form with survival percentages of 0.003±0.004%, 2.8±0.6% and 17.0±1.8% (n=3) for powder, capsule and tablet, respectively. In the ARCOL, the survival of the strain tended to be higher in the post-treatment phase with the tablet compared to capsule, but gut microbiota composition and activity were not differently modulated by the two formulations. In conclusion, the sustained-release tablet emerged as the formulation that most effectively preserved viability of the tested strain during GI passage. This study highlights the usefulness of in vitro gut models for the pre-screening of probiotic pharmaceutical forms. Their use could also easily be extended to the evaluation of the effects of food matrices and age on probiotic survival and activity during GI transit.
Collapse
Affiliation(s)
- M E Arnal
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Denis
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - O Uriot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - C Lambert
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - S Holowacz
- PiLeJe Industrie, Parc Naturopôle, Les Tiolans 03800 Saint-Bonnet de Rochefort, France
| | - F Paul
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - S Kuylle
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - B Pereira
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - M Alric
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Uriot O, Kebouchi M, Lorson E, Galia W, Denis S, Chalancon S, Hafeez Z, Roux E, Genay M, Blanquet-Diot S, Dary-Mourot A. Identification of Streptococcus thermophilus Genes Specifically Expressed under Simulated Human Digestive Conditions Using R-IVET Technology. Microorganisms 2021; 9:microorganisms9061113. [PMID: 34064045 PMCID: PMC8224003 DOI: 10.3390/microorganisms9061113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Despite promising health effects, the probiotic status of Streptococcus thermophilus, a lactic acid bacterium widely used in dairy industry, requires further documentation of its physiological status during human gastrointestinal passage. This study aimed to apply recombinant-based in vivo technology (R-IVET) to identify genes triggered in a S. thermophilus LMD-9 reference strain under simulated digestive conditions. First, the R-IVET chromosomal cassette and plasmid genomic library were designed to positively select activated genes. Second, recombinant clones were introduced into complementary models mimicking the human gut, the Netherlands Organization for Applied Scientific Research (TNO) gastrointestinal model imitating the human stomach and small intestine, the Caco-2 TC7 cell line as a model of intestinal epithelium, and anaerobic batch cultures of human feces as a colon model. All inserts of activated clones displayed a promoter activity that differed from one digestive condition to another. Our results also showed that S. thermophilus adapted its metabolism to stressful conditions found in the gastric and colonic competitive environment and modified its surface proteins during adhesion to Caco-2 TC7 cells. Activated genes were investigated in a collection of S. thermophilus strains showing various resistance levels to gastrointestinal stresses, a first stage in the identification of gut resistance markers and a key step in probiotic selection.
Collapse
Affiliation(s)
- Ophélie Uriot
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
- UMR 454 MEDIS Microbiology, Digestive Environment and Health, Université Clermont Auvergne, INRAe, 63000 Clermont-Ferrand, France; (S.D.); (S.C.); (S.B.-D.)
| | - Mounira Kebouchi
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
| | - Emilie Lorson
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
| | - Wessam Galia
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
- UMR 5557 Microbial Ecology, Research Group on Bacterial Opportunistic Pathogens and Environment, CNRS, VetAgro Sup, 69280 Marcy L’Etoile, France
| | - Sylvain Denis
- UMR 454 MEDIS Microbiology, Digestive Environment and Health, Université Clermont Auvergne, INRAe, 63000 Clermont-Ferrand, France; (S.D.); (S.C.); (S.B.-D.)
| | - Sandrine Chalancon
- UMR 454 MEDIS Microbiology, Digestive Environment and Health, Université Clermont Auvergne, INRAe, 63000 Clermont-Ferrand, France; (S.D.); (S.C.); (S.B.-D.)
| | - Zeeshan Hafeez
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
| | - Emeline Roux
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
- INRIA/IRISA, GenScale Bioinformatics Team, 35042 Rennes, France
| | - Magali Genay
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS Microbiology, Digestive Environment and Health, Université Clermont Auvergne, INRAe, 63000 Clermont-Ferrand, France; (S.D.); (S.C.); (S.B.-D.)
| | - Annie Dary-Mourot
- EA 7488 Calbinotox Composés Alimentaires Biofonctionnalités & Risque Neurotoxique, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (O.U.); (M.K.); (E.L.); (W.G.); (Z.H.); (E.R.); (M.G.)
