1
|
Fu C, Wang X, Wu Y, Li L. LuxR solo regulates recalcitrant aromatic compound biodegradation: Repression and activation of dibenzofuran-catabolic genes expression in a Rhodococcus sp. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137923. [PMID: 40107099 DOI: 10.1016/j.jhazmat.2025.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Aromatic compounds contribute to the category of prevalent, toxic, and persistent pollutants in the environment. Microbial degradation of aromatic pollutants is eco-friendly, which depends on efficient manipulation of catabolic enzyme activity. As homologs of quorum sensing LuxR family regulators, LuxR solos play important roles in cell-cell interaction; however, there are few studies on its regulation of recalcitrant aromatic compounds degradation. In this study, the transcriptional regulatory mechanism of dibenzofuran catabolic genes controlled by LuxR solo was elucidated in the dioxin-degrader Rhodococcus sp. strain p52. LuxR solo encoded by catabolic plasmid pDF01 was detected to bind to the promoters of dfdA and dfdB and inhibit the genes expression, which are involved in dibenzofuran degradation. The repression of the LuxR on the catabolic genes expression was not affected by dibenzofuran, but could be alleviated by the intermediate of dibenzofuran degradation, salicylic acid. RNA-Seq analysis suggested that the LuxR solo related to regulating the expression of multiple key genes on the chromosome and catabolic plasmids pDF02. Phylogenetic analysis indicated that LuxR solos frequently distribute among aromatics-degrading bacteria. This study reveals the molecular regulatory network of dibenzofuran degradation mediated by LuxR solo and deepens the understanding of transcriptional regulatory mechanisms of aromatic compounds degradation.
Collapse
Affiliation(s)
- Changai Fu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Leitão MM, Gonçalves ASC, Sousa SF, Borges F, Simões M, Borges A. Two cinnamic acid derivatives as inhibitors of Pseudomonas aeruginosa las and pqs quorum-sensing systems: Impact on biofilm formation and virulence factors. Biomed Pharmacother 2025; 187:118090. [PMID: 40318447 DOI: 10.1016/j.biopha.2025.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Quorum sensing (QS) is a bacterial communication mechanism that regulates gene expression, playing a crucial role in various physiological processes. Interfering with this signalling pathway is a promising strategy to control bacterial pathogenicity and virulence. OBJECTIVES This study evaluated the potential of two cinnamic acid derivatives, ferulic and sinapic acids, to inhibit the las and pqs systems in Pseudomonas aeruginosa. Their effects on biofilm architecture, virulence factor production and bacterial motility were also investigated. METHODS Bioreporter strains and bioluminescence-based assays were used to evaluate the modulation of QS-activity by cinnamic acid-type phenolic acids. In addition, in silico docking analysis was performed to validate the binding interactions of the cinnamic acid derivatives with QS-receptors. The biofilm architecture was analysed by optical coherence tomography, and virulence factors production (pyoverdine, pyocyanin, total proteases, lipases, gelatinases and siderophores) and motility were measured by absorbance measurement and plate agar method. RESULTS Ferulic and sinapic acids at 1000 µg mL-1 inhibited the las and pqs systems by 90 % and 80 %, respectively. The N-3-oxododecanoyl-homoserine lactone production was reduced by 70 % (6.25 µg mL-¹). In silico analysis demonstrated that cinnamic acid derivatives exhibited comparable interactions and higher docking scores than reference ligands and inhibitors. Biofilm thickness decreased from 96 µm to 11 µm, and virulence factors and swarming motility were significantly impaired. The comparable anti-QS activity of cinnamic acid derivatives suggests that the additional methoxy group in sinapic acid does not directly contribute to its anti-QS effect. CONCLUSION Ferulic and sinapic acids compromised the biofilm architecture and virulence of P. aeruginosa through QS inhibition.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; Environmental Health Department, Portuguese National Health Institute Doctor Ricardo Jorge, Porto, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| |
Collapse
|
3
|
Maiga A, Teng LH, Jie ZH, Qing ZX, Min FZ, Wei LZ, Wu C. Design, synthesis and activity evaluation of dithiocarbamate-based L-homoserine lactone derivatives as Gram-negative bacteria quorum sensing inhibitors. Eur J Med Chem 2025; 293:117756. [PMID: 40373634 DOI: 10.1016/j.ejmech.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important Gram-negative opportunistic pathogen that uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. As a result, focusing on the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is considered a possible target for anti-infective therapy. In this work, we discovered new quorum-sensing inhibitors derived from the structural modification of the dithiocarbamate-based l-homoserine lactone derivatives library and the target compound (10p) demonstrated significant inhibitory activity against PAO1 biofilm (inhibition rate: 86.76 %), pyocyanin (68.05 %), rhamnolipid (34.56 %), LasA protease (61.01 %) and a low inhibitory on elastase production (6.59 %) at 60 μM. Moreover, compound 10p effectively attenuated P. aeruginosa motility, such as swimming (42.85 %) and swarming (72 %), and demonstrated no toxicity in vitro. The result indicates that compound 10p may serve as a promising new antibacterial synergist option for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li Hong Teng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhen Hao Jie
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhang Xue Qing
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fan Zheng Min
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lin Zi Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co., LTD, PR China.
| |
Collapse
|
4
|
de Siqueira EC, de Andrade Alves A, de Barros MPS, da Silva Vale R, da Costa E Silva PE, Contiero J, Dutra ED, Houllou LM. Integrated production of polyhydroxyalkanoates and rhamnolipids: Insights in cultivation conditions and metabolic engineering. J Biotechnol 2025; 405:17-25. [PMID: 40339653 DOI: 10.1016/j.jbiotec.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Polyhydroxyalkanoates and biosurfactants have the potential to play a significant role in emerging bioeconomic chains. With growing environmental worries about the excessive consumption of fossil fuel derivatives, significant focus has been paid to a renewable-based economy known as the circular bioeconomy. Polyhydroxyalkanoates (PHAs) are a type of biodegradable, hydrophobic, non-toxic, thermoplastic polymer created by microbial processes that have good physicochemical properties. Rhamnolipids (RhL) are amphipathic, biodegradable, and biocompatible compounds with outstanding emulsification capabilities. Unfortunately, commercial manufacturing of PHA and RhL remains limited due to their high production costs as compared to standard polymers and surfactants. The combined manufacture of PHA and RhL can lower production costs and is an ideal option for creating two widely applicable commodities on the market. This work provides a general overview of PHA and RhL co-production, focusing on the use of renewable materials and important aspects that are directly related to cultivation conditions, as well as genetic and metabolic engineering strategies to optimize PHA and RhL production.
Collapse
Affiliation(s)
- Edmilson Clarindo de Siqueira
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Aline de Andrade Alves
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil.
| | - Maria Paloma Silva de Barros
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Rayane da Silva Vale
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Páblo Eugênio da Costa E Silva
- Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, PE 52171900, Brazil
| | - Jonas Contiero
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Emmanuel Damilano Dutra
- Federal Rural University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, CidadeUniversitária, Recife, PE 50670901, Brazil
| | - Laureen Michelle Houllou
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| |
Collapse
|
5
|
Ma W, Huang Z, Zhang Y, Liu K, Li D, Liu Q. Interaction between inflammation and biofilm infection and advances in targeted biofilm therapy strategies. Microbiol Res 2025; 298:128199. [PMID: 40347631 DOI: 10.1016/j.micres.2025.128199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Biofilms are aggregates of bacteria, primarily regulated by quorum sensing (QS) and extracellular polymeric substances (EPS) mechanisms. Inflammation is the immune system's response to tissue damage and infection, which is regulated by a variety of cytokines and mediators. Bacterial biofilm intensified the development of inflammation, and inflammation of the microenvironment in turn promoted bacterial biofilm formation and diffusion, forming a positive feedback loop of "inflammation-biofilm", leading to the treatment-resistant of related infections. A deep understanding of the treatment of inflammatory and recalcitrant biofilm disease might offer important diagnostic and therapeutic perceptions. Therefore, this review summarizes the role of biofilm in different inflammatory diseases, and the complex interactions between bacterial biofilm infections and host inflammatory responses are emphasized. Finally, the current treatment methods for bacterial biofilm infection are also discussed, and specifically highlights biofilm infection treatments based on nanocomposite materials, aiming to provide insights and guidance for research and clinical management of biofilm-associated diseases.
