1
|
Kostovova I, Kavanova K, Moravkova M, Gebauer J, Leva L, Vicenova M, Babak V, Faldyna M, Crhanova M. Probiotic bacteria of wild boar origin intended for piglets - An in vitro study. VET MED-CZECH 2024; 69:281-296. [PMID: 39296628 PMCID: PMC11406499 DOI: 10.17221/35/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 09/21/2024] Open
Abstract
Using probiotics represents a potential solution to post-weaning diarrheal diseases in piglets on commercial farms. The gastrointestinal tract of wild boars serves as a promising reservoir of novel lactic acid bacteria with suitable probiotic characteristics. In this study, we isolated eight bacterial strains from the intestinal content of wild boars identified as representatives of the species Bifidobacterium apri, Lactobacillus amylovorus, and Ligilactobacillus salivarius. These isolates underwent in vitro analysis and characterisation to assess their biological safety and probiotic properties. Analysis of their full genome sequences revealed the absence of horizontally transferrable genes for antibiotic resistance. However, seven out of eight isolates harboured genes encoding various types of bacteriocins in their genomes, and bacteriocin production was further confirmed by mass spectrometry analysis. Most of the tested strains demonstrated the ability to inhibit the growth of selected pathogenic bacteria, produce exopolysaccharides, and stimulate the expression of interleukin-10 in porcine macrophages. These characteristics deem the isolates characterised in this study as potential candidates for use as probiotics for piglets during the post-weaning period.
Collapse
Affiliation(s)
- Iveta Kostovova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Kavanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Monika Moravkova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Monika Vicenova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Magdalena Crhanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
2
|
Fang X, Liu H, Du Y, Jiang L, Gao F, Wang Z, Chi Z, Shi B, Zhao X. Bacillus siamensis Targeted Screening from Highly Colitis-Resistant Pigs Can Alleviate Ulcerative Colitis in Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0415. [PMID: 39015206 PMCID: PMC11249912 DOI: 10.34133/research.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Ulcerative colitis (UC) is often accompanied by intestinal inflammation and disruption of intestinal epithelial structures, which are closely associated with changes in the intestinal microbiota. We previously revealed that Min pigs, a native Chinese breed, are more resistant to dextran sulfate sodium (DSS)-induced colitis than commercial Yorkshire pigs. Characterizing the microbiota in Min pigs would allow identification of the core microbes that confer colitis resistance. By analyzing the microbiota linked to the disease course in Min and Yorkshire pigs, we observed that Bacillus spp. were enriched in Min pigs and positively correlated with pathogen resistance. Using targeted screening, we identified and validated Bacillus siamensis MZ16 from Min pigs as a bacterial species with biofilm formation ability, superior salt and pH tolerance, and antimicrobial characteristics. Subsequently, we administered B. siamensis MZ16 to conventional or microbiota-deficient BALB/c mice with DSS-induced colitis to assess its efficacy in alleviating colitis. B. siamensis MZ16 partially counteracted DSS-induced colitis in conventional mice, but it did not mitigate DSS-induced colitis in microbiota-deficient mice. Further analysis revealed that B. siamensis MZ16 administration improved intestinal ecology and integrity and immunological barrier function in mice. Compared to the DSS-treated mice, mice preadministered B. siamensis MZ16 exhibited improved relative abundance of potentially beneficial microbes (Lactobacillus, Bacillus, Christensenellaceae R7, Ruminococcus, Clostridium, and Eubacterium), reduced relative abundance of pathogenic microbes (Escherichia-Shigella), and maintained colonic OCLN and ZO-1 levels and IgA and SIgA levels. Furthermore, B. siamensis MZ16 reduced proinflammatory cytokine levels by reversing NF-κB and MAPK pathway activation in the DSS group. Overall, B. siamensis MZ16 from Min pigs had beneficial effects on a colitis mouse model by enhancing intestinal barrier functions and reducing inflammation in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Lin Jiang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Feng Gao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
3
|
Park SY, Kim YH, Kim SJ, Han JH. Impact of Long-Term Supplementation with Probiotics on Gut Microbiota and Growth Performance in Post-Weaned Piglets. Animals (Basel) 2024; 14:1652. [PMID: 38891699 PMCID: PMC11171352 DOI: 10.3390/ani14111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate effects of long-term probiotic supplementation on gut microbiota and growth performance in health weaned piglets. The non-probiotic group (N-PrB) was fed only a basal diet, while the probiotic group (PrB) was fed a basal diet + probiotic combination (E. faecium 1.6 × 108 CFU/g, B. subtilis 2.0 × 108 CFU/g, S. cerevisiae 3.0 × 108 CFU/g). The probiotics combination was provided to the PrB, mixing with the basal diet in 5 kg/ton. As a result, the PrB exhibited significantly improved weight gain compared to the N-PrB (p = 0.00991). In the gut microbiome analysis, the PrB exhibited a significant increasing tendency of α-diversity compared to those of the N-PrB (p < 0.01). In the bacterial relative abundance changes in bacteria comprising the gut microbiota, Ruminococcaceae (p = 0.00281) and Prevotella (p = 0.00687) tended to significantly increase in the PrB, but decreased in the N-PrB. The Eubaterium coprostanoligenes group exhibited an increasing tendency in both groups, but tended to increase more significantly in the PrB compared to the N-PrB (p = 0.00681). Muribaculaceae tended to significantly increase in the N-PrB, but decreased in the PrB (p = 0.002779). In this study, significant differences on the gut microbiome were found according to the probiotics supplementation in the weaned piglets and these gut microbiome changes appeared to improve the growth performance.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yo-Han Kim
- Department of Large Animal Internal Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sung-Jae Kim
- Department of Companion Animal Health, Kyungbok University, Namyangju 12051, Republic of Korea
| | - Jeong-Hee Han
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
4
|
Wang F, Ghonimy A, Wang X. Whole-genome sequencing of Pseudoalteromonas piscicida 2515 revealed its antibacterial potency against Vibrio anguillarum: a preliminary invitro study. Antonie Van Leeuwenhoek 2024; 117:84. [PMID: 38809302 DOI: 10.1007/s10482-024-01974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Pseudoalteromonas piscicida 2515, isolated from Litopenaeus vannamei culture water, is a potential marine probiotic with broad anti-Vibrio properties. However, genomic information on P. piscicida 2515 is scarce. In this study, the general genomic characteristics and probiotic properties of the P. piscicida 2515 strain were analysed. In addition, we determined the antibacterial mechanism of this bacterial strain by scanning electron microscopy (SEM). The results indicated that the whole-genome sequence of P. piscicida 2515 contained one chromosome and one plasmid, including a total length of 5,541,406 bp with a G + C content of 43.24%, and 4679 protein-coding genes were predicted. Various adhesion-related genes, amino acid and vitamin metabolism and biosynthesis genes, and stress-responsive genes were found with genome mining tools. The presence of genes encoding chitin, bromocyclic peptides, lantibiotics, and sactipeptides showed the strong antibacterial activity of the P. piscicida 2515 strain. Moreover, in coculture with Vibrio anguillarum, P. piscicida 2515 displayed vesicle/pilus-like structures located on its surface that possibly participated in its bactericidal activity, representing an antibacterial mechanism. Additionally, 16 haemolytic genes and 3 antibiotic resistance genes, including tetracycline, fluoroquinolone, and carbapenem were annotated, but virulence genes encoding enterotoxin FM (entFM), cereulide (ces), and cytotoxin K were not detected. Further tests should be conducted to confirm the safety characteristics of P. piscicida 2515, including long-term toxicology tests, ecotoxicological assessment, and antibiotic resistance transfer risk assessment. Our results here revealed a new understanding of the probiotic properties and antibacterial mechanism of P. piscicida 2515, in addition to theoretical information for its application in aquaculture.
