1
|
Domingues VDSP, Seldin L, Jurelevicius D. Understanding the implicit effects of 16S rRNA gene databases on microbial bioindicator studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107351. [PMID: 40222149 DOI: 10.1016/j.aquatox.2025.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
Analysis of the presence and the abundance of microorganisms related to diseases can be used to monitor marine environmental health. Our study evaluated the interference of taxonomic databases (SILVA, Greengenes v13.8, Greengenes2, and RDP) to monitor the distribution of bacterial genera potentially related to diseases in marine organisms (BGPRDs) from low- (Dois Rios Beach-DR), medium- (Abraão Beach-AB) and high (Guanabara Bay-GB) impacted marine environments. The frequency, richness, diversity, and composition of BGPRDs present in DR, AB and GB were significantly influenced by the different databases (p < 0.05). Consequently, the analyses revealed that the use of different databases resulted in controversial results regarding the distribution of BGPRDs in the DR, AB and GB. While Greengenes v13.8 and RDP showed that GB had the highest frequency of BGPRDs (p < 0.05), analysis based on Greengenes2 and SILVA revealed a greater frequency of BGPRDs in AB (p < 0.05). Additionally, there was no congruence of BGPRDs detected by each taxonomic database in DR, AB and GB. In highly-impacted GB, Arcobacter was the main BGPRD obtained with the Greengenes2 and RDP databases, whereas Synechococcus and Alteromonas represented the main BGPRD according to the Greengenes v13.8 and SILVA databases, respectively. Our results showed we cannot determine the exact composition and abundance of BGPRDs in low-, medium- and highly-impacted marine environments. These findings emphasize the critical influence of database choice on microbial community characterization and its implications for effective environmental monitoring and management strategies. Interestingly, alpha diversity indices of BGPRDs obtained from DR, AB and GB were consistent among the different databases and showed greater congruence than did the frequency, richness, distribution and abundance of BGPRDs. The use of diversity indices of BGPRDs can be an alternative to overcome the limitations caused by the bias of taxonomic annotations for biomonitoring marine environments.
Collapse
Affiliation(s)
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Smith TP, Hope R, Bell T. Phylogenetic clustering of microbial communities as a biomarker for chemical pollution. FEMS Microbiol Ecol 2025; 101:fiaf047. [PMID: 40317081 PMCID: PMC12067926 DOI: 10.1093/femsec/fiaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 05/01/2025] [Indexed: 05/04/2025] Open
Abstract
Microbial communities play a critical role in ecosystem functioning and offer promising potential as bioindicators of chemical pollution in aquatic environments. Here we examine the responses of both bacterial isolates and microbial communities to a range of pollutants, focusing on the phylogenetic predictability of their responses. We tested the growth inhibition of environmental bacterial isolates by 168 agricultural pollutants recently shown to have off-purpose antimicrobial activity in human gut bacteria. We also tested the growth responses of whole microbial communities to the same chemical pollutants and quantified changes in the composition of select communities, to link compositional changes to functioning. We found that bacterial isolates exhibited a strong phylogenetic signal in their growth responses, with closely related taxa responding similarly to chemical stress. In microbial communities, pollutants that significantly impacted isolates also reduced community diversity and growth, causing shifts in community structure toward increased phylogenetic clustering, suggesting environmental filtering. The mean phylogenetic distance effectively captured these shifts, indicating its potential as a simple metric for monitoring pollution. Our findings highlight the predictability of microbial responses to pollution and suggest that microbial-based bioindicators, coupled with rapid sequencing technologies, could transform environmental monitoring.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom
| | - Rachel Hope
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, 1015, Switzerland
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom
| |
Collapse
|
3
|
Santos-Bruña JJ, Hernández-Hernández N, Montero MF, Gómez-Letona M, Baumann M, Taucher J, Spisla C, Thielecke A, Ludwig A, Riebesell U, Arístegui J. "Assessment of potential eutrophication in coastal waters of Gran Canaria: Impact on plankton community under CO 2 depletion". MARINE ENVIRONMENTAL RESEARCH 2025; 204:106919. [PMID: 39921226 DOI: 10.1016/j.marenvres.2024.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Population growth in coastal tourist areas is leading to enhanced waste production, raising concerns about potential nutrient release increases and the resulting impact on marine ecosystems through eutrophication. Knowledge of the specific impacts of eutrophication on plankton communities in many of these regions is limited, highlighting the need for further research and appropriate environmental management strategies. To help address these gaps, we conducted a 30-day mesocosm study in the coastal waters of Gran Canaria, Canary Islands, a major European tourist destination, and the third most densely populated autonomous community in Spain. With the aim of assessing the effects of nutrient input on biomass, primary production (PP) and recycling processes by phytoplankton, zooplankton, and bacterioplankton, we simulated three nutrient discharge intensities (Low, Medium, and High), with daily additions of 0.1, 1, and 10 μmol L-1 of nitrate, respectively, along with phosphate and silicate. We observed that PP, chlorophyll a (Chl-a), and biomass increased linearly with nutrient input, except in the High treatment, where CO2 depletion (<1.0 μmol L-1) and an alkalinity increase (>2500 μmol L-1) resulted in reduced PP. Despite limitations in nitrogen (Control, Low, and Medium) or carbon (High) availability across treatments, which led to stabilized or decreased PP rates and dissolved organic carbon (DOC) concentrations, bacterial degradation remained active in all treatments. This microbial activity resulted in an accumulation of recalcitrant chromophoric dissolved organic matter (CDOM), indicating the resilience of carbon recycling processes under varying nutrient conditions. Furthermore, a clear succession was evident in all enriched treatments, transitioning from an oligotrophic condition dominated by pico- and nanophytoplankton to a eutrophic state primarily composed of diatoms. However, under CO2 depletion, diatoms experienced a decline in the High treatment, leading to the proliferation of potentially mixotrophic dinoflagellates. Microzooplankton was less sensitive than mesozooplankton to the decrease in prey availability and high pH caused by CO2 depletion. Interestingly, the Medium treatment showed high efficiency in terms of PP, despite reaching CO2 levels near of 1.0 μmol L-1 by the end of the experiment. PP rates increased from 10 to 100 μg C·L-1·d-1 during the first week and remained stable as diatoms predominated throughout the study period. These findings provide valuable insights into the responses of plankton communities to varying nutrient inputs and emphasize the importance of considering the effects of DIC depletion, along with changes in total alkalinity, in eutrophication scenarios as well as in ocean alkalinity enhancement experiments aimed at reducing carbon dioxide emissions.