Collapse
Affiliation(s)
- WenWen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - ZhiQiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ye Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - DeZhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
6
|
Wang Z, Wu Q, Shen W, Wan F, He J, Liu L, Tang S, Tan Z. Cooling redistributed endotoxin across different biofluids via modulating the ruminal microbiota and metabolome without altering quorum sensing signal levels in heat-stressed beef bulls. Anim Microbiome 2025; 7:38. [PMID: 40269989 PMCID: PMC12016233 DOI: 10.1186/s42523-025-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cooling is one of the most common and economical methods to ameliorate heat stress (HS), and it has been discovered to alter the lipopolysaccharide (LPS) endotoxin level in ruminants. However, whether the endotoxin variation induced by cooling relates to the quorum sensing (QS) within the ruminal microflora remains unknown. The current study was consequently performed to examine whether cooling could influence the endotoxin distribution across different biofluids, ruminal microbiota, and ruminal metabolisms through affecting the QS of rumen microorganisms in beef cattle exposed to HS. Thirty-two Simmental bulls were used as experimental animals and randomly assigned to either the control (CON) group, or the mechanical ventilation and water spray (MVWS) treatment. The temperature-humidity index (THI) was recorded throughout this trial, and samples of the rumen liquid, blood, and urine were collected. RESULTS Cooling significantly lowered (P < 0.05) the temperature-humidity index (THI), ruminal endotoxin, and endotoxin concentration and excretion in urine, and significantly raised endotoxin level in blood (P < 0.05), but did not change the ruminal concentrations of QS signals including 3-OXO-C6-HSL and the AI-2 (P > 0.05). The linear discriminant analysis effect size (LEfSe) analysis revealed that Prevotellaceae, Rikenellaceae, Monoglobales and their affiliated members, as well as other bacterial taxa were significantly differently (P < 0.05) enriched between the two treatments. The Tax4Fun2 prediction suggested that QS function was upregulated in MVWS compared to CON. The metabolomic analysis indicated that cooling altered the ruminal metabolism profile and downregulated the pathways of lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. The significant (P < 0.05) correlations of the differential bacteria and metabolites with endotoxin and QS molecules were also demonstrated through Spearman analysis. CONCLUSIONS Based on the results of this trial, it could be speculated that the cooling reshaped the endotoxin distribution across different biofluids through manipulating ruminal microbiota and metabolome, which might involve the participation of QS. Further investigations are warranted to disclose and verify the mechanisms for those correlations found in this study.
Collapse
Affiliation(s)
- Zuo Wang
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qingyang Wu
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Weijun Shen
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| | - Fachun Wan
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jianhua He
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| |
Collapse
|
7
|
Spaggiari C, Yamukujije C, Pieroni M, Annunziato G. Quorum sensing inhibitors (QSIs): a patent review (2019-2023). Expert Opin Ther Pat 2025:1-17. [PMID: 40219759 DOI: 10.1080/13543776.2025.2491382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage.
Collapse
Affiliation(s)
| | | | - Marco Pieroni
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | |
Collapse
|
8
|
Al-Maddboly LA, El-Salam MA, Bastos JK, Hasby EA, Kushkevych I, El-Morsi RM. Anti-biofilm and anti-quorum sensing activities of galloylquinic acid against clinical isolates of multidrug-resistant Pseudomonas aeruginosa in open wound infection: in vitro and in vivo efficacy studies. BMC Microbiol 2025; 25:206. [PMID: 40205343 PMCID: PMC11983983 DOI: 10.1186/s12866-024-03712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/13/2024] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa can proliferate in immunocompromised individuals, forming biofilms that increase antibiotic resistance. This bacterium poses a significant global health risk due to its resistance to human defenses, antibiotics, and various environmental stresses. The objective of this study was to evaluate the antibacterial, anti-biofilm, and anti-quorum sensing activities of galloylquinic acid compounds (GQAs) extracted from Copaifera lucens leaves against clinical isolates of multidrug-resistant (MDR) P. aeruginosa. We have investigated the optimal concentration of GQAs needed to eradicate preexisting biofilms and manage wound infections caused by P. aeruginosa, in vitro and in vivo. RESULTS Our results revealed that GQAs exhibited 25-40 mm inhibition zone diameters, with 1-4 µg/mL MIC and 2-16 µg/mL MBC values. GQAs interfered with the planktonic mode of P. aeruginosa isolates, and significantly inhibited their growth in the pre-formed biofilm architecture, with MBIC80 and MBEC80 values of 64 µg/mL and 128 µg/mL, respectively. The anti-biofilm effect was confirmed by fluorescence staining and confocal microscopy which showed a dramatic reduction in the cell viability and the biofilm thickness (62.5%), after exposure to 128 µg/mL of GQAs in particular. The scanning electron micrographs showed that GQAs impaired biofilm and bacterial structures by interfering with the biomass and the exopolysaccharides forming the matrix. GQAs also interfered with virulence factors and bacterial motility, where 128 µg/mL of GQAs significantly (p < 0.05) reduced rhamnolipid, pyocyanin, and the swarming motility of the organism which play a vital role in the biofilm formation. GQAs downregulated 89% of the quorum-sensing genes (lasI and lasR, pqsA and pqsR) involved in the biofilm formation. CONCLUSION GQAs demonstrate significant promise as novel and potent antibiofilm and antivirulence agents against clinical isolates of MDR P. aeruginosa, with substantial potential to enhance wound healing in biofilm-associated infections. This promising antibacterial action positions GQAs as a superior alternative for the treatment of biofilm-associated wound infections, with substantial potential to improve wound healing and mitigate the impact of persistent bacterial infections. CLINICAL TRIAL NUMBER not applicable.
Collapse
Affiliation(s)
- Lamiaa A Al-Maddboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mohamed Abd El-Salam
- Faculty of Pharmacy, Department of Pharmacognosy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Jairo K Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, 14040-903, Brazil
| | - Eiman A Hasby
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Rasha M El-Morsi
- Faculty of Pharmacy, Department of Microbiology and Immunology, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
9
|
Viola CM, Danilovich ME, Torres-Carro R, Moreira MM, Rodrigues F, Cartagena E, Alberto MR, Blázquez MA, Arena ME. Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa. Antibiotics (Basel) 2025; 14:384. [PMID: 40298557 PMCID: PMC12024094 DOI: 10.3390/antibiotics14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Wine pomace is a rich source of bioactive phenolic compounds with potential health benefits. This study aimed to evaluate the antipathogenic and antioxidant properties of ethanol and ethyl acetate extracts from wine pomace of three grape varietals (Tannat, Bonarda, and Malbec) to explore their potential as natural alternatives for mitigating bacterial virulence in Pseudomonas aeruginosa. Methods: Successive exhaustion extractions were performed using solvents of increasing polarity (ethyl acetate and ethanol). The phenolic content was quantified, and the antioxidant activity was evaluated using standard assays. The antipathogenic activity against P. aeruginosa was assessed by measuring biofilm formation, elastase and protease activity, pyocyanin production, and swarming motility. Quorum sensing (QS) inhibition was tested using a violacein production assay in Chromobacterium violaceum. Results: Ethanol was more effective at extracting phenolic compounds, with Tannat exhibiting the highest total phenolic content (162.5 µg GAE/mg). HPLC-DAD analysis identified 16 phenolic acids, 18 flavonoids, and 3 stilbenes across the extracts. The ethanol extracts showed strong antioxidant activity (phosphomolybdenum reducing capacity 67-128 μg AAE/mg, ABTS•+ scavenging 37-71 µg/mL, Fe3+ reducing power 31-68 µg/mL) and inhibited biofilm formation (up to 61%), elastase (up to 41%), and protease (up to 46%) activities in P. aeruginosa. The extracts also reduced pyocyanin production (up to 78%) and swarming motility (up to 68%), suggesting interference with QS. Moreover, the extracts inhibited violacein production in C. violaceum, confirming QS inhibition (up to 26%). Conclusions: Among the extracts, ethanol-extracted Tannat pomace showed the most substantial antipathogenic and antioxidant activities. The results add value to wine pomace by suggesting its use as natural extracts rich in phenolic compounds, capable of controlling the bacterial virulence of Pseudomonas aeruginosa without promoting the development of resistance.