Collapse
Affiliation(s)
- Fenglin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Abdallah Ghonimy
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiuhua Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Jang HJ, Kim JA, Kim Y. Characterization of feline-originated probiotics Lactobacillus rhamnosus CACC612 and Bifidobacterium animalis subsp. lactis CACC789 and and evaluation of their host response. BMC Vet Res 2024; 20:128. [PMID: 38561808 PMCID: PMC10983674 DOI: 10.1186/s12917-024-03975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Probiotics are beneficial for animal health and new potential probiotics need to be characterized for their prospective use in improving animal health. In this study, 32 bacterial strains were isolated from a Norwegian forest cat (castrated, 12 years old) and a Persian cat (castrated, 10 years old), which were privately owned and had indoor access. RESULTS Lactobacillus rhamnosus CACC612 (CACC612) and Bifidobacterium animalis subsp. lactis CACC789 (CACC789) were selected as potential probiotics; characterization of the two strains showed equivalent acid tolerance, similar cell adhesion rates on the HT-29 monolayer cell line, and superior bile tolerance compared to Lactobacillus rhamnosus GG (LGG). Subsequently, they exhibited inhibitory effects against a broad spectrum of pathogenic bacteria, including E. coli (KCTC 2617), Salmonella Derby (NCCP 12,238), Salmonella Enteritidis (NCCP 14,546), Salmonella Typhimurium (NCCP 10,328), Clostridium difficile JCM 1296T. From evaluating host effects, the viability of the feline macrophage cell line (Fcwf-4) increased with the treatment of CACC612 or CACC789 (P < 0.05). The induced expression of immune-related genes such as IFN-γ, IL1β, IL2, IL4, and TNF-α by immune stimulation was significantly attenuated by the treatment of CACC612 or CACC789 (P < 0.05). When 52 clinical factors of sera from 21 healthy cats were analyzed using partial least squares discriminant analysis (PLS-DA), the animals were obviously clustered before and after feeding with CACC612 or CACC789. In addition, hemoglobin and mean corpuscular hemoglobin concentration (MCHC) significantly increased after CACC612 feeding (P < 0.05). CONCLUSIONS In this study, feline-originated probiotics were newly characterized and their potentially probiotic effects were evaluated. These results contribute to our understanding of the functional effects of feline-derived probiotics and support their industrial applications.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.
| |
Collapse
|
6
|
Dixit Y, Kanojiya K, Bhingardeve N, Ahire JJ, Saroj D. In Vitro Human Gastrointestinal Tract Simulation Systems: A Panoramic Review. Probiotics Antimicrob Proteins 2024; 16:501-518. [PMID: 36988898 DOI: 10.1007/s12602-023-10052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
Simulated human gastrointestinal (GI) tract systems are important for their applications in the fields of probiotics, nutrition and health. To date, various in vitro gut systems have been available to study GI tract dynamics and its association with health. In contrast to in vivo investigations, which are constrained by ethical considerations, in vitro models have several benefits despite the challenges involved in mimicking the GI environment. These in vitro models can be used for a range of research, from simple to dynamic, with one compartment to several compartments. In this review, we present a panoramic development of in vitro GI models for the first time through an evolutionary timeline. We tried to provide insight on designing an in vitro gut model, especially for novices. Latest developments and scope for improvement based on the limitations of the existing models were highlighted. In conclusion, designing an in vitro GI model suitable for a particular application is a multifaceted task. The bio-mimicking of the GI tract specific to geometrical, anatomical and mechanical features remains a challenge for the development of effective in vitro GI models. Advances in computer technology, artificial intelligence and nanotechnology are going to be revolutionary for further development. Besides this, in silico high-throughput technologies and miniaturisation are key players in the success of making in vitro modelling cost-effective and reducing the burden of in vivo studies.
Collapse
Affiliation(s)
- Yogini Dixit
- Advanced Enzyme Technologies Ltd., 5th Floor, A-Wing, Sun Magnetica, Louiswadi, Maharashtra, Thane West, India
| | - Khushboo Kanojiya
- Advanced Enzyme Technologies Ltd., 5th Floor, A-Wing, Sun Magnetica, Louiswadi, Maharashtra, Thane West, India
| | - Namrata Bhingardeve
- Advanced Enzyme Technologies Ltd., 5th Floor, A-Wing, Sun Magnetica, Louiswadi, Maharashtra, Thane West, India
| | - Jayesh J Ahire
- Advanced Enzyme Technologies Ltd., 5th Floor, A-Wing, Sun Magnetica, Louiswadi, Maharashtra, Thane West, India.
| | - Dina Saroj
- Advanced Enzyme Technologies Ltd., 5th Floor, A-Wing, Sun Magnetica, Louiswadi, Maharashtra, Thane West, India
| |
Collapse
|
7
|
Cao Y, Wang Z, Dai X, Zhang D, Zeng Y, Ni X, Pan K. Evaluation of probiotic properties of a Brevibacillus laterosporus strain. FASEB J 2024; 38:e23530. [PMID: 38466314 DOI: 10.1096/fj.202302408r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.
Collapse
Affiliation(s)
- Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Kil BJ, Pyung YJ, Park H, Kang JW, Yun CH, Huh CS. Probiotic potential of Saccharomyces cerevisiae GILA with alleviating intestinal inflammation in a dextran sulfate sodium induced colitis mouse model. Sci Rep 2023; 13:6687. [PMID: 37095161 PMCID: PMC10125971 DOI: 10.1038/s41598-023-33958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Recently, several probiotic products have been developed; however, most probiotic applications focused on prokaryotic bacteria whereas eukaryotic probiotics have received little attention. Saccharomyces cerevisiae yeast strains are eukaryotes notable for their fermentation and functional food applications. The present study investigated the novel yeast strains isolated from Korean fermented beverages and examined their potential probiotic characteristics. We investigated seven strains among 100 isolates with probiotic characteristics further. The strains have capabilities such as auto-aggregation tendency, co-aggregation with a pathogen, hydrophobicity with n-hexadecane,1,1-diphenyl-2-picrylhydrazyl scavenging effect, survival in simulated gastrointestinal tract conditions and the adhesion ability of the strains to the Caco-2 cells. Furthermore, all the strains contained high cell wall glucan content, a polysaccharide with immunological effects. Internal transcribed spacer sequencing identified the Saccharomyces strains selected in the present study as probiotics. To examine the effects of alleviating inflammation in cells, nitric oxide generation in raw 264.7 cells with S. cerevisiae showed that S. cerevisiae GILA could be a potential probiotic strain able to alleviate inflammation. Three probiotics of S. cerevisiae GILA strains were chosen by in vivo screening with a dextran sulfate sodium-induced colitis murine model. In particular, GILA 118 down-regulates neutrophil-lymphocyte ratio and myeloperoxidase in mice treated with DSS. The expression levels of genes encoding tight junction proteins in the colon were upregulated, cytokine interleukin-10 was significantly increased, and tumor necrosis factor-α was reduced in the serum.