Collapse
Affiliation(s)
- Jorge J Santos-Bruña
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain; Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain.
| | - Nauzet Hernández-Hernández
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - María F Montero
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain; Instituto de Investigacións Mariñas (IIM), CSIC, Vigo, Spain
| | - Moritz Baumann
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Carsten Spisla
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Antonia Thielecke
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Andrea Ludwig
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| |
Collapse
|
4
|
Aguilar P, Piyapong C, Chamroensaksri N, Jintasaeranee P, Sommaruga R. Tidal levels significantly change bacterial community composition in a tropical estuary during the dry season. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:144-156. [PMID: 40027330 PMCID: PMC11871172 DOI: 10.1007/s42995-024-00254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/22/2024] [Indexed: 03/05/2025]
Abstract
Estuaries are usually characterized by strong spatial and temporal variability in water physicochemical conditions and are often largely affected by human activities. One important source of variability is caused by tides that can swiftly alter not only physicochemical conditions but also the abundance and composition of the biota. The effect of the diurnal tidal cycle on microbial community composition during different seasons remains uncertain, although this knowledge underlies having effective monitoring programs for water quality and potential identification of health risk conditions. In this study, we assessed the bacterioplankton community composition and diversity across four tidal water levels in a tropical estuary characterized by a mixed semidiurnal tide regime (i.e., two high and two low tides of varying amplitudes) during both dry and wet seasons. The bacterial community composition varied significantly among the four tidal levels, but only during the dry season, when the influence of the seawater intrusion was largest. Bacterial indicators' taxa identified using the Indicator Value Index were found within Cyanobacteria, Actinobacteriota, Bacteroidota, and Proteobacteria. The indicator taxon Cyanobium sp. had a prominent presence across multiple tidal levels. The main predicted phenotypes of the bacterial communities were associated with potential pathogenicity, gram-negative, and biofilm formation traits. While there were no marked predicted phenotypic differences between seasons, pathogenic and gram-negative traits were more prevalent in the dry season, while biofilm formation traits dominated in the wet season. Overall, our findings underscore the intricate relationship between river hydrodynamics and bacterial composition variability and hint a significant human impact on the water quality of the Bangpakong River. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00254-w.
Collapse
Affiliation(s)
- Pablo Aguilar
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
- Microbial Complexity Laboratory, Instituto Antofagasta and Centre for Bioengineering and Biotechnology (CeBiB), University of Antofagasta, Antofagasta, Chile
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids-INVASAL, Concepción, Chile
| | - Chantima Piyapong
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131 Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400 Thailand
| | - Nitcha Chamroensaksri
- National Biobank of Thailand (NBT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 Thailand
| | - Pachoenchoke Jintasaeranee
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400 Thailand
- Department of Aquatic Science, Faculty of Science, Burapha University, Chonburi, 20131 Thailand
| | - Ruben Sommaruga
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Chen YT, Reid T, Weisener C. Microbial community and functional shifts across agricultural and urban landscapes within a Lake Erie watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123683. [PMID: 39667337 DOI: 10.1016/j.jenvman.2024.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes. In this study, metagenomic and metatranscriptomic approaches were used to investigate the microbial community and gene regulation. The study focused on nitrogen (N) metabolism in a nutrient-polluted watershed of Lake Erie in southwestern Ontario, Canada. Nutrients and microbial analyses of water and sediments were collected in 2020 and 2021 from Sturgeon Creek headwaters to the nearshore of Lake Erie. Results showed no significant shifts in community structure with nutrient concentrations or land use. Metabolically, active genes involved in denitrification (consisting of 32-53% of N metabolic transcripts) showed the highest expression within agricultural and wetland dominant locations. Based on active gene expression patterns, the urbanised location coinciding with peak nitrate (NO3-) concentrations showed the greatest potential for nitrous oxide (N2O) emission and nitrogen loss along this transect. In contrast to denitrification, direct nitrification (5-21% of N metabolic transcripts) increased two-fold approaching downstream and nearshore lake locations. Across this river-lake corridor, expression of key functional genes associated with N transformation showed strong correlation with the change in concentrations of aqueous NO3- and nitrite (NO2-) and the ratio of NO2-/NO3-. Our findings demonstrated a clear link between sediment microbial metabolism and overlying water chemistry in this lotic system. We suggest that future studies assessing nutrient mitigation consider sediment biogeochemical processes and N-metabolising bacteria, and their fundamental role and cooperative relationship with nutrient and hydrological dynamics of overlying waters.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada; Centre for Resilience in Environment, Water and Waste (CREWW), Faculty of Environment, Science and Economy, University of Exeter, Exeter, Devon, EX4 4TA, United Kingdom
| | - Tom Reid
- Environment and Climate Change Canada, Water Science and Technology Branch Canada, Centre for Inland Waters, Burlington, Ontario, L7R 1A1, Canada
| | - Christopher Weisener
- Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
6
|
Gourgues S, Goñi-Urriza M, Milhe-Poutingon M, Baldoni-Andrey P, Gurieff NB, Gelber C, Le Faucheur S. Cobalt effects on prokaryotic communities of river biofilms: Impact on their colonization kinetics, structure and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175713. [PMID: 39191324 DOI: 10.1016/j.scitotenv.2024.175713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Although cobalt (Co) plays a significant role in the transition to low-carbon technologies, its environmental impact remains largely unknown. This study examines Co impacts on the prokaryotic communities within river biofilms to evaluate their potential use as bioindicators of Co contamination. To this end, biofilms were cultivated in artificial streams enriched with different environmental Co concentrations (0.1, 0.5, and 1 μM Co) over 28 days and examined for prokaryotic abundance and diversity via quantitative PCR and DNA-metabarcoding every 7 days. The prokaryotic community's resilience was further investigated after an additional 35 days without Co contamination. The prokaryotic communities were affected by 0.5 and 1 μM Co from the onset of biofilm colonization. The biofilm biomass was comparable between treatments, but the community composition differed. Control biofilms were dominated by Cyanobacteria and Planctomycetes, whereas Bacteroidetes dominated the Co-contaminated biofilms. Potential functional redundancy was observed through the implementation of carbon fixation alternatives by non-photosynthetic prokaryotes in biofilms exposed to high Co concentrations. No structural resilience was observed in the biofilms after 35 days without Co contamination. Measuring the prokaryotic community structural response using molecular approaches appears to be a promising method for assessing shifts in water quality owing to Co contamination.