Collapse
Affiliation(s)
- Carolina María Viola
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
| | - Mariana Elizabeth Danilovich
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| | - Romina Torres-Carro
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
| | - Manuela M. Moreira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (F.R.)
| | - Elena Cartagena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| | - María Rosa Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| | - María Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, Avd. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - Mario Eduardo Arena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Tucumán, Argentina; (C.M.V.); (M.E.D.); (R.T.-C.); (E.C.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| |
Collapse
|
10
|
Lima EMF, de Almeida FA, Pinto UM. Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa. World J Microbiol Biotechnol 2025; 41:32. [PMID: 39794611 DOI: 10.1007/s11274-025-04255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy. This work aimed to evaluate the effect of selected phenolic compounds on the inhibition of QS-regulated phenotypes in Pseudomonas aeruginosa PAO1, using concentrations that do not interfere in bacterial growth. This is one of the main premises for studying the effect of compounds on QS. Firstly, an in-silico study with the LasR and RhlR proteins of P. aeruginosa by molecular docking of 82 phenolic compounds was performed. Then, a screening with 13 selected phenolic compounds was performed, using biosensor strains P. aeruginosa lasB-gfp and P. aeruginosa rhlA-gfp, which emit fluorescence when the QS system is activated. From this assay, eight compounds were selected and evaluated for inhibition of pyocyanin, rhamnolipids, proteases, elastase, and motility. The compounds variably inhibited the evaluated virulence factors. The greatest inhibitions were observed for swarming motility, achieving inhibition rates of up to 50% for baicalein (500 µM) and curcumin (50 µM). Notably, curcumin showed satisfactory inhibition for all phenotypes even at lower concentrations (12.5 to 50 µM) compared to the other compounds (125 to 500 µM). Four compounds - rosmarinic acid, baicalein, curcumin, and resveratrol - were finally tested against biofilm formation observed by optical microscopy. This study demonstrated that phenolic compounds exhibit strong in silico binding to P. aeruginosa LasR and RhlR proteins and variably inhibit QS-regulated phenotypes in vitro. Although no biofilm inhibition was observed, future studies combining compounds and exploring molecular mechanisms are recommended. These findings highlight the biotechnological potential of phenolic compounds for future applications in the food, clinical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Felipe Alves de Almeida
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Maiga A, Ampomah-Wireko M, Li H, Fan Z, Lin Z, Zhen H, Kpekura S, Wu C. Multidrug-resistant bacteria quorum-sensing inhibitors: A particular focus on Pseudomonasaeruginosa. Eur J Med Chem 2025; 281:117008. [PMID: 39500066 DOI: 10.1016/j.ejmech.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 12/02/2024]
Abstract
Many widely used conventional antibiotics have failed to show clinical efficacy against Pseudomonas aeruginosa (P. aeruginosa) due to the strain's rising resistance to most clinically relevant antimicrobials. P. aeruginosa uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. This mechanism is responsible for the resurgence and persistence of infections. Therefore, targeting the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is regarded as a potential target for anti-infective therapy. However, a number of natural and synthetic compounds have been demonstrated to interfere with quorum sensing, resulting in potential antibacterial agents. In this review, we discuss the mechanisms of P. aeruginosa QS and recent advances in the development of quorum sensing inhibitors (both synthetic and natural) that have the potential to become effective antibiotics.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongteng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhengmin Fan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Lin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Stephen Kpekura
- School of Nursing and Health, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, PR China.
| |
Collapse
|
12
|
Ren Y, Zhu R, You X, Li D, Guo M, Fei B, Liu Y, Yang X, Liu X, Li Y. Quercetin: a promising virulence inhibitor of Pseudomonas aeruginosa LasB in vitro. Appl Microbiol Biotechnol 2024; 108:57. [PMID: 38180553 PMCID: PMC10770215 DOI: 10.1007/s00253-023-12890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
With the inappropriate use of antibiotics, antibiotic resistance has emerged as a major dilemma for patients infected with Pseudomonas aeruginosa. Elastase B (LasB), a crucial extracellular virulence factor secreted by P. aeruginosa, has been identified as a key target for antivirulence therapy. Quercetin, a natural flavonoid, exhibits promising potential as an antivirulence agent. We aim to evaluate the impact of quercetin on P. aeruginosa LasB and elucidate the underlying mechanism. Molecular docking and molecular dynamics simulation revealed a rather favorable intermolecular interaction between quercetin and LasB. At the sub-MICs of ≤256 μg/ml, quercetin was found to effectively inhibit the production and activity of LasB elastase, as well as downregulate the transcription level of the lasB gene in both PAO1 and clinical strains of P. aeruginosa. Through correlation analysis, significant positive correlations were shown between the virulence gene lasB and the QS system regulatory genes lasI, lasR, rhlI, and rhlR in clinical strains of P. aeruginosa. Then, we found the lasB gene expression and LasB activity were significantly deficient in PAO1 ΔlasI and ΔlasIΔrhlI mutants. In addition, quercetin significantly downregulated the expression levels of regulated genes lasI, lasR, rhlI, rhlR, pqsA, and pqsR as well as effectively attenuated the synthesis of signaling molecules 3-oxo-C12-HSL and C4-HSL in the QS system of PAO1. Quercetin was also able to compete with the natural ligands OdDHL, BHL, and PQS for binding to the receptor proteins LasR, RhlR, and PqsR, respectively, resulting in the formation of more stabilized complexes. Taken together, quercetin exhibits enormous potential in combating LasB production and activity by disrupting the QS system of P. aeruginosa in vitro, thereby offering an alternative approach for the antivirulence therapy of P. aeruginosa infections. KEY POINTS: • Quercetin diminished the content and activity of LasB elastase of P. aeruginosa. • Quercetin inhibited the QS system activity of P. aeruginosa. • Quercetin acted on LasB based on the QS system.
Collapse
Affiliation(s)
- Yanying Ren
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mengyu Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bing Fei
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ximing Yang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Peking, 100700, China.
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- The Key Laboratory of Pathogenic Microbes & Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China.
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Xiang SL, Xu KZ, Yin LJ, Rao Y, Wang B, Jia AQ. Dopamine, an exogenous quorum sensing signaling molecule or a modulating factor in Pseudomonas aeruginosa? Biofilm 2024; 8:100208. [PMID: 39036334 PMCID: PMC11260039 DOI: 10.1016/j.bioflm.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Pseudomonas aeruginosa is recognized globally as an opportunistic pathogen of considerable concern due to its high virulence and pathogenicity, especially in immunocompromised individuals. While research has identified several endogenous quorum sensing (QS) signaling molecules that enhance the virulence and pathogenicity of P. aeruginosa, investigations on exogenous QS signaling molecules or modulating factors remain limited. This study found that dopamine serves as an exogenous QS signaling molecule or modulating factor of P. aeruginosa PAO1, enhancing the production of virulence factors and biofilms. Compared to the control group, treatment with 40 μM dopamine resulted in a 33.1 % increase in biofilm formation, 68.1 % increase in swimming mobility, 63.1 % increase in swarming mobility, 147.2 % increase in the signaling molecule 3-oxo-C12-HSL, and 50.5 %, 28.5 %, 27.0 %, and 33.2 % increases in the virulence factors alginate, rhamnolipids, protease, and pyocyanin, respectively. This study further explored the mechanism of dopamine regulating the biofilm formation and virulence of P. aeruginosa PAO1 through transcriptome and metabolome. Transcriptomic analysis showed that dopamine promoted the expression of virulence genes psl, alg, lasA, rhlABC, rml, and phz in P. aeruginosa PAO1. Metabolomic analysis revealed changes in the concentrations of tryptophan, pyruvate, ethanolamine, glycine, 3-hydroxybutyric acid, and alizarin. Furthermore, KEGG enrichment analysis of altered genes and metabolites indicated that dopamine enhanced phenylalanine, tyrosine, and tryptophan in P. aeruginosa PAO1. The results of this study will contribute to the development of novel exogenous QS signaling molecules or modulating factors and advance our understanding of the interactions between P. aeruginosa and the host environment.