Collapse
Affiliation(s)
- Bum Ju Kil
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin Pyung
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Cheol-Heui Yun
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
| |
Collapse
|
9
|
Li C, Du X, Liu ZH, Li BZ, Meng X, Zhao J, Zhao ZM, Ragauskas AJ. Steam explosion pretreatment coupling high-temperature short-time sterilization facilitating cellulose degradation and sporulation-regulatory gene expression in high-solid fermentation. Int J Biol Macromol 2023; 232:123475. [PMID: 36720325 DOI: 10.1016/j.ijbiomac.2023.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Steam explosion coupling high-temperature short-time sterilization (SE-HTST) was exploited to modify cellulosic biomass medium properties and promote high-solid fermentation (HSF). Biomass characterization analysis showed that SE-HTST enlarged microstructural pores and cavities in solid media, providing more effective space for microbial growth. Meanwhile, SE-HTST helped to release glucose from the cellulose with 35.8 ± 4.5, 20.0 ± 2.3, and 12.3 ± 5.7 mg glucose/g dry medium at 24, 48, and 72 h of fermentation, which were 3.1, 2.3, and 1.5 times higher than that in medium from conventional thermal sterilization (CTS), respectively. SE-HTST increased the viable cell and spore number of Bacillus subtilis by 1.8 and 1.6 times at 72 h of fermentation compared to CTS. Moreover, the expressions of master transcriptional gene spo0A and the early sigma factors of sigF and sigE genes gradually increased in the SE-HTST medium, showing enhanced sporulation in HSF. Therefore, SE-HTST is an effective strategy for facilitating cellulose degradation, improving glucose nutrients in biomass medium, and promoting sporulation-regulatory gene expression during high-solid fermentation, which enhances the production of microbial ecological agents using B. subtilis significantly.
Collapse
Affiliation(s)
- Chonglei Li
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyu Du
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| |
Collapse
|
10
|
Cuevas-Gómez I, de Andrés J, Cardenas N, Espinosa-Martos I, Jiménez E. Safety assessment and characterisation of Ligilactobacillus salivarius PS21603 as potential feed additive for swine. Benef Microbes 2022; 13:397-406. [DOI: 10.3920/bm2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to characterise in vitro properties of the strain Ligilactobacillus salivarius PS21603 and evaluate in vivo piglets’ tolerance for its use as feed additive in swine. The ability of L. salivarius PS21603 of inhibiting enteropathogens’ growth in vitro was evaluated using a co-culture assay. Low pH tolerance, bile tolerance, and resistance to osmotic changes were evaluated. The antibiotic susceptibility profile of L. salivarius PS21603 was assessed through broth microdilution method. Whole genome sequencing (WGS) was performed to exclude the presence of antibiotic resistance genes. L. salivarius PS21603 showed a high antimicrobial activity in vitro, reducing in a mean of 6.16 log cfu/ml eight different enterotoxigenic Escherichia coli strains. Moreover, L. salivarius PS21603 showed resistance to osmotic changes and was able to survive to a pH above 3.5 during 24 h and up to pH 2 at least during 2 h. In addition, WGS revealed that L. salivarius PS21603 did not harbour any resistance genes and thus there was no risk of transmissibility. Finally, an in vivo 28-days safety and tolerance study was performed. For that, 384 healthy piglets (28±2 days old and 7.5±1.5 kg, at weaning) were divided into three treatment groups receiving a different dose of L. salivarius PS21603: T1, 109 cfu/day; T2, 107 cfu/day; T3, control. Piglet’s health status was daily controlled. Individual bodyweight and feed intake per pen were weekly recorded to determine performance parameters. Blood samples were collected in 16 piglets from each treatment group on days 0 and 28 for determination of cytokine profiles. L. salivarius PS21603 was safe and well tolerated by piglets, there were no differences in performance nor cytokine profile between treatment groups. In conclusion, L. salivarius PS21603 is a potential candidate for a probiotic prevention strategy against pig diarrhoea.
Collapse
Affiliation(s)
- I. Cuevas-Gómez
- Probisearch S.L.U., C/Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - J. de Andrés
- Probisearch S.L.U., C/Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - N. Cardenas
- Probisearch S.L.U., C/Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | | | - E. Jiménez
- Probisearch S.L.U., C/Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| |
Collapse
|
11
|
Nissen L, Aniballi C, Casciano F, Elmi A, Ventrella D, Zannoni A, Gianotti A, Bacci ML. Maternal amoxicillin affects piglets colon microbiota: microbial ecology and metabolomics in a gut model. Appl Microbiol Biotechnol 2022; 106:7595-7614. [PMID: 36239764 PMCID: PMC9666337 DOI: 10.1007/s00253-022-12223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Abstract The first weeks of life represent a crucial stage for microbial colonization of the piglets’ gastrointestinal tract. Newborns’ microbiota is unstable and easily subject to changes under stimuli or insults. Nonetheless, the administration of antibiotics to the sow is still considered as common practice in intensive farming for pathological conditions in the postpartum. Therefore, transfer of antibiotic residues through milk may occurs, affecting the piglets’ colon microbiota. In this study, we aimed to extend the knowledge on antibiotic transfer through milk, employing an in vitro dedicated piglet colon model (MICODE—Multi Unit In vitro Colon Model). The authors’ focus was set on the shifts of the piglets’ microbiota composition microbiomics (16S r-DNA MiSeq and qPCR—quantitative polymerase chain reaction) and on the production of microbial metabolites (SPME GC/MS—solid phase micro-extraction gas chromatography/mass spectrometry) in response to milk with different concentrations of amoxicillin. The results showed an effective influence of amoxicillin in piglets’ microbiota and metabolites production; however, without altering the overall biodiversity. The scenario is that of a limitation of pathogens and opportunistic taxa, e.g., Staphylococcaceae and Enterobacteriaceae, but also a limitation of commensal dominant Lactobacillaceae, a reduction in commensal Ruminococcaceae and a depletion in beneficial Bifidobactericeae. Lastly, an incremental growth of resistant species, such as Enterococcaceae or Clostridiaceae, was observed. To the authors’ knowledge, this study is the first evaluating the impact of antibiotic residues towards the piglets’ colon microbiota in an in vitro model, opening the way to include such approach in a pipeline of experiments where a reduced number of animals for testing is employed. Key points • Piglet colon model to study antibiotic transfer through milk. • MICODE resulted a robust and versatile in vitro gut model. • Towards the “3Rs” Principles to replace, reduce and refine the use of animals used for scientific purposes (Directive 2010/63/UE). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12223-3.
