1
|
Zhao S, Zhang T, Kan Y, Li H, Li JP. Overview of the current procedures in synthesis of heparin saccharides. Carbohydr Polym 2024; 339:122220. [PMID: 38823902 DOI: 10.1016/j.carbpol.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 → 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.
Collapse
Affiliation(s)
- Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
2
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Gao S, Sun R, Singh R, Yu So S, Chan CTY, Savidge T, Hu M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov Today 2022; 27:103316. [PMID: 35820618 PMCID: PMC9717552 DOI: 10.1016/j.drudis.2022.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Gut microbial β-glucuronidase (gmGUS) is involved in the disposition of many endogenous and exogenous compounds. Preclinical studies have shown that inhibiting gmGUS activity affects drug disposition, resulting in reduced toxicity in the gastrointestinal tract (GIT) and enhanced systemic efficacy. Additionally, manipulating gmGUS activity is expected to be effective in preventing/treating local or systemic diseases. Although results from animal studies are promising, challenges remain in developing drugs by targeting gmGUS. Here, we review the role of gmGUS in host health under physiological and pathological conditions, the impact of gmGUS on the disposition of phenolic compounds, models used to study gmGUS activity, and the perspectives and challenges in developing drugs by targeting gmGUS.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Clement T Y Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA.
| |
Collapse
|
4
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
5
|
Cunningham M, Vinderola G, Charalampopoulos D, Lebeer S, Sanders ME, Grimaldi R. Applying probiotics and prebiotics in new delivery formats – is the clinical evidence transferable? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
|
7
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Mikl M, Dennig A, Nidetzky B. Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 322:74-78. [PMID: 32687957 DOI: 10.1016/j.jbiotec.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 01/17/2023]
Abstract
Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes glycosyltransferases for the synthesis of the natural C-glycoside nothofagin. Adding Brij-35 detergent (1 %, w/v) during sonication of the E. coli BL21-Gold (DE3) expression strain, recovery of Oryza sativa C-glycosyltransferase was enhanced by ∼3-fold, partly due to the release of enzyme activity trapped in insoluble pellet. Freeze drying of the resulting cell-free extract (∼17 U ml-1) reduced the volume ∼20-fold and gave ∼55 mg solids ml-1 liquid processed, with 83 % retention of the original activity and a specific activity of 0.20 U mg-1 solids. The Glycine max sucrose synthase was processed analogously, giving a solid enzyme preparation of 0.28 U mg-1 in 63 % yield. Both enzyme formulations were stable for several weeks. The glycosyltransferase cascade reaction for 3'-β-C-glucosylation of phloretin (60 mM; as inclusion complex with hydroxypropyl-β-cyclodextrin) from UDP-glucose (generated in situ by sucrose synthase from 500 mM sucrose and 0.5 mM UDP) showed excellent performance metrics (≥ 98 % yield; 3.2 g l-1 h-1 space-time yield; ∼90 regeneration cycles for UDP). Collectively, our study demonstrates a facile procedure for solid glycosyltransferase formulations practically usable in glycoside synthesis.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
10
|
Schwaiger KN, Voit A, Dobiašová H, Luley C, Wiltschi B, Nidetzky B. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose. Biotechnol J 2020; 15:e2000063. [PMID: 32668097 DOI: 10.1002/biot.202000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Indexed: 12/30/2022]
Abstract
Catalyst development for biochemical cascade reactions often follows a "whole-cell-approach" in which a single microbial cell is made to express all required enzyme activities. Although attractive in principle, the approach can encounter limitations when efficient overall flux necessitates precise balancing between activities. This study shows an effective integration of major design strategies from synthetic biology to a coherent development of plasmid vectors, enabling tunable two-enzyme co-expression in E. coli, for whole-cell-production of cellobiose. An efficient transformation of sucrose and glucose into cellobiose by a parallel (countercurrent) cascade of disaccharide phosphorylases requires the enzyme co-expression to cope with large differences in specific activity of cellobiose phosphorylase (14 U mg-1 ) and sucrose phosphorylase (122 U mg-1 ). Mono- and bicistronic co-expression strategies controlling transcription, transcription-translation coupling or plasmid replication are analyzed for effect on activity and stable producibility of the whole-cell-catalyst. A key role of bom (basis of mobility) for plasmid stability dependent on the ori is reported and the importance of RBS (ribosome binding site) strength is demonstrated. Whole cell catalysts show high specific rates (460 µmol cellobiose min-1 g-1 dry cells) and performance metrics (30 g L-1 ; ∼82% yield; 3.8 g L-1 h-1 overall productivity) promising for cellobiose production.