Collapse
Affiliation(s)
- Shi-Liang Xiang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lu-Jun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
14
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
15
|
Deng J, Yuan Y, Wu Y, Wen F, Yang X, Gou S, Chu Y, Zhao K. Isovanillin decreases the virulence regulated by the quorum sensing system of Pseudomonas aeruginosa. Microb Pathog 2024; 196:107010. [PMID: 39396686 DOI: 10.1016/j.micpath.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The quorum-sensing (QS) system of Pseudomonas aeruginosa dominates the pathogenicity of the acute or chronic infection process. Hence, curbing the pathogenicity of P. aeruginosa by targeting QS system is an ideal strategy. This study aims to identify potential anti-virulence compounds that can effectively disrupt the QS system of P. aeruginosa using a combination of virtual screening and experimental validation techniques. We explored inhibitory effect of isovanillin obtained by virtual screening on P. aeruginosa QS regulated virulence factors extracellular protease, biofilm, and pyocyanin. Results displayed that isovanillin could inhibit the virulence phenotypes regulated by the las- and pqs-QS systems of P. aeruginosa. The synthesis of extracellular proteases, pyocyanin, and biofilm formation by P. aeruginosa were dramatically inhibited by sub-MICs doses of isovanillin. The results of RNA sequencing and quantitative PCR revealed that the QS-activated genes down-regulated by subinhibitory isovanillin in the transcriptional evels. Furthermore, the presence of isovanillin increased the susceptibility of drug-resistant P. aeruginosa to kanamycin, meropenem, and polymyxin B. Treatment of isovanillin as a monotherapy significantly decreased the mortality of C. elegans in P. aeruginosa PAO1 or UCBPP-PA14 (PA14) infection. Our study reported the anti-virulence activity of isovanillin against P. aeruginosa, and provided a structural foundation for developing anti-virulence drugs targeting the QS system of P. aeruginosa.
Collapse
Affiliation(s)
- Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Fulong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Shiyi Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China.
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
16
|
Nouh HS, El-Zawawy NA, Halawa M, Shalamesh EM, Ali SS, Korbecka-Glinka G, Shala AY, El-Sapagh S. Endophytic Penicillium oxalicum AUMC 14898 from Opuntia ficus-indica: A Novel Source of Tannic Acid Inhibiting Virulence and Quorum Sensing of Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:11115. [PMID: 39456896 PMCID: PMC11507641 DOI: 10.3390/ijms252011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pseudomonas aeruginosa is a harmful pathogen that causes a variety of acute and chronic infections through quorum sensing (QS) mechanisms. The increasing resistance of this bacterium to numerous antibiotics has created a demand for new medications that specifically target QS. Endophytes can be the source of compounds with antibacterial properties. This research is the first to examine tannic acid (TA) produced by endophytic fungus as a potential biotherapeutic agent. A novel endophytic fungal isolate identified as Penicillium oxalicum was derived from the cladodes of Opuntia ficus-indica (L.). The species identification for this isolate was confirmed through sequencing of the internal transcribed spacer region. The metabolites from the culture of this isolate were extracted using ethyl acetate, then separated and characterized using chromatographic methods. This led to the acquisition of TA, a compound that shows strong anti-QS and excellent antibacterial effects against extensively drug-resistant P. aeruginosa strains. Furthermore, it was shown that treating P. aeruginosa with the obtained TA reduced the secretion of virulence factors controlled by QS in a dose-dependent manner, indicating that TA inhibited the QS characteristics of P. aeruginosa. Simultaneously, TA significantly inhibited the expression of genes associated with QS, including rhlR/I, lasR/I, and pqsR. In addition, in silico virtual molecular docking showed that TA could efficiently bind to QS receptor proteins. Our results showed that P. oxalicum could be a new source of TA for the treatment of infections caused by extensively drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Hoda S. Nouh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Nessma A. El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Mohamed Halawa
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Ebrahim M. Shalamesh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Sameh Samir Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Grażyna Korbecka-Glinka
- Department of Biotechnology and Plant Breeding, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Puławy, Poland
| | - Awad Y. Shala
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Shimaa El-Sapagh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| |
Collapse
|
17
|
Khan F. Multifaceted strategies for alleviating Pseudomonas aeruginosa infection by targeting protease activity: Natural and synthetic molecules. Int J Biol Macromol 2024; 278:134533. [PMID: 39116989 DOI: 10.1016/j.ijbiomac.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Pseudomonas aeruginosa has become a top-priority pathogen in the health sector because it is ubiquitous, has high metabolic/genetic versatility, and is identified as an opportunistic pathogen. The production of numerous virulence factors by P. aeruginosa was reported to act individually or cooperatively to make them robots invasion, adherences, persistence, proliferation, and protection against host immune systems. P. aeruginosa produces various kinds of extracellular proteases such as alkaline protease, protease IV, elastase A, elastase B, large protease A, Pseudomonas small protease, P. aeruginosa aminopeptidase, and MucD. These proteases effectively allow the cells to invade and destroy host cells. Thus, inhibiting these protease activities has been recognized as a promising approach to controlling the infection caused by P. aeruginosa. The present review discussed in detail the characteristics of these proteases and their role in infection to the host system. The second part of the review discussed the recent updates on the multiple strategies for attenuating or inhibiting protease activity. These strategies include the application of natural and synthetic molecules, as well as metallic/polymeric nanomaterials. It has also been reported that a propeptide present in the middle domain of protease IV also attenuates the virulence properties and infection ability of P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
18
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
19
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol 2024; 42:1288-1304. [PMID: 38637243 DOI: 10.1016/j.tibtech.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
20
|
Arisah FM, Ramli N, Ariffin H, Maeda T, Farid MAA, Yusoff MZM. Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation. J Microbiol Biotechnol 2024; 34:1877-1889. [PMID: 39343606 PMCID: PMC11473487 DOI: 10.4014/jmb.2406.06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024]
Abstract
Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.
Collapse
Affiliation(s)
- Fatini Mat Arisah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohammed Abdillah Ahmad Farid
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Woods KE, Akhter S, Rodriguez B, Townsend KA, Smith N, Smith B, Wambua A, Craddock V, Abisado-Duque RG, Santa EE, Manson DE, Oakley BR, Hancock LE, Miao Y, Blackwell HE, Chandler JR. Characterization of natural product inhibitors of quorum sensing reveals competitive inhibition of Pseudomonas aeruginosa RhlR by ortho-vanillin. Microbiol Spectr 2024; 12:e0068124. [PMID: 39046261 PMCID: PMC11370260 DOI: 10.1128/spectrum.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Quorum sensing (QS) is a cell-cell signaling system that enables bacteria to coordinate population density-dependent changes in behavior. This chemical communication pathway is mediated by diffusible N-acyl L-homoserine lactone signals and cytoplasmic signal-responsive LuxR-type receptors in Gram-negative bacteria. As many common pathogenic bacteria use QS to regulate virulence, there is significant interest in disrupting QS as a potential therapeutic strategy. Prior studies have implicated the natural products salicylic acid, cinnamaldehyde, and other related benzaldehyde derivatives as inhibitors of QS in the opportunistic pathogen Pseudomonas aeruginosa, yet we lack an understanding of the mechanisms by which these compounds function. Herein, we evaluate the activity of a set of benzaldehyde derivatives using heterologous reporters of the P. aeruginosa LasR and RhlR QS signal receptors. We find that most tested benzaldehyde derivatives can antagonize LasR or RhlR reporter activation at micromolar concentrations, although certain molecules also cause mild growth defects and nonspecific reporter antagonism. Notably, several compounds showed promising RhlR or LasR-specific inhibitory activities over a range of concentrations below that causing toxicity. ortho-Vanillin, a previously untested compound, was the most promising within this set. Competition experiments against the native ligands for LasR and RhlR revealed that ortho-vanillin can interact competitively with RhlR but not with LasR. Overall, these studies expand our understanding of benzaldehyde activities in the LasR and RhlR receptors and reveal potentially promising effects of ortho-vanillin as a small molecule QS modulator against RhlR. IMPORTANCE Quorum sensing (QS) regulates many aspects of bacterial pathogenesis and has attracted much interest as a target for anti-virulence therapies over the past 30 years, for example, antagonists of the LasR and RhlR QS receptors in Pseudomonas aeruginosa. Potent and selective QS inhibitors remain relatively scarce. However, natural products have provided a bounty of chemical scaffolds with anti-QS activities, but their molecular mechanisms are poorly characterized. The current study serves to fill this void by examining the activity of an important and wide-spread class of natural product QS modulators, benzaldehydes, and related derivatives, in LasR and RhlR. We demonstrate that ortho-vanillin can act as a competitive inhibitor of RhlR, a receptor that has emerged and may supplant LasR in certain settings as a target for P. aeruginosa QS control. The results and insights provided herein will advance the design of chemical tools to study QS with improved activities and selectivities.