Collapse
Affiliation(s)
- Sarah Gourgues
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | - Marisol Goñi-Urriza
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France
| | | | | | | | | | | |
Collapse
|
7
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of nitrogenous and phosphorous in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177142. [PMID: 39486534 DOI: 10.1016/j.scitotenv.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Lots of studies on eutrophication, but there is a lack of comprehensive research on the repair of multiple forms of nitrogen and phosphorus under combined heavy metals (HMs) pollution. This work investigated the various forms of nitrogen and phosphorus in the water-sediment systems of eutrophic lakes with the application of biochar, Effective Microorganisms (EMs) and microplastics, aiming to deliberate the repair behavior of multiple forms of nitrogen/phosphorus and the integrated repairment of these nutrients and HMs in different remediations. For amended-groups, the application of biochar-supported EMs (BE) achieved the most desirable remediation for removing nitrogen, phosphorus and HMs in water and improved their stability in sediment due to the improved microbial activity and the developed biofilm system created by biochar. The addition of aging microplastics (MP) obviously reduced the systematic levels of nitrogen, phosphorus and HMs due to the stimulation of microbial activity and the adsorption of biofilm/EPS, but its high movability also increased the Fe(II) and S(-II) levels and the pollutants' ecological risks in sediment. The co-application of BE and MP (MBE) destroyed the ecosystem and decreased the removal of nitrogen and phosphorus, while greatly removing HMs by the superfluous biofilms/EPS. The application of biochar (BC) preferentially adsorbed and degraded dissolved nitrogen and phosphorus, releasing HMs into water. From these amended-groups, it's also knew that the removal of nitrogen and phosphorus mainly came from the degradation/assimilation of NH3-N, SRP and dissolved matters, particularly those molecular weight below 3 kDa; the higher removal of phosphorus than nitrogen was attributed to the coprecipitation of Fe-S-P hydroxides and the adsorption of particulates; however, the colloidal (3-100 kDa) nitrogen and phosphorus had low accessibility and bioavailability, and it also showed the competitive adsorption with colloidal HMs, causing their relatively low removal in water. This study provides insight into the comprehensive repair of nitrogen, phosphorus and HMs in various forms by biochar-immobilized microbes and the influence of microplastics on nutrients and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| |
Collapse
|
8
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
9
|
Zhu M, Tang Y. Response of sediment microbial communities to the flow effect of the triangular artificial reef: A simulation-based experimental study. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106546. [PMID: 38795576 DOI: 10.1016/j.marenvres.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
Artificial reefs (ARs), as an important tool for habitat restoration, play significant impacts on benthic microbial ecosystems. This study utilized 16S rRNA gene sequencing technology and computational fluid dynamics (CFD) flow simulation to investigate the effects of flow field distribution around ARs on microbial community structure. The results revealed distinct regional distribution patterns of microbial communities affected by different hydrodynamic conditions. Flow velocity and flow regime of water in sediment-water interface shaped the microbial community structure. The diversity and richness in R-HF were significantly decreased compared to other five regions (p < 0.05). At the phyla and OUT levels, most abundant taxa (1>%) showed an enrichment trend in R-HB. However, more than half of differentially abundant taxa were enriched in R-HB, which was significantly correlated with organic matter (OM). Bugbase phenotypic predictions indicated a low abundance of the anaerobic phenotype in R-HF and a high abundance of the biofilm-forming phenotype in R-HB.
Collapse
Affiliation(s)
- Meiling Zhu
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China
| | - Yanli Tang
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
10
|
Li JD, Gao YY, Stevens EJ, King KC. Dual stressors of infection and warming can destabilize host microbiomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230069. [PMID: 38497264 PMCID: PMC10945407 DOI: 10.1098/rstb.2023.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- J. D. Li
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - Y. Y. Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- School of Ecology and Nature Conservation, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, People's Republic of China
| | - E. J. Stevens
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - K. C. King
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
11
|
Mo L, Zanella A, Squartini A, Ranzani G, Bolzonella C, Concheri G, Pindo M, Visentin F, Xu G. Anthropogenic vs. natural habitats: Higher microbial biodiversity pays the trade-off of lower connectivity. Microbiol Res 2024; 282:127651. [PMID: 38430888 DOI: 10.1016/j.micres.2024.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in β-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.
Collapse
Affiliation(s)
- Lingzi Mo
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Augusto Zanella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Andrea Squartini
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giulia Ranzani
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Cristian Bolzonella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giuseppe Concheri
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Massimo Pindo
- Fondazione Edmund Mach, San Michele all'Adige 38098, Italy.
| | - Francesca Visentin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy.
| | - Guoliang Xu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
12
|
Thomas MC, Waugh G, Vanwonterghem I, Webster NS, Rinke C, Fisher R, Luter HM, Negri AP. Protecting the invisible: Establishing guideline values for copper toxicity to marine microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166658. [PMID: 37659522 DOI: 10.1016/j.scitotenv.2023.166658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 μg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 μg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.
Collapse
Affiliation(s)
- Marie C Thomas
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
| | - Gretel Waugh
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Antarctic Division, Hobart, TAS 7050, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science Crawley, Crawley, WA, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
13
|
Wang L, Zhu M, Li Y, Zhao Z. Assessing the effects of aquaculture on tidal flat ecological status using multi-metrics interaction-based index of biotic integrity (Mt-IBI). ENVIRONMENTAL RESEARCH 2023; 228:115789. [PMID: 37011797 DOI: 10.1016/j.envres.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Given tidal flat special environmental conditions and the degree of pollution caused by human activities, there is an urgent need to quantitatively assess their ecological status. Bioindication has become an indispensable part of environmental quality monitoring on account of its sensitivity to environmental disturbance. Thus, this study used bio-indicators to establish a multi-metrics-based index of biotic integrity (Mt-IBI) to evaluate the ecological status of the tidal flats with/without aquaculture through metagenomic sequencing. Four core indexes that were significantly correlated to other indexes with redundancy (p < 0.05), including Escherichia, beta-lactam antibiotic resistance genes, cellulase and xyloglucanases and the keystone species with 21° in the network, were selected after the screening processes. By implementing Mt-IBI in the tidal flats, the ecological health of the sampling sites was categorized into three levels, with Mt-IBI values of 2.01-2.63 (severe level), 2.81-2.93 (moderate level) and 3.23-4.18 (mild level), respectively. Through SEM analysis, water chemical oxygen demand and antibiotics were determined to be the primary controlling factors of the ecological status of tidal flat regions influenced by aquaculture, followed by salinity and total nitrogen. It is worth noting that the alteration of microbial communities impacted ecological status through the mediation of antibiotics. It is hoped that the results of our study will provide a theoretical basis for coastal environment restoration and that the use of Mt-IBI to assess ecosystem status in different aquatic environments will be further popularized in the future.