Collapse
Affiliation(s)
- Lorenzo Nissen
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna: Universita Di Bologna, P.za Goidanich 60, 47521, Cesena, Italy.,Interdepartmental Centre of Agri-Food Industrial Research (CIRI-AGRO), Alma Mater Studiorum University of Bologna: Universita Di Bologna, Via Q. Bucci 336, 47521, Cesena, Italy
| | - Camilla Aniballi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna: Universita Di Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Flavia Casciano
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna: Universita Di Bologna, P.za Goidanich 60, 47521, Cesena, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna: Universita Di Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna: Universita Di Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna: Universita Di Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum University of Bologna: Universita Di Bologna, 40126, Bologna, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna: Universita Di Bologna, P.za Goidanich 60, 47521, Cesena, Italy.,Interdepartmental Centre of Agri-Food Industrial Research (CIRI-AGRO), Alma Mater Studiorum University of Bologna: Universita Di Bologna, Via Q. Bucci 336, 47521, Cesena, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna: Universita Di Bologna, via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum University of Bologna: Universita Di Bologna, 40126, Bologna, Italy
| |
Collapse
|
12
|
Zhang Q, Wang M, Ma X, Li Z, Jiang C, Pan Y, Zeng Q. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front Cell Infect Microbiol 2022; 12:984537. [PMID: 36189367 PMCID: PMC9523120 DOI: 10.3389/fcimb.2022.984537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenghui Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Lee D, Goh TW, Kang MG, Choi HJ, Yeo SY, Yang J, Huh CS, Kim YY, Kim Y. Perspectives and Advances in Probiotics and the Gut Microbiome in
Companion Animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:197-217. [PMID: 35530406 PMCID: PMC9039956 DOI: 10.5187/jast.2022.e8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
As the number of households that raise dogs and cats is increasing, there is
growing interest in animal health. The gut plays an important role in animal
health. In particular, the microbiome in the gut is known to affect both the
absorption and metabolism of nutrients and the protective functions of the host.
Using probiotics on pets has beneficial effects, such as modulating the immune
system, helping to reduce stress, protecting against pathogenic bacteria and
developing growth performance. The goals of this review are to summarize the
relationship between probiotics/the gut microbiome and animal health, to feature
technology used for identifying the diversity of microbiota composition of
canine and feline microbiota, and to discuss recent reports on probiotics in
canines and felines and the safety issues associated with probiotics and the gut
microbiome in companion animals.
Collapse
Affiliation(s)
- Daniel Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Tae Wook Goh
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min Geun Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - So Young Yeo
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | | | - Chul Sung Huh
- Research Institute of Eco-Friendly
Livestock Science, Institute of Green-Bio Science and Technology, Seoul
National University, Pyeongchang 25354, Korea
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
- Corresponding author: Younghoon Kim, Department of
Agricultural Biotechnology and Research Institute of Agriculture and Life
Science, Seoul National University, Seoul 08826, Korea. Tel: +82-2-880-4808,
E-mail:
| |
Collapse
|
14
|
Dong W, Ding N, Zhang Y, Tan Z, Ding X, Zhang Q, Jiang L. Alterations of Suckling Piglet Jejunal Microbiota Due to Infection With Porcine Epidemic Diarrhea Virus and Protection Against Infection by Lactobacillus salivarius. Front Vet Sci 2021; 8:771411. [PMID: 34957282 PMCID: PMC8695681 DOI: 10.3389/fvets.2021.771411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
The high mortality of neonatal piglets due to porcine epidemic diarrhea virus (PEDV) infection has caused huge economic losses to the pig industry. The intestinal microbiota is an important barrier against invaders entering the gastrointestinal route. In this study, we examined the differences between intestinal microbiota of PEDV-infected and healthy piglets. According to the viral copy numbers, 16 crossbred (Landrace-Yorkshire) piglets were divided into three groups: uninfected, low virus load, and high virus load groups. Next, 16S rRNA sequencing was performed to determine the microbiota composition in jejunal content and jejunal mucosal samples from the three groups. PEDV infection induced an imbalance in the microbiota of both jejunal content and jejunal mucosa. The abundance of phylum Firmicutes was higher in uninfected piglets than in infected piglets, whereas the abundance of Proteobacteria was lower in uninfected piglets. Principal coordinate analysis showed significant separation of jejunal microbiota between different groups. Linear discriminant analysis (LDA) effect size (LEfSe) identified Lactobacillus salivarius as a potential biomarker among three groups at the level of species. Then, in vitro, L. salivarius was able to suppress the infection of PEDV to IPEC-J2 cells and decreased the expression of GRP78 (Glucose-regulating protein 78). In addition, we detected the mRNA expression of genes involved in the FAK/PI3K/Akt signaling pathway. When IPEC-J2 cells were treated with L. salivarius before PEDV infection, the mRNA expression levels of ITGA1, ITGA5, ITGB5, FAK, PIK3R1, PIK3CA and AKT1 were significantly higher than those in the control cells (without treatment) at different times post-infection, indicating that L. salivarius may upregulate the FAK/PI3K/Akt signaling pathway in IPEC-J2 cells to resist PEDV infection. In summary, PEDV infection altered microbial communities in both jejunal content and jejunal mucosa. L. salivarius has a protective effect against PEDV infection in IPEC-J2 cells. This study provides a potentially effective strategy to prevent the occurrence and control the spread of PED in the pig production.
Collapse
Affiliation(s)
- Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Tan
- College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Ahmed S, Ashraf F, Tariq M, Zaidi A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. ANN MICROBIOL 2021; 71:33. [PMID: 34483789 PMCID: PMC8406656 DOI: 10.1186/s13213-021-01645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Cucumber fermentation is traditionally done using lactic acid bacteria. The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and protects food from spoilage. Methods Autochthonous lactic acid bacteria were isolated from spontaneously fermented cucumber and identified to species level. Only strains adjudged as safe for human consumption were examined for their technological and functional characteristics. Strain efficiency was based on maintaining high numbers of viable cells during simulated GIT conditions and fermentation, significant antioxidant activity, EPS production, nitrite degradation, and antimicrobial ability against Gram-positive and Gram-negative foodborne pathogens. Result Two strains, Lactiplantibacillus plantarum NPL 1258 and Pediococcus pentosaceus NPL 1264, showing a suite of promising functional and technological attributes, were selected as a mixed-species starter for carrying out a controlled lactic acid fermentations of a native cucumber variety. This consortium showed a faster lactic acid-based acidification with more viable cells, at 4% NaCl and 0.2% inulin (w/v) relative to its constituent strains when tested individually. Sensory evaluation rated the lactofermented cucumber acceptable based on texture, taste, aroma, and aftertaste. Conclusion The results suggest that the autochthonous LAB starter cultures can shorten the fermentation cycle and reduce pathogenic organism’ population, thus improving the shelf life and quality of fermented cucumber. The development of these new industrial starters would increase the competitiveness of production and open the country’s frontiers in the fermented vegetable market.