Collapse
Affiliation(s)
- Kathryn E. Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Sana Akhter
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Blanca Rodriguez
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kade A. Townsend
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Nathan Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ben Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Alice Wambua
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Vaughn Craddock
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Emma E. Santa
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Daniel E. Manson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
22
|
Zolpirani FH, Ghaemi EA, Yasaghi M, Nikokar I, Ardebili A. Effect of phenylalanine arginyl β-naphthylamide on the imipenem resistance, elastase production, and the expression of quorum sensing and virulence factor genes in Pseudomonas aeruginosa clinical isolates. Braz J Microbiol 2024; 55:2715-2726. [PMID: 38926315 PMCID: PMC11405361 DOI: 10.1007/s42770-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most important nosocomial pathogens that possess the ability to produce multiple antibiotic resistance and virulence factors. Elastase B (LasB) is the major factor implicated in tissue invasion and damage during P. aeruginosa infections, whose synthesis is regulated by the quorum sensing (QS) system. Anti-virulence approach is now considered as potential therapeutic alternative and/or adjuvant to current antibiotics' failure. The aim of this study is primarily to find out the impact of the efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN) on the production of elastase B and the gene expression of lasI quorum sensing and lasB virulence factor in clinical isolates of P. aeruginosa. Five P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Antimicrobial susceptibility of isolates was performed by the disk agar diffusion method. Effect of the PAβN on imipenem susceptibility, bacterial viability, and elastase production was evaluated. The expression of lasB and lasI genes was measured by quantitative real-time PCR in the presence of PAβN. All isolates were identified as multidrug-resistant (MDR) and showed resistance to carbapenem (MIC = 64-256 µg/mL). Susceptibility of isolates to imipenem was highly increased in the presence of efflux inhibitor. PAβN significantly reduced elastase activity in three isolates tested without affecting bacterial growth. In addition, the relative expression of both lasB and lasI genes was diminished in all isolates in the presence of inhibitor. Efflux inhibition by using the EPI PAβN could be a potential target for controlling the P. aeruginosa virulence and pathogenesis. Furthermore, impairment of drug efflux by PAβN indicates its capability to be used as antimicrobial adjuvant that can decrease the resistance and lower the effective doses of current drugs.
Collapse
Affiliation(s)
- Fatemeh Hojjati Zolpirani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Yasaghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Iraj Nikokar
- Department of Laboratory Sciences, Langroud School of Allied Medical Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Medical Bacteriology, Golestan University of Medical Sciences, 49341-74515, Gorgan, Iran.
| |
Collapse
|
23
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Al-Rabia MW, Asfour HZ, Alhakamy NA, Bazuhair MA, Ibrahim TS, Abbas HA, Mansour B, Hegazy WAH, Seleem NM. Cilostazol is a promising anti-pseudomonal virulence drug by disruption of quorum sensing. AMB Express 2024; 14:87. [PMID: 39090255 PMCID: PMC11294311 DOI: 10.1186/s13568-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Resistance to antibiotics is a critical growing public health problem that desires urgent action to combat. To avoid the stress on bacterial growth that evokes the resistance development, anti-virulence agents can be an attractive strategy as they do not target bacterial growth. Quorum sensing (QS) systems play main roles in controlling the production of diverse virulence factors and biofilm formation in bacteria. Thus, interfering with QS systems could result in mitigation of the bacterial virulence. Cilostazol is an antiplatelet and a vasodilator FDA approved drug. This study aimed to evaluate the anti-virulence activities of cilostazol in the light of its possible interference with QS systems in Pseudomonas aeruginosa. Additionally, the study examines cilostazol's impact on the bacterium's ability to induce infection in vivo, using sub-inhibitory concentrations to minimize the risk of resistance development. In this context, the biofilm formation, the production of virulence factors and influence on the in vivo ability to induce infection were assessed in the presence of cilostazol at sub-inhibitory concentration. Furthermore, the outcome of combination with antibiotics was evaluated. Cilostazol interfered with biofilm formation in P. aeruginosa. Moreover, swarming motility, biofilm formation and production of virulence factors were significantly diminished. Histopathological investigation revealed that liver, spleen and kidney tissues damage was abolished in mice injected with cilostazol-treated bacteria. Cilostazol exhibited a synergistic outcome when used in combination with antibiotics. At the molecular level, cilostazol downregulated the QS genes and showed considerable affinity to QS receptors. In conclusion, Cilostazol could be used as adjunct therapy with antibiotics for treating Pseudomonal infections. This research highlights cilostazol's potential to combat bacterial infections by targeting virulence mechanisms, reducing the risk of antibiotic resistance, and enhancing treatment efficacy against P. aeruginosa. These findings open avenues for repurposing existing drugs, offering new, safer, and more effective infection control strategies.
Collapse
Affiliation(s)
- Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
- Department of Pharmaceutical Chemistry, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Wael A H Hegazy
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Department of Pharmaceutical Sciences, Pharmacy Program, College of Health Sciences, 113, Muscat, Oman.
| | - Noura M Seleem
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
25
|
Gokhale KM, Patravale V, Pingale R, Pandey P, Vavilala SL. Se-functionalized ZIF-8 nanoparticles: synthesis, characterization and disruption of biofilms and quorum sensing in Serratia marcescens. Biomed Mater 2024; 19:055020. [PMID: 39025122 DOI: 10.1088/1748-605x/ad6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIFchemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone-stabilized Se(0) nanoparticles -8 were affected by the ratios of Se/Zn2+and [hmim]/Zn2+used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy (SEM). The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation inS. marcescens,but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was validated by confocal laser scanning microscopy and SEM analysis. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused byS. marcescensand offer a solution for antimicrobial resistance.
Collapse
Affiliation(s)
- Kunal M Gokhale
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle, Mumbai 400056, India
| | - Vandana Patravale
- Institute of Chemical Technology, Department of Pharm. Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Rutuja Pingale
- Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar 421003, India
| | - Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| |
Collapse
|
26
|
Tang D, Lin Y, Yao H, Liu Y, Xi Y, Li M, Mao A. Effect of L-HSL on biofilm and motility of Pseudomonas aeruginosa and its mechanism. Appl Microbiol Biotechnol 2024; 108:418. [PMID: 39012538 PMCID: PMC11252199 DOI: 10.1007/s00253-024-13247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
27
|
Liu J, Wang Z, Zeng Y, Wang W, Tang S, Jia A. 1H-Pyrrole-2,5-dicarboxylic acid, a quorum sensing inhibitor from one endophytic fungus in Areca catechu L., acts as antibiotic accelerant against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1413728. [PMID: 39015339 PMCID: PMC11250523 DOI: 10.3389/fcimb.2024.1413728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhennan Wang
- Modern Industrial College of Traditional Chinese Medicine and Health, Lishui University, Lishui, China
| | - Yuexiang Zeng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
28
|
Gad AI, El-Ganiny AM, Eissa AG, Noureldin NA, Nazeih SI. Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa. J Antibiot (Tokyo) 2024; 77:454-465. [PMID: 38724627 PMCID: PMC11208154 DOI: 10.1038/s41429-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024]
Abstract
Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.