Collapse
Affiliation(s)
- Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| | - Yi Li
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China.
| | - Zhe Zhao
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| |
Collapse
|
14
|
Ribas MP, García-Ulloa M, Espunyes J, Cabezón O. Improving the assessment of ecosystem and wildlife health: microbiome as an early indicator. Curr Opin Biotechnol 2023; 81:102923. [PMID: 36996728 DOI: 10.1016/j.copbio.2023.102923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Human activities are causing dramatic declines in ecosystem health, compromising the functioning of the life-support system, economic activity, and animal and human health. In this context, monitoring the health of ecosystems and wildlife populations is crucial for determining ecological dynamics and assessing management interventions. A growing body of evidence indicates that microbiome provides a meaningful early indicator of ecosystem and wildlife health. Microbiome is ubiquitous and both environmental and host-associated microbiomes rapidly reflect anthropogenic disturbances. However, we still need to overcome current limitations such as nucleic acid degradation, sequencing depth, and the establishment of baseline data to maximize the potential of microbiome studies.
Collapse
|
15
|
Moreira VA, Cravo-Laureau C, de Carvalho ACB, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial indicators along a metallic contamination gradient in tropical coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130244. [PMID: 36327839 DOI: 10.1016/j.jhazmat.2022.130244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The structure and diversity of microbial community inhabiting coastal sediments reflect the exposition to contaminants. Aiming to assess the changes in the microbiota from Sepetiba Bay (SB, Brazil) sediments, correlations between the 16S rRNA gene data (V4-V5 region), metal contamination factors (CF), and the ecological risk classification provided by the Quality Ratio (QR) index were considered. The results show that microbial diversity differs significantly between the less (SB external sector) and the most (SB internal sector) polluted sectors. Also, differences in the microbial community structure regarding the ecological risk classifications validated the QR index as a reliable tool to report the SB chronic contamination. Microbial indicator genera resistant to metals (Desulfatiglans, SEEP-SRB1, Spirochaeta 2, among others) presented mainly anaerobic metabolisms. These genera are related to the sulfate reducing and methanogenic metabolisms probably participating in the natural attenuation processes but also associated with greenhouse gas emissions. In contrast, microbial indicator genera sensitive to metals (Rubripirellula, Blastopirellula, Aquibacter, among others) presented mainly aerobic metabolisms. It is suggested that future works should investigate the metabolic functions to evaluate the influence of metallic contaminants on microbial community inhabiting SB sediment.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
16
|
Tian L, Zhang Y, Zhang L, Zhang L, Gao X, Feng B. Biogeographic Pattern and Network of Rhizosphere Fungal and Bacterial Communities in Panicum miliaceum Fields: Roles of Abundant and Rare Taxa. Microorganisms 2023; 11:microorganisms11010134. [PMID: 36677426 PMCID: PMC9863577 DOI: 10.3390/microorganisms11010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Unraveling how microbial interactions and assembly process regulate the rhizosphere abundant and rare taxa is crucial for determining how species diversity affects rhizosphere microbiological functions. We assessed the rare and abundant taxa of rhizosphere fungal and bacterial communities in proso millet agroecosystems to explore their biogeographic patterns and co-occurrence patterns based on a regional scale. The taxonomic composition was significantly distinct between the fungal and bacterial abundant and rare taxa. Additionally, the rare taxa of bacteria and fungi exhibited higher diversity and stronger phylogenetic clustering than those of the abundant ones. The phylogenetic turnover rate of abundant taxa of bacteria was smaller than that of rare ones, whereas that of fungi had the opposite trend. Environmental variables, particularly mean annual temperature (MAT) and soil pH, were the crucial factors of community structure in the rare and abundant taxa. Furthermore, a deterministic process was relatively more important in governing the assembly of abundant and rare taxa. Our network analysis suggested that rare taxa of fungi and bacteria were located at the core of maintaining ecosystem functions. Interestingly, MAT and pH were also the important drivers controlling the main modules of abundant and rare taxa. Altogether, these observations revealed that rare and abundant taxa of fungal and bacterial communities showed obvious differences in biogeographic distribution, which were based on the dynamic interactions between assembly processes and co-occurrence networks.
Collapse
Affiliation(s)
- Lixin Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Liyuan Zhang
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng 024031, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (X.G.); (B.F.)
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (X.G.); (B.F.)
| |
Collapse
|
17
|
Moreira VA, Cravo-Laureau C, Borges de Carvalho AC, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial community metabolic alterations and resistance to metals and antibiotics driven by chronic exposition to multiple pollutants in a highly impacted tropical coastal bay. CHEMOSPHERE 2022; 307:135928. [PMID: 35944693 DOI: 10.1016/j.chemosphere.2022.135928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities from Sepetiba Bay (SB, Rio de Janeiro, Brazil), characterized by 16S rRNA gene (V4-V5 region) sequencing analysis, were found to be correlated with the metallic contamination factor and the Quality Ratio (QR) index. Consistently, the predicted function of microbial communities, obtained with Tax4Fun2, showed that the functional patterns in SB internal sector under the highest anthropogenic pressure were different from that observed in the external sector with the lowest contamination level. Signal transduction, cellular community, membrane transport, and energy metabolism were among the KEGG pathways favored by metallic contamination in the SB internal sector, while lipid metabolism, transcription, and translation were among the pathways favored in the SB external sector. Noteworthy, the relative proportions of KEGG pathways and genes associated with metallic homeostasis showed significant differences according to the SB sectors, consistently with the ecological risk classification (QR index) of sediments. The functional prediction approach is an economically viable alternative and presents an overview of the main pathways/genes favored in the SB microbiota exposed to long-term pollution. In contrast, the microgAMBI, ecological status index based on bacterial community composition, was not consistent with the metallic contamination of SB, suggesting that this index requires improvements to be applied in tropical areas. Our study also revealed a strong correlation between metal resistance genes (MRG) and antibiotic resistance genes (ARG), indicating that MRG and ARG are co-selected by the metallic contamination prevailing in SB.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
18
|
Ma F, Wang C, Zhang Y, Chen J, Xie R, Sun Z. Development of Microbial Indicators in Ecological Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13888. [PMID: 36360768 PMCID: PMC9654993 DOI: 10.3390/ijerph192113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Indicators can monitor ecological environment changes and help maintain ecological balance. Bioindicators are divided into animal, plant, and microbial indicators, of which animal and plant indicators have previously been the most researched, but microbial indicators have drawn attention recently owing to their high sensitivity to the environment and their potential for use in monitoring environmental changes. To date, reviews of studies of animals and plants as indicator species have frequently been conducted, but reviews of research on microorganisms as indicator species have been rare. In this review, we summarize and analyze studies using microorganisms as indicator species in a variety of ecosystems, such as forests, deserts, aquatic and plateau ecosystems, and artificial ecosystems, which are contained in wetlands, farmlands, and mining ecosystems. This review provides useful information for the further use of microorganisms as indicators to reflect the changes in different environmental ecosystems.