Collapse
Affiliation(s)
- Katharina N Schwaiger
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Alena Voit
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Hana Dobiašová
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Christiane Luley
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wiltschi
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Bernd Nidetzky
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
11
|
Chen Q, Wu H, Ji M, Xie Y, Li S, Li Y, Shi J, Sun J. Engineering a colanic acid biosynthesis pathway in E. coli for manufacturing 2’-fucosyllactose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Mikl M, Dennig A, Nidetzky B. WITHDRAWN: Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 324S:100023. [PMID: 34154728 DOI: 10.1016/j.btecx.2020.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in BIOTEC, 322C (2020) 74-78, https://doi.org/10.1016/j.jbiotec.2020.06.023. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
13
|
Tan H, Yin H. Optimization and characterization of oligosaccharides production from citrus peel waste resource using Aspergillus niger 1805. J Microbiol Methods 2019; 169:105809. [PMID: 31857142 DOI: 10.1016/j.mimet.2019.105809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Oligosaccharides have many growth-promoting properties for crops and are effective for fighting off various diseases in agriculture. Producing oligosaccharides from waste fruit peel by using food microorganisms will be a potential approach to provide the high-value products for sustainable development of green agriculture. Aspergillus niger 1805 was isolated from citrus peel and identified by internal transcribed spacer (ITS1-ITS4) sequencing. A. niger 1805 grew well only with waste citrus peel (WCP) as the sole medium. >50% WCP was degraded into oligosaccharides by fermentation with A. niger at 37 °C, pH 5.0 and 4 mM Ca2+ within 72 h, and oligosaccharide yield rate of >40%. Most oligosaccharides were in the form of Nano-size particles [10-500 nm]. Kolmogorov-Smirnov Goodness of Fit Test (KS test) showed that the distribution of the oligosaccharide micro-particles fitted a lognormal model (p > .05). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) analysis showed that the oligosaccharides were mainly comprised of glucose polymer with degrees of polymerization (DP) of 4-17. A. niger 1805 is a potential tool to produce oligosaccharides from WCP.
Collapse
Affiliation(s)
- Haidong Tan
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
14
|
Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nat Commun 2019; 10:5403. [PMID: 31776333 PMCID: PMC6881330 DOI: 10.1038/s41467-019-13283-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glycosylation of proteins profoundly impacts their physical and biological properties. Yet our ability to engineer novel glycoprotein structures remains limited. Established bacterial glycoengineering platforms require secretion of the acceptor protein to the periplasmic space and preassembly of the oligosaccharide substrate as a lipid-linked precursor, limiting access to protein and glycan substrates respectively. Here, we circumvent these bottlenecks by developing a facile glycoengineering platform that operates in the bacterial cytoplasm. The Glycoli platform leverages a recently discovered site-specific polypeptide glycosyltransferase together with variable glycosyltransferase modules to synthesize defined glycans, of bacterial or mammalian origin, directly onto recombinant proteins in the E. coli cytoplasm. We exploit the cytoplasmic localization of this glycoengineering platform to generate a variety of multivalent glycostructures, including self-assembling nanomaterials bearing hundreds of copies of the glycan epitope. This work establishes cytoplasmic glycoengineering as a powerful platform for producing glycoprotein structures with diverse future biomedical applications. Established bacterial glycoengineering platforms limit access to protein and glycan substrates. Here the authors design a cytoplasmic protein glycosylation system, Glycoli, to generate a variety of multivalent glycostructures.