- Correspondence:
| |
Collapse
|
22
|
Blanquet-Diot S, François O, Denis S, Hennequin M, Peyron M. Importance of oral phase in in vitro starch digestibility related to wholegrain versus refined pastas and mastication impairment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Ji H, Hu J, Zuo S, Zhang S, Li M, Nie S. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit Rev Food Sci Nutr 2021; 62:5349-5371. [PMID: 33591236 DOI: 10.1080/10408398.2021.1884841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food nutrients plays a crucial role in human health, especially in gastrointestinal (GI) health. The effect of food nutrients on human health mainly depends on the digestion and fermentation process in the GI tract. In vitro GI digestion and fermentation models had the advantages of reproducibility, simplicity, universality, and could integrally simulate the in vivo conditions to mimic oral, gastric, small intestinal and large intestinal digestive processes. They could not only predict the relationship among material composition, structure and digestive characteristics, but also evaluate the bioavailability of material components and the impact of digestive metabolites on GI health. This review systematicly summarized the current state of the in vitro simulation models, and made detailed descriptions for their applications, advantages and disadvantages, and specially their applications in food carbohydrates. In addition, it also provided the suggestions for the improvement of in vitro models and firstly proposed to establish a set of standardized methods of in vitro dynamic digestion and fermentation conditions for food carbohydrates, which were in order to further evaluate more effects of the nutrients on human health in future.
Collapse
Affiliation(s)
- Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Verdier C, Denis S, Gasc C, Boucinha L, Uriot O, Delmas D, Dore J, Le Camus C, Schwintner C, Blanquet-Diot S. An Oral FMT Capsule as Efficient as an Enema for Microbiota Reconstruction Following Disruption by Antibiotics, as Assessed in an In Vitro Human Gut Model. Microorganisms 2021; 9:microorganisms9020358. [PMID: 33670255 PMCID: PMC7918368 DOI: 10.3390/microorganisms9020358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an innovative therapy already used in humans to treat Clostridioides difficile infections associated with massive use of antibiotics. Clinical studies are obviously the gold standard to evaluate FMT efficiency but remain limited by regulatory, ethics, and cost constraints. In the present study, an in vitro model of the human colon reproducing medically relevant perturbation of the colonic ecosystem by antibiotherapy was used to compare the efficiency of traditional FMT enema formulations and a new oral capsule in restoring gut microbiota composition and activity. Loss of microbial diversity, shift in bacterial populations, and sharp decrease in fermentation activities induced in vivo by antibiotherapy were efficiently reproduced in the in vitro model, while capturing inter-individual variability of gut microbiome. Oral capsule was as efficient as enema to decrease the number of disturbed days and bacterial load had no effect on enema performance. This study shows the relevance of human colon models as an alternative approach to in vivo assays during preclinical studies for evaluating FMT efficiency. The potential of this in vitro approach could be extended to FMT testing in the management of many digestive or extra-intestinal pathologies where gut microbial dysbiosis has been evidenced such as inflammatory bowel diseases, obesity or cancers.
Collapse
Affiliation(s)
- Cécile Verdier
- UMR 454 MEDIS, Université Clermont Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (C.V.); (S.D.); (O.U.)
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (C.V.); (S.D.); (O.U.)
| | - Cyrielle Gasc
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Lilia Boucinha
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Ophélie Uriot
- UMR 454 MEDIS, Université Clermont Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (C.V.); (S.D.); (O.U.)
| | - Dominique Delmas
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Joël Dore
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
- MICALIS and MétaGénoPolis, Université Paris Saclay, INRAe, AgroParisTech, F-78350 Jouy-en-Josas, France
| | - Corentin Le Camus
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Carole Schwintner
- MaaT Pharma, F-69007 Lyon, France; (C.G.); (L.B.); (D.D.); (J.D.); (C.L.C.); (C.S.)
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Université Clermont Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (C.V.); (S.D.); (O.U.)