Collapse
Affiliation(s)
- Fangzhou Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chenbin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yanjing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Rui Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhanbin Sun
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Beatty DS, Aoki LR, Rappazzo B, Bergman C, Domke LK, Duffy JE, Dubois K, Eckert GL, Gomes C, Graham OJ, Harper L, Harvell CD, Hawthorne TL, Hessing-Lewis M, Hovel K, Monteith ZL, Mueller RS, Olson AM, Prentice C, Tomas F, Yang B, Stachowicz JJ. Predictable Changes in Eelgrass Microbiomes with Increasing Wasting Disease Prevalence across 23° Latitude in the Northeastern Pacific. mSystems 2022; 7:e0022422. [PMID: 35856664 PMCID: PMC9426469 DOI: 10.1128/msystems.00224-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host-pathogen-microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina, is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae. We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass (Zostera marina) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers.
Collapse
Affiliation(s)
- Deanna S. Beatty
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Lillian R. Aoki
- Data Science Initiative, University of Oregon, Eugene, Oregon, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Brendan Rappazzo
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Chelsea Bergman
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Lia K. Domke
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - J. Emmett Duffy
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Katie Dubois
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Carla Gomes
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Olivia J. Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Leah Harper
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Timothy L. Hawthorne
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
| | - Margot Hessing-Lewis
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Hovel
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Zachary L. Monteith
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Angeleen M. Olson
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Carolyn Prentice
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles, Spain
| | - Bo Yang
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
- Department of Urban and Regional Planning, San Jose State University, San Jose, California, USA
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
20
|
Hempel CA, Wright N, Harvie J, Hleap JS, Adamowicz S, Steinke D. Metagenomics versus total RNA sequencing: most accurate data-processing tools, microbial identification accuracy and perspectives for ecological assessments. Nucleic Acids Res 2022; 50:9279-9293. [PMID: 35979944 PMCID: PMC9458450 DOI: 10.1093/nar/gkac689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Metagenomics and total RNA sequencing (total RNA-Seq) have the potential to improve the taxonomic identification of diverse microbial communities, which could allow for the incorporation of microbes into routine ecological assessments. However, these target-PCR-free techniques require more testing and optimization. In this study, we processed metagenomics and total RNA-Seq data from a commercially available microbial mock community using 672 data-processing workflows, identified the most accurate data-processing tools, and compared their microbial identification accuracy at equal and increasing sequencing depths. The accuracy of data-processing tools substantially varied among replicates. Total RNA-Seq was more accurate than metagenomics at equal sequencing depths and even at sequencing depths almost one order of magnitude lower than those of metagenomics. We show that while data-processing tools require further exploration, total RNA-Seq might be a favorable alternative to metagenomics for target-PCR-free taxonomic identifications of microbial communities and might enable a substantial reduction in sequencing costs while maintaining accuracy. This could be particularly an advantage for routine ecological assessments, which require cost-effective yet accurate methods, and might allow for the incorporation of microbes into ecological assessments.
Collapse
Affiliation(s)
- Christopher A Hempel
- To whom correspondence should be addressed. Tel: +1 519 824 4120; Fax: +1 519 824 5703;
| | - Natalie Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia Harvie
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jose S Hleap
- SHARCNET, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah J Adamowicz
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dirk Steinke
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada,Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
21
|
Djemiel C, Dequiedt S, Karimi B, Cottin A, Horrigue W, Bailly A, Boutaleb A, Sadet-Bourgeteau S, Maron PA, Chemidlin Prévost-Bouré N, Ranjard L, Terrat S. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front Microbiol 2022; 13:889788. [PMID: 35847063 PMCID: PMC9280627 DOI: 10.3389/fmicb.2022.889788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Soils are fundamental resources for agricultural production and play an essential role in food security. They represent the keystone of the food value chain because they harbor a large fraction of biodiversity-the backbone of the regulation of ecosystem services and "soil health" maintenance. In the face of the numerous causes of soil degradation such as unsustainable soil management practices, pollution, waste disposal, or the increasing number of extreme weather events, it has become clear that (i) preserving the soil biodiversity is key to food security, and (ii) biodiversity-based solutions for environmental monitoring have to be developed. Within the soil biodiversity reservoir, microbial diversity including Archaea, Bacteria, Fungi and protists is essential for ecosystem functioning and resilience. Microbial communities are also sensitive to various environmental drivers and to management practices; as a result, they are ideal candidates for monitoring soil quality assessment. The emergence of meta-omics approaches based on recent advances in high-throughput sequencing and bioinformatics has remarkably improved our ability to characterize microbial diversity and its potential functions. This revolution has substantially filled the knowledge gap about soil microbial diversity regulation and ecology, but also provided new and robust indicators of agricultural soil quality. We reviewed how meta-omics approaches replaced traditional methods and allowed developing modern microbial indicators of the soil biological quality. Each meta-omics approach is described in its general principles, methodologies, specificities, strengths and drawbacks, and illustrated with concrete applications for soil monitoring. The development of metabarcoding approaches in the last 20 years has led to a collection of microbial indicators that are now operational and available for the farming sector. Our review shows that despite the recent huge advances, some meta-omics approaches (e.g., metatranscriptomics or meta-proteomics) still need developments to be operational for environmental bio-monitoring. As regards prospects, we outline the importance of building up repositories of soil quality indicators. These are essential for objective and robust diagnosis, to help actors and stakeholders improve soil management, with a view to or to contribute to combining the food and environmental quality of next-generation farming systems in the context of the agroecological transition.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Samuel Dequiedt
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Battle Karimi
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Novasol Experts, Dijon, France
| | - Aurélien Cottin
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Walid Horrigue
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Arthur Bailly
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Ali Boutaleb
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sophie Sadet-Bourgeteau
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Lionel Ranjard
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
22
|
McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Front Microbiol 2022; 13:851450. [PMID: 35547145 PMCID: PMC9083327 DOI: 10.3389/fmicb.2022.851450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are ubiquitous and carry an exceptionally broad metabolic capability. Upon environmental perturbation, microbes are also amongst the first natural responsive elements with perturbation-specific cues and markers. These communities are thereby uniquely positioned to inform on the status of environmental conditions. The advent of microbial omics has led to an unprecedented volume of complex microbiological data sets. Importantly, these data sets are rich in biological information with potential for predictive environmental classification and forecasting. However, the patterns in this information are often hidden amongst the inherent complexity of the data. There has been a continued rise in the development and adoption of machine learning (ML) and deep learning architectures for solving research challenges of this sort. Indeed, the interface between molecular microbial ecology and artificial intelligence (AI) appears to show considerable potential for significantly advancing environmental monitoring and management practices through their application. Here, we provide a primer for ML, highlight the notion of retaining biological sample information for supervised ML, discuss workflow considerations, and review the state of the art of the exciting, yet nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in this sphere of research are also addressed to frame a forward-looking perspective toward the realization of what we anticipate will become a pivotal toolkit for addressing environmental monitoring and management challenges in the years ahead.