Collapse
Affiliation(s)
- Amany I Gad
- Microbiology and Immunology Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nada A Noureldin
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Shaimaa I Nazeih
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
29
|
Shah SD, Patel H, Saiyad SM, Bajpai B. Effect of a phthalate derivative purified from Bacillus zhangzhouensis SK4 on quorum sensing regulated virulence factors of Pseudomonas aeruginosa. Microb Pathog 2024; 191:106664. [PMID: 38679245 DOI: 10.1016/j.micpath.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Pseudomonas aeruginosa causes life-threatening diseases and is resistant to almost all conventional antibiotics. The quorum sensing (QS) system of P. aeruginosa contributes to many pathogenic factors some of which are pigment production, motility, and biofilm. The disruption of quorum sensing system may be an impactful strategy to deal with infections. The present study investigates the anti-quorum sensing property of a bioactive molecule extracted from marine epibiotic bacteria present on the surface of seaweeds. Among all the isolates tested against monitor strain Chromobacterium violaceum (MTCC 2656), the one with the highest activity was identified as Bacillus zhangzhouensis SK4. The culture supernatant was extracted with chloroform which was then partially purified by TLC and column chromatography. The probable anti-QS compound was identified as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl ester) by GC-MS and NMR analysis. The treatment of P. aeruginosa MCC 3457 with the lead compound resulted in the reduced production of pyocyanin, rhamnolipids, exopolysaccharide, biofilm, and motility. The observations of light and scanning electron microscopy also supported the biofilm inhibition. The lead compound showed synergism with the meropenem antibiotic and significantly reduced MIC. The molecular docking and pharmacokinetics study predicted 1, 2-benzenedicarboxylic acid, bis (2-methylpropyl ester), a phthalate derivative as a good drug candidate. The molecular dynamics study was also performed to check the stability of the lead compound and LasR complex. Further, lead compounds did not exhibit any cytotoxicity when tested on human embryonic kidney cells. As per our knowledge, this is the first report on the anti-QS activity of B. zhangzhouensis SK4, indicating that epibiotic bacteria can be a possible source of novel compounds to deal with the multidrug resistance phenomenon.
Collapse
Affiliation(s)
- Siddhi D Shah
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Harsh Patel
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Saklain Mustak Saiyad
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| | - Bhakti Bajpai
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), The CVM University, Vallabh Vidyanagar, Anand, 388121, Gujarat, India.
| |
Collapse
|
30
|
Talaat R, Abu El-Naga MN, El-Bialy HAA, El-Fouly MZ, Abouzeid MA. Quenching of quorum sensing in multi-drug resistant Pseudomonas aeruginosa: insights on halo-bacterial metabolites and gamma irradiation as channels inhibitors. Ann Clin Microbiol Antimicrob 2024; 23:31. [PMID: 38600513 PMCID: PMC11007959 DOI: 10.1186/s12941-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. METHODS The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. RESULTS The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC-ESI-MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. CONCLUSION QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.
Collapse
Affiliation(s)
- Reham Talaat
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed N Abu El-Naga
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Abd Alla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohie Z El-Fouly
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed A Abouzeid
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
31
|
Chen X, Li J, Liao R, Shi X, Xing Y, Xu X, Xiao H, Xiao D. Bibliometric analysis and visualization of quorum sensing research over the last two decade. Front Microbiol 2024; 15:1366760. [PMID: 38646636 PMCID: PMC11026600 DOI: 10.3389/fmicb.2024.1366760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Liao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Xing
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
32
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Woods KE, Akhter S, Rodriguez B, Townsend KA, Smith N, Smith B, Wambua A, Craddock V, Abisado-Duque RG, Santa EE, Manson DE, Oakley BR, Hancock LE, Miao Y, Blackwell HE, Chandler JR. Characterization of natural product inhibitors of quorum sensing in Pseudomonas aeruginosa reveals competitive inhibition of RhlR by ortho-vanillin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581676. [PMID: 38559250 PMCID: PMC10979890 DOI: 10.1101/2024.02.24.581676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Quorum sensing (QS) is a cell-cell signaling system that enables bacteria to coordinate population density-dependent changes in behavior. This chemical communication pathway is mediated by diffusible N-acyl L-homoserine lactone signals and cytoplasmic signal-responsive LuxR-type receptors in Gram-negative bacteria. As many common pathogenic bacteria use QS to regulate virulence, there is significant interest in disrupting QS as a potential therapeutic strategy. Prior studies have implicated the natural products salicylic acid, cinnamaldehyde and other related benzaldehyde derivatives as inhibitors of QS in the opportunistic pathogen Pseudomonas aeruginosa, yet we lack an understanding of the mechanisms by which these compounds function. Herein, we evaluate the activity of a set of benzaldehyde derivatives using heterologous reporters of the P. aeruginosa LasR and RhlR QS signal receptors. We find that most tested benzaldehyde derivatives can antagonize LasR or RhlR reporter activation at micromolar concentrations, although certain molecules also caused mild growth defects and nonspecific reporter antagonism. Notably, several compounds showed promising RhlR or LasR specific inhibitory activities over a range of concentrations below that causing toxicity. Ortho-Vanillin, a previously untested compound, was the most promising within this set. Competition experiments against the native ligands for LasR and RhlR revealed that ortho-vanillin can interact competitively with RhlR but not with LasR. Overall, these studies expand our understanding of benzaldehyde activities in the LasR and RhlR receptors and reveal potentially promising effects of ortho-vanillin as a small molecule QS modulator against RhlR.
Collapse
Affiliation(s)
- Kathryn E. Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Sana Akhter
- Center for Computational Biology, University of Kansas, Lawrence, KS 66045
| | - Blanca Rodriguez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Kade A. Townsend
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Nathan Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Ben Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Alice Wambua
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Vaughn Craddock
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | | | - Emma E. Santa
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Daniel E. Manson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
- Center for Computational Biology, University of Kansas, Lawrence, KS 66045
- Current location: Department of Pharmacology and Computational Medicine Program, University of North Carolina–Chapel Hill, Chapel Hill, NC 27599
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | | |
Collapse
|
34
|
Arya S, Usha R. Bioprospecting and Exploration of Phytochemicals as Quorum Sensing Inhibitors against Cariogenic Dental Biofilm. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:100-117. [DOI: 10.22207/jpam.18.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dental caries is a polymicrobial infection affecting the dental hard tissues. Excessive carbohydrate intake leads to the accumulation of acid-producing and acid-resistant microorganisms in the oral region. It is a biofilm-dependent oral infection with cariogenic pathogens and the most prevalent disease globally. The prevention and control of caries play a vital role in global health management. Periodontal diseases and subgingival plaque etiology are due to the combined action of bacterial invasion and immune reaction, resulting in the devastation of periodontal tissues, culminating in tooth loss. The compact micro colony inhabiting the dental surfaces attaches with secreted polymer, forming a biofilm. Bacterial biofilm impervious to various drugs and chemicals poses a significant challenge in therapeutic scenarios of medical and odonatological infections. The quorum-sensing signaling mechanism in bacteria controls the metabolic and physiologic properties involved in bacterial existence, pathogenesis, and virulence. Hence, studies monitoring the molecular mechanism of quorum sensing and their restricted social interactions will be highly beneficial in the treatment regimen of the modern era. Natural bioactive compounds can be exploited for their medicinal value in combating oro-dental infections. Phytochemicals are promising candidates that could provide novel strategies for fighting infections. The current review highlights the mechanism of quorum sensing, plant products’ effect in controlling quorum sensing, and biofilm-induced dental infections like Periodontitis.
Collapse
|
35
|
Karami-Eshkaftaki Z, Saei-Dehkordi S, Albadi J, Moradi M, Saei-Dehkordi SS. Coated composite paper with nano-chitosan/cinnamon essential oil-nanoemulsion containing grafted CNC@ZnO nanohybrid; synthesis, characterization and inhibitory activity on Escherichia coli biofilm developed on grey zucchini. Int J Biol Macromol 2024; 258:128981. [PMID: 38158064 DOI: 10.1016/j.ijbiomac.2023.128981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
This investigation aims to highlight the applicability of a potent eco-friendly developed composite film to combat the Escherichia coli biofilm formed in a model food system. ZnO nanoparticles (NPs) synthesized using green methods were anchored on the surface of cellulose nanocrystals (CNCs). Subsequently, nano-chitosan (NCh) solutions were used to disperse the synthesized nanoparticles and cinnamon essential oil (CEO). These solutions, containing various concentrations of CNC@ZnO NPs and CEO, were sequentially coated onto cellulosic papers to inhibit Escherichia coli biofilms on grey zucchini slices. Six films were developed, and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, biodegradation, and mechanical properties were assessed. The film containing 5 % nano-emulsified CEO + 3 % dispersed CNC@ZnO nano-hybrid in an NCh solution was selected for further testing since it exhibited the largest zone of inhibition (34.32 mm) against E. coli and the highest anti-biofilm activity on biofilms developed on glass surfaces. The efficacy of the film against biofilms on zucchini surfaces was temperature-dependent. During 60 h, the selected film resulted in log reductions of approximately 4.5 logs, 2.85 logs, and 1.57 logs at 10 °C, 25 °C, and 37 °C, respectively. Applying the selected film onto zucchini surfaces containing biofilm structures leads to the disappearance of the distinctive three-dimensional biofilm framework. This innovative anti-biofilm film offers considerable potential in combatting biofilm issues on food surfaces. The film also preserved the sensory quality of zucchini evaluated for up to 60 days.