- Correspondence:
| |
Collapse
|
25
|
Cao Y, Liu J, Zhu W, Qin N, Ren X, Zhu B, Xia X. Impact of dietary components on enteric infectious disease. Crit Rev Food Sci Nutr 2021; 62:4010-4035. [PMID: 33455435 DOI: 10.1080/10408398.2021.1871587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diets impact host health in multiple ways and an unbalanced diet could contribute to the initiation or progression of a variety of diseases. Although a wealth of information exists on the connections between diet and chronic metabolic diseases such as cardiovascular disease, diabetes mellitus, etc., how diet influences enteric infectious disease still remain underexplored. The review summarizes the current findings on the link between various dietary components and diverse enteric infectious diseases. Dietary ingredients discussed include macronutrients (carbohydrates, lipids, proteins), micronutrients (vitamins, minerals), and other dietary ingredients (phytonutrients and probiotic supplements). We first describe the importance of enteric infectious diseases and the direct and indirect relationship between diet and enteric infectious diseases. Then we discuss the effects of different dietary components on the susceptibility to or progression of enteric infectious disease. Finally, we delineate current knowledge gap and highlighted future research directions. The literature review revealed that different dietary components affect host resistance to enteric infections through a variety of mechanisms. Dietary components may directly inhibit or bind to enteric pathogens, or indirectly influence enteric infections through modulating immune function and gut microbiota. Elucidating the unique repercussions of different diets on enteric infections in this review may help provide dietary guidelines or design dietary interventions to prevent or alleviate enteric infectious diseases.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Jiaxiu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wenxiu Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
26
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
A Toxic Environment: a Growing Understanding of How Microbial Communities Affect Escherichia coli O157:H7 Shiga Toxin Expression. Appl Environ Microbiol 2020; 86:AEM.00509-20. [PMID: 32358004 DOI: 10.1128/aem.00509-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.
Collapse
|
28
|
Deschamps C, Fournier E, Uriot O, Lajoie F, Verdier C, Comtet-Marre S, Thomas M, Kapel N, Cherbuy C, Alric M, Almeida M, Etienne-Mesmin L, Blanquet-Diot S. Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 2020; 104:10233-10247. [PMID: 33085024 DOI: 10.1007/s00253-020-10959-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Elora Fournier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Frédérique Lajoie
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Cécile Verdier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, 75013, Paris, France.,INSERM UMR-S1139, Université de Paris, 75006, Paris, France
| | - Claire Cherbuy
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Monique Alric
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Mathieu Almeida
- MetaGénoPolis, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
29
|
Alamdary SZ, Bakhshi B. Lactobacillus acidophilus attenuates toxin production by Vibrio cholerae and shigella dysenteriae following intestinal epithelial cells infection. Microb Pathog 2020; 149:104543. [PMID: 33010360 DOI: 10.1016/j.micpath.2020.104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
AIMS The main objective of the present study was to assess and compare the safety and inhibitory efficacy of Lactobacillus acidophilus against cholera toxin and shigatoxin production by measuring CTX-B and Stx1 expression level in Caco-2 cells exposed to Vibrio cholerae (as a non-invasive small intestine pathogens and Shigella dysenteriae (as an invasive colon pathogen). METHODS Caco-2 cells were incubated with L. acidophilus 2 h before infection by V. cholerae and S. dysenteriae. Following RNA extraction and cDNA synthesis, relative toxins mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. L. acidophilus didn't show any cytotoxic effect on Caco-2 cells. RESULTS L. acidophilus revealed a protective effect for Caco-2 cells against S. dysenteriae and V. cholera by 51% and 57%, respectively, which was determined by MTT assay and further confirmed by morphological examination. Pretreatment of Caco-2 cells with L. acidophilus prior to exposure to V. cholerae, attenuated the CTX-B expression in V. cholerae to about 1.76 folds. Expression of Stx1 by S. dysenteriae was also down-regulated to 1.6 folds following pretreatment of Caco-2 cells by L. acidophilus. No significant difference was observed in the attenuator role of L. acidophilus in toxin production by S. dysenteriae as a colon-invasive bacterium, compared with V. cholerae, the non-invasive pathogen of small intestine. CONCLUSIONS The results of the present study suggest that L. acidophilus is safe with protective effect for human epithelial colorectal cells, and is effective enough to be applied as a supplementary treatment for attenuation of toxin production in acute infectious diarrhea caused by V. cholerae and S. dysenteriae.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