Collapse
Affiliation(s)
- James M. W. R. McElhinney
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Aurelie Mawart
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jorge Dias
- EECS, Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Castellano-Hinojosa A, Boyd NS, Strauss SL. Impact of fumigants on non-target soil microorganisms: a review. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128149. [PMID: 34999405 DOI: 10.1016/j.jhazmat.2021.128149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Fumigants have been used for decades to control soil-borne pathogens of high-value crops, and increasing evidence indicates they can affect non-target soil microbial communities. Understanding the impacts of these products on soil microorganisms is of critical importance not only for evaluating their environmental safety, but also because soil microbial communities have a central role in soil quality and nutrient cycling, plant growth, and crop production. Thus, we conducted a systematic review and metanalysis study of fumigant impacts on non-target soil microorganisms. In general, we found that fumigation decreases the bacterial diversity and abundance of total bacteria and nitrogen-cycling genes by approximately 10-50% during the first four weeks after application compared to non-treated soils. These decreases appear transient and tend to diminish or disappear after four weeks. Increases in bacterial diversity and abundance can occur after fumigation but are less common. Fumigant application can also alter bacterial community composition during the first six weeks after treatment by significantly increasing and/or decreasing the relative abundance of bacterial taxa involved in key soil functions such as N-cycling and plant-growth promotion. Knowledge gaps and areas where future research efforts should be prioritized to improve our understanding of the impact of organic fumigants on non-target soil microorganisms are discussed.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Southwest Florida Research and Education Center, Department of Soil and Water Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29 N, Immokalee, FL 34142, USA
| | - Nathan S Boyd
- Gulf Coast Research and Education Center, Department of Horticulture, Institute of Food and Agricultural Sciences, University of Florida, 14625 C.R. 672, Wimauma, FL 33598, USA
| | - Sarah L Strauss
- Southwest Florida Research and Education Center, Department of Soil and Water Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29 N, Immokalee, FL 34142, USA.
| |
Collapse
|
24
|
Liu B, Sträuber H, Saraiva J, Harms H, Silva SG, Kasmanas JC, Kleinsteuber S, Nunes da Rocha U. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. MICROBIOME 2022; 10:48. [PMID: 35331330 PMCID: PMC8952268 DOI: 10.1186/s40168-021-01219-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The ability to quantitatively predict ecophysiological functions of microbial communities provides an important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we present the quantitative prediction of medium-chain carboxylate production in two continuous anaerobic bioreactors from 16S rRNA gene dynamics in enriched communities. RESULTS By progressively shortening the hydraulic retention time (HRT) from 8 to 2 days with different temporal schemes in two bioreactors operated for 211 days, we achieved higher productivities and yields of the target products n-caproate and n-caprylate. The datasets generated from each bioreactor were applied independently for training and testing machine learning algorithms using 16S rRNA genes to predict n-caproate and n-caprylate productivities. Our dataset consisted of 14 and 40 samples from HRT of 8 and 2 days, respectively. Because of the size and balance of our dataset, we compared linear regression, support vector machine and random forest regression algorithms using the original and balanced datasets generated using synthetic minority oversampling. Further, we performed cross-validation to estimate model stability. The random forest regression was the best algorithm producing more consistent results with median of error rates below 8%. More than 90% accuracy in the prediction of n-caproate and n-caprylate productivities was achieved. Four inferred bioindicators belonging to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV suggest their relevance to the higher carboxylate productivity at shorter HRT. The recovery of metagenome-assembled genomes of these bioindicators confirmed their genetic potential to perform key steps of medium-chain carboxylate production. CONCLUSIONS Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the communities with desired chain elongation functions. Using machine learning, we demonstrated that 16S rRNA amplicon sequencing data can be used to predict bioreactor process performance quantitatively and accurately. Characterizing and harnessing bioindicators holds promise to manage reactor microbiota towards selection of the target processes. Our mathematical framework is transferrable to other ecosystem processes and microbial systems where community dynamics is linked to key functions. The general methodology used here can be adapted to data types of other functional categories such as genes, transcripts, proteins or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - João Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sandra Godinho Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa, Lisbon, Portugal
| | - Jonas Coelho Kasmanas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
- Department of Computer Science and Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
25
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6523362. [DOI: 10.1093/femsec/fiac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
|
26
|
Rubin RL, Ballantine KA, Hegberg A, Andras JP. Flooding and ecological restoration promote wetland microbial communities and soil functions on former cranberry farmland. PLoS One 2021; 16:e0260933. [PMID: 34919560 PMCID: PMC8683025 DOI: 10.1371/journal.pone.0260933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial communities are early responders to wetland degradation, and instrumental players in the reversal of this degradation. However, our understanding of soil microbial community structure and function throughout wetland development remains incomplete. We conducted a survey across cranberry farms, young retired farms, old retired farms, flooded former farms, ecologically restored former farms, and natural reference wetlands with no history of cranberry farming. We investigated the relationship between the microbial community and soil characteristics that restoration intends to maximize, such as soil organic matter, cation exchange capacity and denitrification potential. Among the five treatments considered, flooded and restored sites had the highest prokaryote and microeukaryote community similarity to natural wetlands. In contrast, young retired sites had similar communities to farms, and old retired sites failed to develop wetland microbial communities or functions. Canonical analysis of principal coordinates revealed that soil variables, in particular potassium base saturation, sodium, and denitrification potential, explained 45% of the variation in prokaryote communities and 44% of the variation in microeukaryote communities, segregating soil samples into two clouds in ordination space: farm, old retired and young retired sites on one side and restored, flooded, and natural sites on the other. Heat trees revealed possible prokaryotic (Gemmatimonadetes) and microeukaryotic (Rhizaria) indicators of wetland development, along with a drop in the dominance of Nucletmycea in restored sites, a class that includes suspected mycorrhizal symbionts of the cranberry crop. Flooded sites showed the strongest evidence of wetland development, with triple the soil organic matter accumulation, double the cation exchange capacity, and seventy times the denitrification potential compared to farms. However, given that flooding does not promote any of the watershed or habitat benefits as ecological restoration, we suggest that flooding can be used to stimulate beneficial microbial communities and soil functions during the restoration waiting period, or when restoration is not an option.