Collapse
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Fatima Ashraf
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| |
Collapse
|
16
|
Protective Action of L. salivarius SGL03 and Lactoferrin against COVID-19 Infections in Human Nasopharynx. MATERIALS 2021; 14:ma14113086. [PMID: 34200055 PMCID: PMC8200234 DOI: 10.3390/ma14113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, we used live viral particles from oral secretions from 17 people infected with SARS-CoV-2 and from 17 healthy volunteers, which were plated on a suitable medium complete for all microorganisms and minimal for L.salivarius growth. Both types of media also contained an appropriately prepared vector system pGEM-5Zf (+) based on the lactose operon (beta-galactosidase system). Incubation was carried out on both types of media for 24 h with the addition of 200 μL of Salistat SGL03 solution in order to test its inhibitory effect on the coronavirus contained in the oral mucosa and nasopharynx, visible as light blue virus particles on the test plates, which gradually disappeared in the material collected from infected persons over time. Regardless of the conducted experiments, swabs were additionally taken from the nasopharynx of infected and healthy people after rinsing the throat and oral mucosa with Salistat SGL03. In both types of experiments, after 24 h of incubation on appropriate media with biological material, we did not find any virus particles. Results were also confirmed by MIC and MBC tests. Results prove that lactoferrin, as one of the ingredients of the preparation, is probably a factor that blocks the attachment of virus particles to the host cells, determining its anti-viral properties. The conducted preliminary experiments constitute a very promising model for further research on the anti-viral properties of the ingredients contained in the Salistat SGL03 dietary supplement.
Collapse
|
17
|
Ahmed S, Muhammad T, Zaidi A. Cottage cheese enriched with lactobacilli encapsulated in alginate–chitosan microparticles forestalls perishability and augments probiotic activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Tariq Muhammad
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| |
Collapse
|
18
|
Moturi J, Kim KY, Hosseindoust A, Lee JH, Xuan B, Park J, Kim EB, Kim JS, Chae BJ. Effects of Lactobacillus salivarius isolated from feces of fast-growing pigs on intestinal microbiota and morphology of suckling piglets. Sci Rep 2021; 11:6757. [PMID: 33762614 PMCID: PMC7990948 DOI: 10.1038/s41598-021-85630-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The study determined the effects of Lactobacillus salivarius (LS) administered early in the life of suckling piglets on their growth performance, gut morphology, and gut microbiota. Thirty litters of 3-day-old crossbreed piglets were randomly assigned to one of the three treatments, and treatments were commenced on day 3 after birth. During the whole period of the experiment, the piglets were kept with their mothers and left to suckle ad libitum while being supplemented with a milk formula with or without the bacterial probiotic supplemented. The control group (CON) was not treated with probiotics, the HLS group was treated with LS144 (HLS) screened from feces of fast-growing pigs with high body mass index (BMI) while the NLS group was supplemented with LS160 (NLS) screened from feces obtained from pigs of normal BMI. At the weaning time, a higher abundance of Actinobacteria, Lentisphaerae, and Elusimicrobia phyla were observed in NLS piglets, whereas the abundance of Fibrobacteres phylum was significantly reduced in NLS and HLS piglets compared with the CON. A greater abundance of Lactobacillus was detected in the HLS treatment compared with the CON. The abundance of Bacteroides and Fibrobacter was higher in the CON piglets compared with the HLS and NLS piglets. Compared with the CON group, the oral administration of LS significantly increased the number of Lactobacillus and villus height in the duodenum, jejunum, and ileum. Moreover, the villus height of the duodenum was significantly improved in the HLS treatment compared with the NLS treatment. Based on the findings in the neonatal piglet model, we suggest that oral supplementation of LS, particularly LS isolated from high BMI pigs, could be beneficial by improving the intestinal villus height.
Collapse
Affiliation(s)
- Joseph Moturi
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Yeol Kim
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang, 25342, Republic of Korea
| | - Abdolreza Hosseindoust
- Department of Animal Resource Science, College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hyung Lee
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Biao Xuan
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jongbin Park
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea. .,Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Byung Jo Chae
- Department of Animal Resource Science, College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1444. [PMID: 33809616 PMCID: PMC8001659 DOI: 10.3390/ma14061444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.
Collapse
Affiliation(s)
- Ilona Rowińska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Adrianna Szyperska-Ślaska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Piotr Zariczny
- Toruń City Hall, Business Support Center in Toruń, ul. Marii Konopnickiej 13, 87-100 Toruń, Poland;
| | - Robert Pasławski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, str. Gagarina 7, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1str, 15-089 Bialystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
20
|
Impact of the Diet on the Formation of Oxidative Stress and Inflammation Induced by Bacterial Biofilm in the Oral Cavity. MATERIALS 2021; 14:ma14061372. [PMID: 33809050 PMCID: PMC7998603 DOI: 10.3390/ma14061372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The diet is related to the diversity of bacteria in the oral cavity, and the less diverse microbiota of the oral cavity may favor the growth of pathogenic bacteria of all bacterial complexes. Literature data indicate that disturbances in the balance of the bacterial flora of the oral cavity seem to contribute to both oral diseases, including periodontitis, and systemic diseases. If left untreated, periodontitis can damage the gums and alveolar bones. Improper modern eating habits have an impact on the oral microbiome and the gut microbiome, which increase the risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease and cancer. The subject of our consideration is the influence of the traditional diet on the formation of oxidative stress and inflammation caused by bacterial biofilm in the oral cavity. Through dental, biomedical and laboratory studies, we wanted to investigate the effect of individual nutrients contained in specific diets on the induction of oxidative stress inducing inflammation of the soft tissues in the oral cavity in the presence of residual supra- and subgingival biofilm. In our research we used different types of diets marked as W, T, B, F and noninvasively collected biological material in the form of bacterial inoculum from volunteers. The analyzed material was grown on complete and selective media against specific strains of all bacterial complexes. Additionally, the zones of growth inhibition were analyzed based on the disc diffusion method. The research was supplemented with dental and periodontological indicators. The research was supplemented by the application of molecular biology methods related to bacterial DNA isolation, PCR reactions and sequencing. Such selected methods constitute an ideal screening test for the analysis of oral bacterial microbiota. The obtained results suggest that certain types of diet can be an effective prophylaxis in the treatment of civilization diseases such as inflammation of the oral cavity along with periodontal tissues and gingival pockets.