A Putative Microcin Amplifies Shiga Toxin 2a Production of Escherichia coli O157:H7. J Bacteriol 2019; 202:JB.00353-19. [PMID: 31611289 DOI: 10.1128/jb.00353-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen implicated in various multistate outbreaks. It encodes Shiga toxin on a prophage, and Shiga toxin production is linked to phage induction. An E. coli strain, designated 0.1229, that amplified Stx2a production when cocultured with E. coli O157:H7 strain PA2 was identified. Growth of PA2 in 0.1229 cell-free supernatants had a similar effect, even when supernatants were heated to 100°C for 10 min, but not after treatment with proteinase K. The secreted molecule was shown to use TolC for export and the TonB system for import. The genes sufficient for production of this molecule were localized to a 5.2-kb region of a 12.8-kb plasmid. This region was annotated, identifying hypothetical proteins, a predicted ABC transporter, and a cupin superfamily protein. These genes were identified and shown to be functional in two other E. coli strains, and bioinformatic analyses identified related gene clusters in similar and distinct bacterial species. These data collectively suggest that E. coli 0.1229 and other E. coli strains produce a microcin that induces the SOS response in target bacteria. Besides adding to the limited number of microcins known to be produced by E. coli, this study provides an additional mechanism by which stx 2a expression is increased in response to the gut microflora.IMPORTANCE How the gut microflora influences the progression of bacterial infections is only beginning to be understood. Antibiotics are counterindicated for E. coli O157:H7 infections, limiting treatment options. An increased understanding of how the gut microflora directs O157:H7 virulence gene expression may lead to additional treatment options. This work identified E. coli strains that enhance the production of Shiga toxin by O157:H7 through the secretion of a proposed microcin. Microcins are natural antimicrobial peptides that target specific species, can act as alternatives to antibiotics, and mediate microbial competition. This work demonstrates another mechanism by which non-O157 E. coli strains may increase Shiga toxin production and adds to our understanding of microcins, a group of antimicrobials less well understood than colicins.
Collapse
|
31
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Management of STEC Gastroenteritis: Is There a Role for Probiotics? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091649. [PMID: 31083597 PMCID: PMC6539596 DOI: 10.3390/ijerph16091649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Shiga toxin-producing Escherichia Coli (STEC) infections routinely run as a common gastroenteritis, but in many cases they may evolve towards hemolytic uremic syndrome (HUS). HUS is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Gut microorganisms have a fundamental impact on human physiology, because they modulate normal intestinal functions and play a pivotal role in influencing the local and systemic immune responses. Despite surveillance established in many countries and major progresses in the understanding of STEC-HUS mechanisms, no specific treatment is currently available. Targeting the gut microbiota could represent a new potential therapeutic strategy in STEC infection. In this paper, we reviewed the current knowledge about microbiota characteristics of patients with STEC infections, as well as in vitro and in vivo evidence of probiotic supplementation in managing STEC gastroenteritis and in HUS onset prevention.
Collapse
|
33
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
34
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
35
|
Xiaoli L, Figler HM, Goswami Banerjee K, Hayes CS, Dudley EG. Non-pathogenic Escherichia coli Enhance Stx2a Production of E. coli O157:H7 Through Both bamA-Dependent and Independent Mechanisms. Front Microbiol 2018; 9:1325. [PMID: 29973923 PMCID: PMC6020778 DOI: 10.3389/fmicb.2018.01325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Intestinal colonization by the foodborne pathogen Escherichia coli O157:H7 leads to serious disease symptoms, including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC). Synthesis of one or more Shiga toxins (Stx) is essential for HUS and HC development. The genes encoding Stx, including Stx2a, are found within a lambdoid prophage integrated in the E. coli O157:H7 chromosome. Enhanced Stx2a expression was reported when specific non-pathogenic E. coli strains were co-cultured with E. coli O157:H7, and it was hypothesized that this phenotype required the non-pathogenic E. coli to be sensitive to stx-converting phage infection. We tested this hypothesis by generating phage resistant non-pathogenic E. coli strains where bamA (an essential gene and Stx phage receptor) was replaced with an ortholog from other species. Such heterologous gene replacement abolished the ability of the laboratory strain E. coli C600 to enhance toxin production when co-cultured with E. coli O157:H7 strain PA2, which belongs to the hypervirulent clade 8. The extracellular loops of BamA (loop 4, 6, 7) were further shown to be important for infection by stx2a-converting phages. However, similar gene replacement in another commensal E. coli, designated 1.1954, revealed a bamA-independent mechanism for toxin amplification. Toxin enhancement by 1.1954 was not the result of phage infection through an alternative receptor (LamB or FadL), lysogen formation by stx2a-converting phages, or the production of a secreted molecule. Collectively, these data suggest that non-pathogenic E. coli can enhance toxin production through at least two mechanisms.