Collapse
|
15
|
Long L, Azadi P, Chen R. Designer biocatalysts for direct incorporation of exogenous galactose into globotriose. Biotechnol Bioeng 2019; 117:285-290. [PMID: 31631323 DOI: 10.1002/bit.27198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 11/09/2022]
Abstract
Galactose is ubiquitous. The synthesis of galactose-containing oligosaccharides using Leloir galactosyltransferase requires uridine diphosphate (UDP)-galactose as the precursor. Of all UDP-galactose synthesis pathways developed for in vitro synthesis, the salvage pathway represents the simplest route. In this study, for the first time, we designed and constructed an Escherichia coli strain to use salvage pathway for UDP-galactose synthesis, demonstrating effective and direct incorporation of exogenous galactose into globotriose (Gb3). Successful establishment of salvage pathway enabled a complete delineation of carbon and energy source. Consequently, the designed biocatalyst was able to achieve high yield synthesis from galactose (0.95 moles of Gb3/moles galactose consumed) and a high product titer (2 g/L) in shaker flask within 24 hr. Elimination of limitation in acceptor sugar via homologous overexpression of LacY, the transporter for lactose, further improved the synthesis, raising Gb3 titer to 6 g/L in 24 hr and 7.5 g/L in 48 hr. The design principles successfully demonstrated in this study could be broadly applied for synthesis of other galactose-containing oligosaccharides. This study also illustrates a valid strategy to overcome limitation in the transport of acceptor sugar. As lactose is one of the most important basal structures, the significant improvement in synthesis through its enhanced transport could be emulated in numerous other lactose-based oligosaccharides.
Collapse
Affiliation(s)
- Lingfeng Long
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,School of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
17
|
Prebiotics: tools to manipulate the gut microbiome and metabolome. ACTA ACUST UNITED AC 2019; 46:1445-1459. [DOI: 10.1007/s10295-019-02203-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Abstract
The human gut is an ecosystem comprising trillions of microbes interacting with the host. The composition of the microbiota and their interactions play roles in different biological processes and in the development of human diseases. Close relationships between dietary modifications, microbiota composition and health status have been established. This review focuses on prebiotics, or compounds which selectively encourage the growth of beneficial bacteria, their mechanisms of action and benefits to human hosts. We also review advances in synthesis technology for human milk oligosaccharides, part of one of the most well-characterized prebiotic–probiotic relationships. Current and future research in this area points to greater use of prebiotics as tools to manipulate the microbial and metabolic diversity of the gut for the benefit of human health.
Collapse
|
18
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
19
|
Lemmerer M, Mairhofer J, Lepak A, Longus K, Hahn R, Nidetzky B. Decoupling of recombinant protein production from Escherichia coli cell growth enhances functional expression of plant Leloir glycosyltransferases. Biotechnol Bioeng 2019; 116:1259-1268. [PMID: 30659592 PMCID: PMC6767175 DOI: 10.1002/bit.26934] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Sugar nucleotide‐dependent (Leloir) glycosyltransferases from plants are important catalysts for the glycosylation of small molecules and natural products. Limitations on their applicability for biocatalytic synthesis arise because of low protein expression (≤10 mg/L culture) in standard microbial hosts. Here, we showed two representative glycosyltransferases: sucrose synthase from soybean and UGT71A15 from apple. A synthetic biology‐based strategy of decoupling the enzyme expression from the
Escherichia coli BL21(DE3) cell growth was effective in enhancing their individual (approximately fivefold) or combined (approximately twofold) production as correctly folded, biologically active proteins. The approach entails a synthetic host cell, which is able to shut down the production of host messenger RNA by inhibition of the
E. coli RNA polymerase. Overexpression of the enzyme(s) of interest is induced by the orthogonal T7 RNA polymerase. Shutting down of the host RNA polymerase is achieved by
l‐arabinose‐inducible expression of the T7 phage‐derived Gp2 protein from a genome‐integrated site. The glycosyltransferase genes are encoded on conventional pET‐based expression plasmids that allow T7 RNA polymerase‐driven inducible expression by isopropyl‐β‐
d‐galactoside. Laboratory batch and scaled‐up (20 L) fed‐batch bioreactor cultivations demonstrated improvements in an overall yield of active enzyme by up to 12‐fold as a result of production under growth‐decoupled conditions. In batch culture, sucrose synthase and UGT71A15 were obtained, respectively, at 115 and 2.30 U/g cell dry weight, corresponding to ∼5 and ∼1% of total intracellular protein. Fed‐batch production gave sucrose synthase in a yield of 2,300 U/L of culture (830 mg protein/L). Analyzing the isolated glycosyltransferase, we showed that the improvement in the enzyme production was due to the enhancement of both yield (5.3‐fold) and quality (2.3‐fold) of the soluble sucrose synthase. Enzyme preparation from the decoupled production comprised an increased portion (61% compared with 26%) of the active sucrose synthase homotetramer. In summary, therefore, we showed that the expression in growth‐arrested