Collapse
|
21
|
Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D’Ascanio V, Landoulsi A, Avantaggiato G. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins (Basel) 2021; 13:toxins13030185. [PMID: 33801544 PMCID: PMC8000088 DOI: 10.3390/toxins13030185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The removal of mycotoxins from contaminated feed using lactic acid bacteria (LAB) has been proposed as an inexpensive, safe, and promising mycotoxin decontamination strategy. In this study, viable and heat-inactivated L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells were investigated for their ability to remove aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), and deoxynivalenol (DON) from MRS medium and PBS buffer over a 24 h period at 37 °C. LAB decontamination activity was also assessed in a ZEA-contaminated liquid feed (LF). Residual mycotoxin concentrations were determined by UHPLC-FLD/DAD analysis. In PBS, viable L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells removed up to 57% and 30% of ZEA and DON, respectively, while AFB1 and OTA reductions were lower than 15%. In MRS, 28% and 33% of ZEA and AFB1 were removed, respectively; OTA and DON reductions were small (≤15%). Regardless of the medium, heat-inactivated cells produced significantly lower mycotoxin reductions than those obtained with viable cells. An adsorption mechanism was suggested to explain the reductions in AFB1 and OTA, while biodegradation could be responsible for the removal of ZEA and DON. Both viable LAB strains reduced ZEA by 23% in contaminated LF after 48 h of incubation. These findings suggest that LAB strains of L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T may be applied in the feed industry to reduce mycotoxin contamination.
Collapse
Affiliation(s)
- Chaima Ragoubi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Donato Greco
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Amel Mehrez
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Imed Maatouk
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Ahmed Landoulsi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
- Correspondence:
| |
Collapse
|
22
|
Lactobacillus animalis pZL8a: a potential probiotic isolated from pig feces for further research. 3 Biotech 2021; 11:132. [PMID: 33680697 DOI: 10.1007/s13205-021-02681-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to screen a potential anti-diarrheal probiotic for pigs to meet the growing demand for antibiotic alternatives in livestock. Six intestinal pathogens, Escherichia coli (O157: H7) ATCC 43888, Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028, Shigella boydii ATCC 9207, and Staphylococcus haemolyticus ZSY2 were employed as indicator bacteria. Our result showed that Lactobacillus animalis pZL8a isolated from pig feces had extensive and higher antibacterial activity against indicator pathogens among 9 tested strains. In addition, valuable attributes of pZL8a such as great tolerance of low pH (3.0) and bile salts (0.3%), high-level adhesion to Caco-2 cells, and similar susceptibility to the reference strain Lactobacillus rhamnosus GG (LGG) were observed. Compared with control, pZL8a supplement significantly improved the level of immunoglobulin G (IgG), immunoglobulin M (IgM), and interleukin-2 (IL-2) in mouse serum. Therefore, L. animalis pZL8a was proposed as a potential probiotic for further research and hope to reduce or replace the application of antibiotics in animal production.
Collapse
|
23
|
Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Yuan D, Wang J, Xiao D, Li J, Liu Y, Tan B, Yin Y. Eucommia ulmoides Flavones as Potential Alternatives to Antibiotic Growth Promoters in a Low-Protein Diet Improve Growth Performance and Intestinal Health in Weaning Piglets. Animals (Basel) 2020; 10:E1998. [PMID: 33143126 PMCID: PMC7694009 DOI: 10.3390/ani10111998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
Eucommia ulmoides flavones (EUF) have been demonstrated to attenuate the inflammation and oxidative stress of piglets. This study aimed to test whether EUF could be used as an alternative antibiotic growth promoter to support growth performance and maintain intestinal health in weanling piglets. Weaned piglets (n = 480) were assigned into three groups and fed with a low-protein basal diet (NC), or supplementation with antibiotics (PC) or 0.01% EUF (EUF). Blood, intestinal contents, and intestine were collected on days 15 and 35 after weaning. The results showed the PC and EUF supplementations increased (p < 0.05) body weight on day 35, average daily gain and gain: feed ratio from day 15 to day 35 and day 0 to day 35, whereas decreased (p < 0.05) the diarrhea index of weanling piglets. EUF treatment increased (p < 0.05) jejunal villus height: crypt depth ratio, jejunal and ileal villus height, and population of ileal lactic acid bacteria on day 15 but decreased (p < 0.05) the population of ileal coliform bacteria on day 15 and day 35. These findings indicated the EUF, as the potential alternative to in-feed antibiotic growth promoter, could improve growth performance and intestinal morphology, and decrease colonization of coliform bacteria and diarrhea index in weanling piglets.
Collapse
Affiliation(s)
- Daixiu Yuan
- Department of Medicine, Jishou University, Jishou 416000, China;
| | - Jing Wang
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Dingfu Xiao
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
| | - Jiefeng Li
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Bie Tan
- Department of Animal Science, Hunan Agricultural University, Changsha 410000, China; (D.X.); (B.T.)
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| |
Collapse
|
25
|
Isolation and Investigation of Potential Non- Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine. Microorganisms 2020; 8:microorganisms8101552. [PMID: 33050030 PMCID: PMC7601120 DOI: 10.3390/microorganisms8101552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The Muscat Bailey A (MBA) grape, one of the most prominent grape cultivars in Korea, contains considerable amounts of monoterpene alcohols that have very low odor thresholds and significantly affect the perception of wine aroma. To develop a potential wine starter for Korean MBA wine, nine types of non-Saccharomyces yeasts were isolated from various Korean food materials, including nuruk, Sémillon grapes, persimmons, and Muscat Bailey A grapes, and their physiological, biochemical, and enzymatic properties were investigated and compared to the conventional wine fermentation strain, Saccharomyces cerevisiae W-3. Through API ZYM analysis, Wickerhamomyces anomalus JK04, Hanseniaspora vineae S7, Hanseniaspora uvarum S8, Candida railenensis S18, and Metschnikowia pulcherrima S36 were revealed to have β-glucosidase activity. Their activities were quantified by culturing in growth medium composed of different carbon sources: 2% glucose, 1% glucose + 1% cellobiose, and 2% cellobiose. W. anomalus JK04 and M. pulcherrima S36 showed the highest β-glucosidase activities in all growth media; thus, they were selected and utilized for MBA wine fermentation. MBA wines co-fermented with non-Saccharomyces yeasts (W. anomalus JK04 or M. pulcherrima S36) and S. cerevisiae W-3 showed significantly increased levels of linalool, citronellol, and geraniol compared to MBA wine fermented with S. cerevisiae W-3 (control). In a sensory evaluation, the flavor, taste, and overall preference scores of the co-fermented wines were higher than those for the control wine, suggesting that W. anomalus JK04 and M. pulcherrima S36 are favorable wine starters for improving Korean MBA wine quality.