Collapse
Affiliation(s)
- Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Hillary M Figler
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Kakolie Goswami Banerjee
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States.,Center for Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
36
|
Anti-infectious properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 on enterotoxigenic E. coli (ETEC) strain H10407. Appl Microbiol Biotechnol 2018; 102:6175-6189. [DOI: 10.1007/s00253-018-9053-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
|
37
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
38
|
Dupont D, Alric M, Blanquet-Diot S, Bornhorst G, Cueva C, Deglaire A, Denis S, Ferrua M, Havenaar R, Lelieveld J, Mackie AR, Marzorati M, Menard O, Minekus M, Miralles B, Recio I, Van den Abbeele P. Can dynamicin vitrodigestion systems mimic the physiological reality? Crit Rev Food Sci Nutr 2018; 59:1546-1562. [DOI: 10.1080/10408398.2017.1421900] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D. Dupont
- INRA Agrocampus Ouest, STLO, Rennes, France
| | - M. Alric
- Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - C. Cueva
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | | | - S. Denis
- Université Clermont Auvergne, Clermont-Ferrand, France
| | - M. Ferrua
- Fonterra, Palmerston North, New Zealand
| | | | | | | | | | - O. Menard
- INRA Agrocampus Ouest, STLO, Rennes, France
| | | | - B. Miralles
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | - I. Recio
- CSIC Universidad Autonoma de Madrid, CIAL, Madrid, Spain
| | | |
Collapse
|
39
|
Enterohemorrhagic Escherichia coli pathogenesis: role of Long polar fimbriae in Peyer's patches interactions. Sci Rep 2017; 7:44655. [PMID: 28317910 PMCID: PMC5357955 DOI: 10.1038/srep44655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 11/14/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens whose survival and virulence in the human digestive tract remain unclear owing to paucity of relevant models. EHEC interact with the follicle-associated epithelium of Peyer’s patches of the distal ileum and translocate across the intestinal epithelium via M-cells, but the underlying molecular mechanisms are still unknown. Here, we investigated the involvement of Long polar fimbriae (Lpf) in EHEC pathogenesis. Of the 236 strains tested, a significant association was observed between the presence of lpf operons and pathogenicity. In sophisticated in vitro models of the human gastro-intestinal tract, lpf expression was induced during transit through the simulated stomach and small intestine, but not in the colonic compartment. To investigate the involvement of Lpf in EHEC pathogenesis, lpf isogenic mutants and their relative trans-complemented strains were generated. Translocation across M-cells, interactions with murine ileal biopsies containing Peyer’s patches and the number of hemorrhagic lesions were significantly reduced with the lpf mutants compared to the wild-type strain. Complementation of lpf mutants fully restored the wild-type phenotypes. Our results indicate that (i) EHEC might colonize the terminal ileum at the early stages of infection, (ii) Lpf are an important player in the interactions with Peyer’s patches and M-cells, and could contribute to intestinal colonization.