Collapse
Affiliation(s)
- Zahra Karami-Eshkaftaki
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Siavash Saei-Dehkordi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Jalal Albadi
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord 34141, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - S Saeid Saei-Dehkordi
- PhD graduate, Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
36
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
37
|
Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. Repurposing albendazole as a potent inhibitor of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa: Novel prospects of a classical drug. Microb Pathog 2024; 186:106468. [PMID: 38036112 DOI: 10.1016/j.micpath.2023.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Pseudomonas aeruginosa has emerged as a critical superbug that poses a serious threat to public health. Owing to its virulence and multidrug resistance profiles, the pathogen demands immediate attention for devising alternate intervention strategies. In an attempt to repurpose drugs against P. aeruginosa, this preclinical study was aimed at investigating the antivirulence prospects of albendazole (AbZ), an FDA-approved anti-helminthic drug, recently predicted to disrupt quorum sensing (QS) in Chromobacterium violaceum. AbZ was scrutinized for its quorum quenching (QQ) prospects, effect on bacterial virulence, different motility phenotypes, and biofilm formation in vitro. Additionally, in silico analysis was employed to predict the molecular interactions between AbZ and QS receptors. At sub-inhibitory levels, AbZ demonstrated anti-QS activity and significantly abrogated AHL biosynthesis in P. aeruginosa. Moreover, AbZ significantly downregulated the transcript levels of QS- (lasI/lasR, rhlI/rhlR, and pqsA/pqsR) and QS-dependent virulence (aprA, lasA, lasB, plcH, and toxA) genes in P. aeruginosa. This coincided with reduced hemolysin, alginate, pyocyanin, rhamnolipids, total protease, and elastase production, thereby lowering phenotypic virulence. Molecular docking with AbZ further revealed strong associations and high binding energies with LasR (-8.8 kcal/mol), RhlR (-6.5 kcal/mol), and PqsR (-6.3 kcal/mol) receptors. AbZ also impeded bacterial motility and abolished EPS production, severely compromising pseudomonal biofilm formation. For the first time, AbZ was shown to interfere with QS circuitry and consequently disarming pseudomonal virulence. Hence, AbZ can be exploited for its antivirulence properties against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Pallavi Gulati
- RLA College, University of Delhi (South Campus), New Delhi, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
38
|
Sykes EME, White D, McLaughlin S, Kumar A. Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 2024; 70:1-14. [PMID: 37699258 DOI: 10.1139/cjm-2023-0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Salicylic acids have been used in human and veterinary medicine for their anti-pyretic, anti-inflammatory, and analgesic properties for centuries. A key role of salicylic acid-immune modulation in response to microbial infection-was first recognized during studies of their botanical origin. The effects of salicylic acid on bacterial physiology are diverse. In many cases, they impose selective pressures leading to development of cross-resistance to antimicrobial compounds. Initial characterization of these interactions was in Escherichia coli, where salicylic acid activates the multiple antibiotic resistance (mar) operon, resulting in decreased antibiotic susceptibility. Studies suggest that stimulation of the mar phenotype presents similarly in closely related Enterobacteriaceae. Salicylic acids also affect virulence in many opportunistic pathogens by decreasing their ability to form biofilms and increasing persister cell populations. It is imperative to understand the effects of salicylic acid on bacteria of various origins to illuminate potential links between environmental microbes and their clinically relevant antimicrobial-resistant counterparts. This review provides an update on known effects of salicylic acid and key derivatives on a variety of bacterial pathogens, offers insights to possible potentiation of current treatment options, and highlights cellular regulatory networks that have been established during the study of this important class of medicines.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn White
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sydney McLaughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
39
|
Qaralleh H. Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa. J Pharmacopuncture 2023; 26:307-318. [PMID: 38162474 PMCID: PMC10739471 DOI: 10.3831/kpi.2023.26.4.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of anti-quorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.
Collapse
Affiliation(s)
- Haitham Qaralleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Mutah, Karak, Jordan
| |
Collapse
|
40
|
Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel) 2023; 12:1694. [PMID: 38136728 PMCID: PMC10740918 DOI: 10.3390/antibiotics12121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is an increasing global problem for public health, and focusing on biofilms has provided further insights into resistance evolution in bacteria. Resistance is innate in many bacterial species, and many antibiotics are derived from natural molecules of soil microorganisms. Is it possible that nature can help control AMR diffusion? In this review, an analysis of resistance mechanisms is summarized, and an excursus of the different approaches to challenging resistance spread based on natural processes is presented as "lessons from Nature". On the "host side", immunotherapy strategies for bacterial infections have a long history before antibiotics, but continuous new inputs through biotechnology advances are enlarging their applications, efficacy, and safety. Antimicrobial peptides and monoclonal antibodies are considered for controlling antibiotic resistance. Understanding the biology of natural predators is providing new, effective, and safe ways to combat resistant bacteria. As natural enemies, bacteriophages were used to treat severe infections before the discovery of antibiotics, marginalized during the antibiotic era, and revitalized upon the diffusion of multi-resistance. Finally, sociopolitical aspects such as education, global action, and climate change are also considered as important tools for tackling antibiotic resistance from the One Health perspective.
Collapse
Affiliation(s)
- Maria Vitale
- Genetics of Microorganisms Laboratory, Molecular Biology Department, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|
41
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
42
|
Peng B, Li Y, Yin J, Ding W, Fazuo W, Xiao Z, Yin H. A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions. Front Microbiol 2023; 14:1297843. [PMID: 38098670 PMCID: PMC10720721 DOI: 10.3389/fmicb.2023.1297843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Background Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wang Fazuo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
43
|
El Ghali A, Stamper K, Kunz Coyne AJ, Holger D, Kebriaei R, Alexander J, Lehman SM, Rybak MJ. Ciprofloxacin in combination with bacteriophage cocktails against multi-drug resistant Pseudomonas aeruginosa in ex vivo simulated endocardial vegetation models. Antimicrob Agents Chemother 2023; 67:e0072823. [PMID: 37877697 PMCID: PMC10649104 DOI: 10.1128/aac.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.