Collapse
|
26
|
Kucia M, Wietrak E, Szymczak M, Kowalczyk P. Effect of Ligilactobacillus salivarius and Other Natural Components against Anaerobic Periodontal Bacteria. Molecules 2020; 25:molecules25194519. [PMID: 33023121 PMCID: PMC7582733 DOI: 10.3390/molecules25194519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
In this present study, the bacteriostatic effect of Salistat SGL03 and the Lactobacillus salivarius strain contained in it was investigated in adults in in vivo and in vitro tests on selected red complex bacteria living in the subgingival plaque, inducing a disease called periodontitis, i.e., chronic periodontitis. Untreated periodontitis can lead to the destruction of the gums, root cementum, periodontium, and alveolar bone. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are: Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and others. Our hypothesis was verified by taking swabs of scrapings from the surface of the teeth of female hygienists (volunteers) on full and selective growth media for L. salivarius. The sizes of the zones of growth inhibition of periopathogens on the media were measured before (in vitro) and after consumption (in vivo) of Salistat SGL03, based on the disk diffusion method, which is one of the methods of testing antibiotic resistance and drug susceptibility of pathogenic microorganisms. Additionally, each of the periopathogens analyzed by the reduction inoculation method, was treated with L. salivarius contained in the SGL03 preparation and incubated together in Petri dishes. The bacteriostatic activity of SGL03 preparation in selected periopathogens was also analyzed using the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests. The obtained results suggest the possibility of using the Salistat SGL03 dietary supplement in the prophylaxis and support of the treatment of periodontitis-already treated as a civilization disease.
Collapse
Affiliation(s)
- Marzena Kucia
- R&D Depatrment Nutropharma LTD, Jedności 10A, 05-506 Lesznowola, Poland; (M.K.); (E.W.)
| | - Ewa Wietrak
- R&D Depatrment Nutropharma LTD, Jedności 10A, 05-506 Lesznowola, Poland; (M.K.); (E.W.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: ; Tel.: +48-22-765-3301
| |
Collapse
|
27
|
KOWALSKA JUSTYNAD, NOWAK ADRIANA, ŚLIŻEWSKA KATARZYNA, STAŃCZYK MAŁGORZATA, ŁUKASIAK MAGDALENA, DASTYCH JAROSŁAW. Anti-Salmonella Potential of New Lactobacillus Strains with the Application in the Poultry Industry. Pol J Microbiol 2020; 69:5-18. [PMID: 32189480 PMCID: PMC7256722 DOI: 10.33073/pjm-2020-001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Probiotics are considered an alternative to antibiotics in the prevention and treatment of Salmonella diseases in poultry. However, to use probiotics as proposed above, it is necessary to evaluate their properties in detail and to select the most effective bacterial strains in the application targeted. In this study, probiotic properties of new Lactobacillus sp. strains were investigated and their antimicrobial activity against 125 environmental strains of Salmonella sp. was determined using the agar slab method. Furthermore, their survival in the presence of bile salts and at low pH, antibiotics susceptibility, aggregation and coaggregation ability, adherence to polystyrene and Caco-2 cells, and cytotoxicity were investigated. Each strain tested showed antagonistic activity against at least 96% of the environmental Salmonella sp. strains and thus representing a highly epidemiologically differentiated collection of poultry isolates. In addition, the probiotic properties of new Lactobacillus strains are promising. Therefore, all strains examined showed a high potential for use in poultry against salmonellosis. Probiotics are considered an alternative to antibiotics in the prevention and treatment of Salmonella diseases in poultry. However, to use probiotics as proposed above, it is necessary to evaluate their properties in detail and to select the most effective bacterial strains in the application targeted. In this study, probiotic properties of new Lactobacillus sp. strains were investigated and their antimicrobial activity against 125 environmental strains of Salmonella sp. was determined using the agar slab method. Furthermore, their survival in the presence of bile salts and at low pH, antibiotics susceptibility, aggregation and coaggregation ability, adherence to polystyrene and Caco-2 cells, and cytotoxicity were investigated. Each strain tested showed antagonistic activity against at least 96% of the environmental Salmonella sp. strains and thus representing a highly epidemiologically differentiated collection of poultry isolates. In addition, the probiotic properties of new Lactobacillus strains are promising. Therefore, all strains examined showed a high potential for use in poultry against salmonellosis.
Collapse
Affiliation(s)
| | - ADRIANA NOWAK
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - KATARZYNA ŚLIŻEWSKA
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | |
Collapse
|
28
|
Draft Genome Sequence of Ligilactobacillus salivarius FFIG58, Isolated from the Intestinal Tract of Wakame-Fed Pig. Microbiol Resour Announc 2020; 9:9/34/e00839-20. [PMID: 32816987 PMCID: PMC7441245 DOI: 10.1128/mra.00839-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ligilactobacillus salivarius FFIG58 was isolated from the intestine of a wakame-fed pig and sequenced with an Illumina HiSeq system. FFIG58 genome sequencing revealed a genome size of 1,984,180 bp, with 1,994 protein-coding genes and a GC content of 32.9%. This draft genome sequence will contribute to a better understanding of the porcine gut microbiome. Ligilactobacillus salivarius FFIG58 was isolated from the intestine of a wakame-fed pig and sequenced with an Illumina HiSeq system. FFIG58 genome sequencing revealed a genome size of 1,984,180 bp, with 1,994 protein-coding genes and a GC content of 32.9%. This draft genome sequence will contribute to a better understanding of the porcine gut microbiome.
Collapse
|
29
|
Yeo S, Park H, Seo E, Kim J, Kim BK, Choi IS, Huh CS. Anti-Inflammatory and Gut Microbiota Modulatory Effect of Lactobacillus rhamnosus Strain LDTM 7511 in a Dextran Sulfate Sodium-Induced Colitis Murine Model. Microorganisms 2020; 8:E845. [PMID: 32512895 PMCID: PMC7356973 DOI: 10.3390/microorganisms8060845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause-effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies.
Collapse
Affiliation(s)
- Soyoung Yeo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
| | - Eunsol Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Jihee Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - In Suk Choi
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
30
|
Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. SUSTAINABILITY 2020. [DOI: 10.3390/su12031087] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotics have been emerging as a safe and viable alternative to antibiotics for increasing performance in livestock. Literature was collated via retrieved information from online databases, viz, PubMed, MEDLINE, ScienceDirect, Scopus, Web of Science and Google Scholar. Besides improved immunomodulation and nutrient digestibility, in-feed probiotics have shown drastic reductions in gastrointestinal tract-invading pathogens. However, every novel probiotic strain cannot be assumed to share historical safety with conventional strains. Any strain not belonging to the wild-type distributions of relevant antimicrobials, or found to be harbouring virulence determinants, should not be developed further. Modes of identification and the transmigration potential of the strains across the gastrointestinal barrier must be scrutinized. Other potential risk factors include the possibility of promoting deleterious metabolic effects, excessive immune stimulation and genetic stability of the strains over time. Adverse effects of probiotics could be strain specific, depending on the prevailing immunological and physiological condition of the host. The most crucial concern is the stability of the strain. Probiotics stand a good chance of replacing antibiotics in animal husbandry. The possibility of the probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed. Thus, the established safety measures in probiotic development must be adhered to for a successful global campaign on food safety and security.