E. coli is promising for recombinant production of plant Leloir glycosyltransferases.
Collapse
Affiliation(s)
| | | | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Karin Longus
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Rainer Hahn
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| |
Collapse
|
20
|
Monaco MH, Gurung RB, Donovan SM. Safety evaluation of 3'-siallylactose sodium salt supplementation on growth and clinical parameters in neonatal piglets. Regul Toxicol Pharmacol 2018; 101:57-64. [PMID: 30453008 DOI: 10.1016/j.yrtph.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023]
Abstract
Sialyllactose (SL) is an abundant oligosaccharide in human milk with health benefits that include intestinal maturation, gut microbiota modulation, and cognitive development. Recent technological advances support large scale production of different forms of sialyllactose, which will enable their use as a food ingredient. The objective of the study was to investigate the dose-dependent effects of novel enzymatically-synthesized 3'-sialyllactose (3'SL) sodium salt supplemented to swine milk replacer on growth, hematological parameters and tissue histology in a pre-clinical neonatal pig model. Forty-five two-day-old male and female pigs were provided one of four experimental diets for 21 days. Diets were formulated to contain 0 (CON), 140 (LOW), 200 (MOD) or 500 (HIGH) mg/L of 3'SL sodium salt. Samples were collected on days 8 and 22 of the study for hematological and histological analyses. The addition of 3'SL sodium salt to formula at all doses was well-tolerated by neonatal piglets and supported growth and development comparable to those observed in the CON group. In addition, serum chemistries as well as hematology and organ microscopic structure were unaffected by 3'SL (p > 0.05). These data provide supportive evidence for the safety of supplementation of this enzymatically-synthesized 3'SL sodium salt to human infant formula.
Collapse
Affiliation(s)
- Marcia H Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, 61801, USA
| | | | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Ennist JH, Termuehlen HR, Bernhard SP, Fricke MS, Cloninger MJ. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjug Chem 2018; 29:4030-4039. [DOI: 10.1021/acs.bioconjchem.8b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica H. Ennist
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Henry R. Termuehlen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mackenzie S. Fricke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
22
|
Ahmadipour S, Beswick L, Miller GJ. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases. Carbohydr Res 2018; 469:38-47. [PMID: 30265902 DOI: 10.1016/j.carres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
23
|
Jin W, Ren L, Liu B, Zhang Q, Zhong W. Structural Features of Sulfated Glucuronomannan Oligosaccharides and Their Antioxidant Activity. Mar Drugs 2018; 16:E291. [PMID: 30134603 PMCID: PMC6165275 DOI: 10.3390/md16090291] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Glucuronomannan oligosaccharides (Gs) were derived from fucoidan, which was extracted from the brown alga Sargassum thunbergii. Sulfated glucuronomannan oligosaccharides (SGs) were obtained by the sulfation of Gs. NMR techniques were used to reveal that the order of sulfation was Man-C6 > Man-C4 > Man-C1R > GlcA-C3 > Man-C3 > GlcA-C2. Finally, the antioxidant activities (hydroxyl radical scavenging activity, superoxide radical scavenging activity, reducing power and DPPH radical scavenging activity) of Gs and SGs were determined. The findings showed that the higher the degree of polymerization, the better the activity, except for the hydroxyl radical scavenging activity. In addition, the higher the sulfate content, the lower the activities for the reducing power and DPPH radical scavenging activity. Opposite results were found for the superoxide radical scavenging activity. Finally, compared with fucoidan, most Gs and SGs had higher antioxidant activity, suggesting that they might be good candidates for antioxidants.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Langlang Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Quanbin Zhang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|