Collapse
|
40
|
Figler HM, Dudley EG. The interplay of Escherichia coli O157:H7 and commensal E. coli: the importance of strain-level identification. Expert Rev Gastroenterol Hepatol 2016; 10:415-7. [PMID: 26885676 DOI: 10.1586/17474124.2016.1155449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hillary M Figler
- a The Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , PA , USA
| | - Edward G Dudley
- b Department of Food Science, and Center for Immunology and Infectious Disease , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
41
|
Cordonnier C, Thévenot J, Etienne-Mesmin L, Alric M, Livrelli V, Blanquet-Diot S. Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit Rev Microbiol 2016; 43:116-132. [PMID: 27798976 DOI: 10.1080/1040841x.2016.1185602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens that constitute a serious public health threat. Currently, there is no specific treatment available for EHEC infections in human creating an urgent need for the development of alternative therapeutic strategies. Among them, one of the most promising approaches is the use of probiotic microorganisms. Even if many studies have shown the antagonistic effects of probiotic bacteria or yeast on EHEC survival, virulence, adhesion on intestinal epithelium or pathogen-induced inflammatory responses, mechanisms mediating their beneficial effects remain unclear. This review describes EHEC pathogenesis and novel therapeutic strategies, with a particular emphasis on probiotics. The interests and limits of a probiotic-based approach and the way it might be incorporated into global health strategies against EHEC infections will be discussed.
Collapse
Affiliation(s)
- Charlotte Cordonnier
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Jonathan Thévenot
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Lucie Etienne-Mesmin
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Monique Alric
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France
| | - Valérie Livrelli
- b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France.,c Service de Bactériologie , CHU Clermont-Ferrand , Clermont-Ferrand , France
| | - Stéphanie Blanquet-Diot
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France
| |
Collapse
|
42
|
Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 2016; 100:6981-90. [DOI: 10.1007/s00253-016-7700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
|
43
|
Cordonnier C, Thévenot J, Etienne-Mesmin L, Denis S, Alric M, Livrelli V, Blanquet-Diot S. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms 2015; 3:725-45. [PMID: 27682114 PMCID: PMC5023271 DOI: 10.3390/microorganisms3040725] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/08/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023] Open
Abstract
The beneficial effects of probiotics are conditioned by their survival during passage through the human gastrointestinal tract and their ability to favorably influence gut microbiota. The main objective of this study was to use dynamic in vitro models of the human digestive tract to investigate the effect of fasted or fed state on the survival kinetics of the new probiotic Saccharomyces cerevisiae strain CNCM I-3856 and to assess its influence on intestinal microbiota composition and activity. The probiotic yeast showed a high survival rate in the upper gastrointestinal tract whatever the route of admistration, i.e., within a glass of water or a Western-type meal. S. cerevisiae CNCM I-3856 was more sensitive to colonic conditions, as the strain was not able to colonize within the bioreactor despite a twice daily administration. The main bacterial populations of the gut microbiota, as well as the production of short chain fatty acids were not influenced by the probiotic treatment. However, the effect of the probiotic on the gut microbiota was found to be individual dependent. This study shows that dynamic in vitro models can be advantageously used to provide useful insight into the behavior of probiotic strains in the human digestive environment.
Collapse
Affiliation(s)
- Charlotte Cordonnier
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Unité Mixte de Recherche Institut National de la Santé Et de la Recherche Médicale (UMR INSERM) / Université d'Auvergne U1071 Unité Sous Contrat - Institut National de Recherche Agronomique (USC-INRA) 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, CBRV 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Jonathan Thévenot
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Unité Mixte de Recherche Institut National de la Santé Et de la Recherche Médicale (UMR INSERM) / Université d'Auvergne U1071 Unité Sous Contrat - Institut National de Recherche Agronomique (USC-INRA) 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, CBRV 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Lucie Etienne-Mesmin
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Unité Mixte de Recherche Institut National de la Santé Et de la Recherche Médicale (UMR INSERM) / Université d'Auvergne U1071 Unité Sous Contrat - Institut National de Recherche Agronomique (USC-INRA) 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, CBRV 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Sylvain Denis
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Monique Alric
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Valérie Livrelli
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Unité Mixte de Recherche Institut National de la Santé Et de la Recherche Médicale (UMR INSERM) / Université d'Auvergne U1071 Unité Sous Contrat - Institut National de Recherche Agronomique (USC-INRA) 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, CBRV 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
- Service de Bactériologie, Centre Hospitalier Universitaire (CHU), Clermont-Ferrand, 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| | - Stéphanie Blanquet-Diot
- Accueil Conception, Ingénierie et Développement de l'Aliment et du Médicament (EA 4678 CIDAM), Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, Centre Biomédical de Recherche et de Valorisation (CBRV) 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|