Collapse
Affiliation(s)
- Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, Florida, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
44
|
Adnan M, Siddiqui AJ, Noumi E, Ashraf SA, Awadelkareem AM, Hadi S, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence. BIOMOLECULES & BIOMEDICINE 2023; 23:1051-1068. [PMID: 37421468 PMCID: PMC10655870 DOI: 10.17305/bb.2023.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
45
|
Vetrivel A, Vetrivel P, Dhandapani K, Natchimuthu S, Ramasamy M, Madheswaran S, Murugesan R. Inhibition of biofilm formation, quorum sensing and virulence factor production in Pseudomonas aeruginosa PAO1 by selected LasR inhibitors. Int Microbiol 2023; 26:851-868. [PMID: 36806045 DOI: 10.1007/s10123-023-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The quorum sensing network of Pseudomonas aeruginosa mediates the regulation of genes controlling biofilm formation and virulence factors. The rise of drug resistance to Pseudomonas aeruginosa infections has made quorum sensing-regulated biofilm formation in clinical settings a major issue. In the present study, LasR inhibitors identified in our previous study were evaluated for their antibiofilm and antiquorum sensing activities against P. aeruginosa PAO1. The compounds selected were (3-[2-(3,4-dimethoxyphenyl)-2-(1H-indol-3-yl)ethyl]-1-(2-fluorophenyl)urea) (C1), (3-(4-fluorophenyl)-2-[(3-methylquinoxalin-2-yl)methylsulfanyl]quinazolin-4-one) (C2) and (2-({4-[4-(2-methoxyphenyl)piperazin-1-yl]pyrimidin-2-yl}sulfanyl)-N-(2,4,6-trimethylphenyl)acetamide) (C3). The minimum inhibitory concentrations of C1 and C2 were 1000 μM, whereas that of C3 was 500 μM. At sub-MICs, the compounds showed potent antibiofilm activity without affecting the growth of P. aeruginosa PAO1. Electron microscopy confirmed the disruption of biofilm by the selected compounds. The antiquorum sensing activity of the compounds was revealed by the inhibition of violacein in Chromobacterium violaceum and the inhibition of swimming and swarming motilities in P. aeruginosa PAO1. Furthermore, the compounds also attenuated the production of quorum sensing-mediated virulence factors. The qRT-PCR revealed the downregulation of quorum sensing regulatory genes, namely lasI, lasR, rhlI, rhlR, lasB, pqsA and pqsR. The selected compounds also exhibited lower cytotoxicity against peripheral blood lymphocytes. Thus, this study could pave a way to explore these compounds for the development of therapeutic agent against Pseudomonas aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Soundariya Madheswaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
46
|
Cheng M, Chen R, Liao L. T2SS-peptidase XcpA associated with LasR evolutional phenotypic variations provides a fitness advantage to Pseudomonas aeruginosa PAO1. Front Microbiol 2023; 14:1256785. [PMID: 37954251 PMCID: PMC10637944 DOI: 10.3389/fmicb.2023.1256785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa possesses hierarchical quorum sensing (QS) systems. The intricate QS network of P. aeruginosa synchronizes a suite of virulence factors, contributing to the mortality and morbidity linked to the pathogenicity of this bacterium. Previous studies have revealed that variations in the lasR gene are frequently observed in chronic isolates of cystic fibrosis (CF). Specifically, LasRQ45stop was identified as a common variant among CF, lasR mutants during statistical analysis of the clinical lasR mutants in the database. In this study, we introduced LasRQ45stop into the chromosome of P. aeruginosa PAO1 through allelic replacement. The social traits of PAO1 LasRQ45stop were found to be equivalent to those of PAO1 LasR-null isolates. By co-evolving with the wild-type in caseinate broth, elastase-phenotypic-variability variants were derived from the LasRQ45stop subpopulation. Upon further examination of four LasRQ45stop sublines, we determined that the variation of T2SS-peptidase xcpA and mexT genes plays a pivotal role in the divergence of various phenotypes, including public goods elastase secretion and other pathogenicity traits. Furthermore, XcpA mutants demonstrated a fitness advantage compared to parent strains during co-evolution. Numerous phenotypic variations were associated with subline-specific genetic alterations. Collectively, these findings suggest that even within the same parental subline, there is ongoing microevolution of individual mutational trajectory diversity during adaptation.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiyi Chen
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
48
|
Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. INFECTIOUS MEDICINE 2023; 2:178-194. [PMID: 38073886 PMCID: PMC10699684 DOI: 10.1016/j.imj.2023.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 03/09/2024]
Abstract
Pseudomonas aeruginosa is an aerobic Gram-negative rod-shaped bacterium with a comparatively large genome and an impressive genetic capability allowing it to grow in a variety of environments and tolerate a wide range of physical conditions. This biological flexibility enables the P. aeruginosa to cause a broad range of infections in patients with serious underlying medical conditions, and to be a principal cause of health care associated infection worldwide. The clinical manifestations of P. aeruginosa include mostly health care associated infections and community-acquired infections. P. aeruginosa possesses an array of virulence factors that counteract host defence mechanisms. It can directly damage host tissue while utilizing high levels of intrinsic and acquired antimicrobial resistance mechanisms to counter most classes of antibiotics. P. aeruginosa co-regulates multiple resistance mechanisms by perpetually moving targets poses a significant therapeutic challenge. Thus, there is an urgent need for novel approaches in the development of anti-Pseudomonas agents. Here we review the principal infections caused by P. aeruginosa and we discuss novel therapeutic options to tackle antibiotic resistance and treatment of P. aeruginosa infections that may be further developed for clinical practice.
Collapse
Affiliation(s)
- Nikhil Sathe
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Peter Beech
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Larry Croft
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, 75 Pigdons Road, Waurn Ponds Victoria 3216, Australia
| | - Arnab Kapat
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
| | - Eugene Athan
- School of Medicine, Deakin University, PO Box 281 Geelong 3220, Australia
| |
Collapse
|
49
|
Sharma N, Srivastava N, Kaushal A, Das B, Vashistha A, Kumar L, Kumar R, Kumar Yadav A. Synthesis, in Silico Study and Biological Evaluation of N-(Benzothiazol/Thiazol-2-yl)benzamide Derivatives as Quorum Sensing Inhibitors against Pseudomonas aeruginosa. Chem Biodivers 2023; 20:e202300647. [PMID: 37602712 DOI: 10.1002/cbdv.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
The development of bacterial resistance to chemical therapy poses a severe danger to efficacy of treating bacterial infections. One of the key factors for resistance to antimicrobial medications is growth of bacteria in biofilm. Quorum sensing (QS) inhibition was created as an alternative treatment by developing novel anti-biofilm medicines. Cell-cell communication is impeded by QS inhibition, which targets QS signaling pathway. The goal of this work is to develop newer drugs that are effective against Pseudomonas aeruginosa by decreasing QS and acting as anti-biofilm agents. In this investigation, N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h were designed and synthesized in good yields. Further, molecular docking analyses revealed that binding affinity values were founded -11.2 to -7.6 kcal/mol that were moderate to good. The physicochemical properties of these prepared compounds were investigated through in-silico method. Molecular dynamic simulation was also used to know better understanding of stability of the protein and ligand complex. Comparing N-(benzo[d]thiazol-2-yl)benzamide 3a to salicylic acid (4.40±0.10) that was utilised as standard for quorum sensing inhibitor, the anti-QS action was found greater for N-(benzo[d]thiazol-2-yl)benzamide 3a (4.67±0.45) than salicylic acid (4.40±0.10). Overall, research results suggested that N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h may hold to develop new quorum sensing inhibitors.
Collapse
Affiliation(s)
- Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Namita Srivastava
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Ashutosh Kaushal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute Of Technology (BHU), Varanasi, 221005, India
| | - Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
- Cancer Biology Laboratory, Raj Khosla Center for Cancer Research, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute Of Technology (BHU), Varanasi, 221005, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
50
|
Thakur M, Khushboo, Kumar Y, Yadav V, Pramanik A, Dubey KK. Understanding resistance acquisition by Pseudomonas aeruginosa and possible pharmacological approaches in palliating its pathogenesis. Biochem Pharmacol 2023; 215:115689. [PMID: 37481132 DOI: 10.1016/j.bcp.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Pseudomonas aeruginosa can utilize various virulence factors necessary for host infection and persistence. These virulence factors include pyocyanin, proteases, exotoxins, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), phospholipases, and siderophores that enable the bacteria to cause severe infections in immunocompromised individuals. P. aeruginosa falls into the category of nosocomial pathogens that are typically resistant to available antibiotics and therapeutic approaches. P. aeruginosa bio-film formation is a major concern in hospitals because it can cause chronic infection and increase the risk of mortality. Therefore, the development of new strategies to disrupt biofilm formation and improve antibiotic efficacy for the treatment of P. aeruginosa infections is crucial. Anti-biofilm and anti-quorum sensing (QS) activity can be viewed as an anti-virulence approach to control the infectious nature of P. aeruginosa. Inhibition of QS and biofilm formation can be achieved through pharmacological approaches such as phytochemicals and essential oils, which have shown promising results in laboratory studies. A regulatory protein called LasR plays a key role in QS signaling to coordinate gene expression. Designing an antagonist molecule that mimics the natural autoinducer might be the best approach for LasR inhibition. Here we reviewed the mechanism behind antibiotic resistance and alternative approaches to combat the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi-67, India.
| |
Collapse
|