Collapse
Affiliation(s)
- Rachel L. Rubin
- Department of Environmental Studies, Mount Holyoke College, South Hadley, Massachusetts United States of America
| | - Kate A. Ballantine
- Department of Environmental Studies, Mount Holyoke College, South Hadley, Massachusetts United States of America
| | - Arden Hegberg
- Department of Biology, Mount Holyoke College, South Hadley, Massachusetts, United States of America
| | - Jason P. Andras
- Department of Biology, Mount Holyoke College, South Hadley, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Galbraith E, Convertino M. The Eco-Evo Mandala: Simplifying Bacterioplankton Complexity into Ecohealth Signatures. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1471. [PMID: 34828169 PMCID: PMC8625105 DOI: 10.3390/e23111471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
The microbiome emits informative signals of biological organization and environmental pressure that aid ecosystem monitoring and prediction. Are the many signals reducible to a habitat-specific portfolio that characterizes ecosystem health? Does an optimally structured microbiome imply a resilient microbiome? To answer these questions, we applied our novel Eco-Evo Mandala to bacterioplankton data from four habitats within the Great Barrier Reef, to explore how patterns in community structure, function and genetics signal habitat-specific organization and departures from theoretical optimality. The Mandala revealed communities departing from optimality in habitat-specific ways, mostly along structural and functional traits related to bacterioplankton abundance and interaction distributions (reflected by ϵ and λ as power law and exponential distribution parameters), which are not linearly associated with each other. River and reef communities were similar in their relatively low abundance and interaction disorganization (low ϵ and λ) due to their protective structured habitats. On the contrary, lagoon and estuarine inshore reefs appeared the most disorganized due to the ocean temperature and biogeochemical stress. Phylogenetic distances (D) were minimally informative in characterizing bacterioplankton organization. However, dominant populations, such as Proteobacteria, Bacteroidetes, and Cyanobacteria, were largely responsible for community patterns, being generalists with a large functional gene repertoire (high D) that increases resilience. The relative balance of these populations was found to be habitat-specific and likely related to systemic environmental stress. The position on the Mandala along the three fundamental traits, as well as fluctuations in this ecological state, conveys information about the microbiome's health (and likely ecosystem health considering bacteria-based multitrophic dependencies) as divergence from the expected relative optimality. The Eco-Evo Mandala emphasizes how habitat and the microbiome's interaction network topology are first- and second-order factors for ecosystem health evaluation over taxonomic species richness. Unhealthy microbiome communities and unbalanced microbes are identified not by macroecological indicators but by mapping their impact on the collective proportion and distribution of interactions, which regulates the microbiome's ecosystem function.
Collapse
Affiliation(s)
- Elroy Galbraith
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Matteo Convertino
- bluEco Lab, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
28
|
The Future Is Big-and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences. mSystems 2021; 6:e0110621. [PMID: 34726484 PMCID: PMC8562476 DOI: 10.1128/msystems.01106-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coupling remote sensing with microbial omics-based approaches provides a promising new frontier for scientists to scale microbial interactions across space and time. These data-rich, interdisciplinary methods allow us to better understand interactions between microbial communities and their environments and, in turn, their impact on ecosystem structure and function. Here, we highlight current and novel examples of applying remote sensing, machine learning, spatial statistics, and omics data approaches to marine, aquatic, and terrestrial systems. We emphasize the importance of integrating biochemical and spatiotemporal environmental data to move toward a predictive framework of microbiome interactions and their ecosystem-level effects. Finally, we emphasize lessons learned from our collaborative research with recommendations to foster productive and interdisciplinary teamwork.
Collapse
|
29
|
Zhang Q, Zhang Z, Lu T, Yu Y, Penuelas J, Zhu YG, Qian H. Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. MICROBIOME 2021; 9:196. [PMID: 34593032 PMCID: PMC8485531 DOI: 10.1186/s40168-021-01150-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND The ubiquitous gut microbiotas acquired from the environment contribute to host health. The gut microbiotas of soil invertebrates are gradually assembled from the microecological region of the soil ecosystem which they inhabit, but little is known about their characteristics when the hosts are under environmental stress. The rapid development of high-throughput DNA sequencing in the last decade has provided unprecedented insights and opportunities to characterize the gut microbiotas of soil invertebrates. Here, we characterized the core, transient, and rare bacterial taxa in the guts of soil invertebrates using the core index (CI) and developed a new theory of global microbial diversity of soil ecological microregions. RESULTS We found that the Gammaproteobacteria could respond indiscriminately to the exposure to environmental concentrations of soil pollutants and were closely associated with the physiology and function of the host. Meanwhile, machine-learning models based on metadata calculated that Gammaproteobacteria were the core bacteria with the highest colonization potential in the gut, and further identified that they were the best indicator taxon of the response to environmental concentrations of soil pollution. Gammaproteobacteria also closely correlated with the abundance of antibiotic resistance genes. CONCLUSIONS Our results determined that Gammaproteobacteria were an indicator taxon in the guts of the soil invertebrates that responded to environmental concentrations of soil pollutants, thus providing an effective theoretical basis for subsequent assessments of soil ecological risk. The results of the physiological and biochemical analyses of the host and the microbial-community functions, and the antibiotic resistance of Gammaproteobacteria, provide new insights for evaluating global soil ecological health. Video abstract.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Josep Penuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- State Key Lab of Urban and Regional Ecology, Research Center for Ecoenvironmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China.