Collapse
|
31
|
Ren H, Saliu EM, Zentek J, Goodarzi Boroojeni F, Vahjen W. Screening of Host Specific Lactic Acid Bacteria Active Against Escherichia coli From Massive Sample Pools With a Combination of in vitro and ex vivo Methods. Front Microbiol 2019; 10:2705. [PMID: 31824469 PMCID: PMC6882376 DOI: 10.3389/fmicb.2019.02705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
A novel three-step combination of in vitro and ex vivo screening was established to massively screen host derived lactic acid bacteria (LAB) from the broiler chicken intestine with inhibitory activity against Escherichia coli. In a first step, a massive sample pool consisting of 7102 broiler-derived colonies from intestinal contents were established and sub-cultured. Supernatants thereof were incubated with an E. coli model strain to screen suitable isolates with inhibitory activity. A total of 76 isolates of interest were subsequently further studied based on either pH dependent or -independent activity in the second step of the assay. Here, in-depth growth inhibition of the E. coli model strain and the potential of isolates for lactic acid production as inhibitory substance were indexed for all isolates. Resulting scatter plots of both parameters revealed five isolates with exceptional inhibitory activity that were further studied under ex vivo condition in the third step of the assay. These isolates were taxonomically classified as strains of the species Lactobacillus agilis, Lactobacillus salivarius, and Pediococcus acidilactici. Samples from the broiler chicken intestine were inoculated with the Lactobacillus isolates and the E. coli model strain. After 8 and 24 h incubation, respectively, growth of the E. coli model strain was monitored by cultivation of the E. coli strain in antibiotic supplemented medium. By their superior inhibitory activity against the E. coli model strain, one L. agilis and one L. salivarius strain were selected and characterized for further application as probiotics in broiler chicken. Additionally, their antibiotic resistance patterns and resilience under gastric stress of isolates were also characterized. The results of this study demonstrate that the novel isolation procedure was able to efficiently and rapidly isolate and identify bacterial strains from a massive sample pool with inhibitory potential against specific types of bacteria (here E. coli). The introduction of the final ex vivo selection step additionally confirmed the inhibitory activity of the strains under conditions simulating the intestinal tract of the host. Furthermore, this method revealed a general potential for the isolation of antagonistic strains that active against other pathogenic bacteria with specific biomarker.
Collapse
Affiliation(s)
- Hao Ren
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Eva-Maria Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | | | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Enhancement of Bacillus subtilis Growth and Sporulation by Two-Stage Solid-State Fermentation Strategy. Processes (Basel) 2019. [DOI: 10.3390/pr7100644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two-stage solid-state fermentation strategy was exploited and systematically optimized to enhance Bacillus subtilis growth and sporulation for increasing effective cell number in B. subtilis microbial ecological agents. The first stage focused on improving cell growth followed by the second stage aiming to enhance both cell growth and sporulation. The optimal fermentation condition was that temperature changed from 37 °C to 47 °C at a fermentation time of 48 h and Mn2+ content in medium was 4.9 mg MnSO4/g dry medium. Solid medium properties were improved by the optimal two-stage fermentation. HPLC results demonstrated that glucose utilization was facilitated and low-field nuclear magnetic resonance (LF-NMR) results showed that more active sites in medium for microbial cells were generated during the optimal two-stage fermentation. Moreover, microbial growth and sporulation were enhanced simultaneously during the second stage of fermentation through delaying microbial decline phase and increasing sporulation rate. As a result, effective cell number of B. subtilis reached 1.79 × 1010/g dry medium after fermentation for 72 h, which was 29.7% and 8.48% higher than that of conventional fermentation for 72 h and 48 h, respectively. Therefore, the optimal two-stage fermentation could increase the effective cell number of B. subtilis microbial ecological agents efficiently.
Collapse
|
33
|
Draft Genome Sequence of Lactobacillus salivarius SGL 03, a Novel Potential Probiotic Strain. GENOME ANNOUNCEMENTS 2017; 5:5/49/e01340-17. [PMID: 29217794 PMCID: PMC5721139 DOI: 10.1128/genomea.01340-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this work, we report the draft genome sequence of
Lactobacillus salivarius
SGL 03, a novel potential probiotic strain isolated from healthy infant stools. Antibiotic resistance analysis revealed the presence of a tetracycline resistance gene without elements potentially responsible for interspecific horizontal gene transfer.
Collapse
|
34
|
Balasingham K, Valli C, Radhakrishnan L, Balasuramanyam D. Probiotic characterization of lactic acid bacteria isolated from swine intestine. Vet World 2017; 10:825-829. [PMID: 28831230 PMCID: PMC5553155 DOI: 10.14202/vetworld.2017.825-829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
AIM A study was conducted with the objective to isolate probiotic microorganisms from swine intestine. MATERIALS AND METHODS In this study 63 isolates (24 caeca, 24 colon mucosal scrapings, and 15 rectal swab samples) were collected from Large White Yorkshire pigs. The isolates were inoculated and grown in de Man Rogosa Sharpe broth at 37°C with 5% CO2 for 48 h and subjected to morphological identification. Colonies having Gram-positive rods were selected for further physiological and biochemical identification tests, which were conducted in triplicate in two runs for each of the selected isolates using a standard protocol. Probiotic properties among the identified species were determined through the implementation of several tests related with pH tolerance, bile tolerance, and antimicrobial activity. RESULTS Morphological identification revealed that only 23 isolates were Gram-positive rods. Physiological tests performed on these 23 isolates further revealed that four of them did not exhibit any growth, at all conditions studied. The rest 19 isolates were, therefore, selected and subjected to biochemical tests. Six isolates were rejected because they were oxidase and nitrate reduction positive. From the 13 isolates subjected to sugar fermentation tests, speciation of only two isolates could be ascertained, one of the isolates showed characteristics for Lactobacillus acidophilus and the other for Lactobacillus plantarum. These two isolates were assessed for the strain possessing maximum probiotic property, and it was inferred that both - L. plantarum and L. acidophilus could tolerate a wide pH range (2-9), a wide bile concentration (0.05-0.3%) and revealed antimicrobial activity toward Escherichia coli, and Enterobacter spp. CONCLUSION L. plantarum and L. acidophilus were isolated from swine intestine and were found to have good probiotic properties.
Collapse
Affiliation(s)
- K. Balasingham
- Postgraduate Research Institute of Animal Sciences, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - C. Valli
- Institute of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - L. Radhakrishnan
- Central Feed Technology Unit, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - D. Balasuramanyam
- Postgraduate Research Institute of Animal Sciences, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| |
Collapse
|