| |
Collapse
|
30
|
Rebelo A, Mourão J, Freitas AR, Duarte B, Silveira E, Sanchez-Valenzuela A, Almeida A, Baquero F, Coque TM, Peixe L, Antunes P, Novais C. Diversity of metal and antibiotic resistance genes in Enterococcus spp. from the last century reflects multiple pollution and genetic exchange among phyla from overlapping ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147548. [PMID: 34000557 DOI: 10.1016/j.scitotenv.2021.147548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As), mercury (Hg), and copper (Cu) are among the major historical and contemporary metal pollutants linked to global anthropogenic activities. Enterococcus have been considered indicators of fecal pollution and antibiotic resistance for years, but its largely underexplored metallome precludes understanding their role as metal pollution bioindicators as well. Our goal was to determine the occurrence, diversity, and phenotypes associated with known acquired genes/operons conferring tolerance to As, Hg or Cu among Enterococcus and to identify their genetic context (381 field isolates from diverse epidemiological and genetic backgrounds; 3547 enterococcal genomes available in databases representing a time span during 1900-2019). Genes conferring tolerance to As (arsA), Hg (merA) or Cu (tcrB) were used as biomarkers of widespread metal tolerance operons. Different variants of metal tolerance (MeT) genes (13 arsA, 6 merA, 1 tcrB) were more commonly recovered from the food-chain (arsA, tcrB) or humans (merA), and were shared with 49 other bacterial taxa. Comparative genomics analysis revealed that MeT genes occurred in heterogeneous operons, at least since the 1900s, with an increasing accretion of antibiotic resistance genes since the 1960's, reflecting diverse antimicrobial pollution. Multiple MeT genes were co-located on the chromosome or conjugative plasmids flanked by elements with high potential for recombination, often along with antibiotic resistance genes. Phenotypic analysis of some isolates carrying MeT genes revealed up to 128× fold increase in the minimum inhibitory concentrations to metals. The main distribution of functional MeT genes among Enterococcus faecium and Enterococcus faecalis from different sources, time spans, and clonal lineages, and their ability to acquire diverse genes from multiple taxa bacterial communities places these species as good candidates to be used as model organisms in future projects aiming at the identification and quantification of bioindicators of metal polluted environments by anthropogenic activities.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal; Área Técnico-científica de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal; Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Portugal; Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Coimbra, Portugal; Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Antonio Sanchez-Valenzuela
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Fernando Baquero
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
31
|
Kumari K, Naskar M, Aftabuddin M, Das Sarkar S, Ghosh BD, Sarkar UK, Nag SK, Jana C, Das BK. Evaluation of Three Prokaryote Primers for Identification of Prokaryote Community Structure and Their Abode Preference in Three Distinct Wetland Ecosystems. Front Microbiol 2021; 12:643945. [PMID: 34335488 PMCID: PMC8317468 DOI: 10.3389/fmicb.2021.643945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
The ultimate role of prokaryote (bacteria and archaea), the decomposer of the wetland ecosystem, depends on its community structure and its interaction with the environment. The present study has used three universal prokaryote primers to compare prokaryote community structure and diversity of three distinctly different wetlands. The study results revealed that α-diversity indices and phylogenetic differential abundance patterns did not differ significantly among primers, but they did differ significantly across wetlands. Microbial community composition revealed a distinct pattern for each primer in each wetland. Overall comparison of prokaryote communities in sediments of three wetlands revealed the highest prokaryote richness and diversity in Bhomra (freshwater wetland) followed by Malencho (brackish-water wetland) and East Kolkata wetland (EKW) (sewage-fed wetland). Indicator genus analysis identified 21, 4, and 29 unique indicator genera, having preferential abode for Bhomra, EKW, and Malencho, respectively. Prediction of potential roles of these microbes revealed a preference for sulfate-reducing microbes in Malencho and methanogens in Bhomra. The distinct phylogenetic differential abundance pattern, microbial abode preference, and their potential functional role predict ecosystem variables shaping microbial diversity. The variation in community composition of prokaryotes in response to ecosystem variables can serve as the most sensitive bioindicator of wetland ecosystem assessment and management.
Collapse
Affiliation(s)
- Kavita Kumari
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Malay Naskar
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Md Aftabuddin
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Soma Das Sarkar
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Bandana Das Ghosh
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Uttam Kumar Sarkar
- Reservoir and Wetland Fisheries Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Subir Kumar Nag
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Chayna Jana
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| |
Collapse
|
32
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
33
|
Aylagas E, Atalah J, Sánchez-Jerez P, Pearman JK, Casado N, Asensi J, Toledo-Guedes K, Carvalho S. A step towards the validation of bacteria biotic indices using DNA metabarcoding for benthic monitoring. Mol Ecol Resour 2021; 21:1889-1903. [PMID: 33825307 DOI: 10.1111/1755-0998.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Environmental genomics is a promising field for monitoring biodiversity in a timely fashion. Efforts have increasingly been dedicated to the use of bacteria DNA derived data to develop biotic indices for benthic monitoring. However, a substantial debate exists about whether bacteria-derived data using DNA metabarcoding should follow, for example, a taxonomy-based or a taxonomy-free approach to marine bioassessments. Here, we showcase the value of DNA-based monitoring using the impact of fish farming as an example of anthropogenic disturbances in coastal areas and compare the performance of taxonomy-based and taxonomy-free approaches in detecting environmental alterations. We analysed samples collected near to the farm cages and along distance gradients from two aquaculture installations, and at control sites, to evaluate the effect of this activity on bacterial assemblages. Using the putative response of bacterial taxa to stress we calculated the taxonomy-based biotic index microgAMBI. The distribution of individual amplicon sequence variants (ASVs), as a function of a gradient in sediment acid volatile sulphides, was then used to derive a taxonomy-free bacterial biotic index specific for this data set using a de novo approach based on quantile regression splines. Our results show that microgAMBI revealed a organically enriched environment along the gradient. However, the de novo biotic index outperformed microgAMBI by providing a higher discriminatory power in detecting changes in abiotic factors directly related to fish production, whilst allowing the identification of new ASVs bioindicators. The de novo strategy applied here represents a robust method to define new bioindicators in regions or habitats where no previous information about the response of bacteria to environmental stressors exists.
Collapse
Affiliation(s)
- Eva Aylagas
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Javier Atalah
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Pablo Sánchez-Jerez
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Nuria Casado
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - Jorge Asensi
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - Kilian Toledo-Guedes
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - Susana Carvalho
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
34
|
Sperlea T, Kreuder N, Beisser D, Hattab G, Boenigk J, Heider D. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework. Mol Ecol 2021; 30:2131-2144. [PMID: 33682183 DOI: 10.1111/mec.15872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
It is known that microorganisms are essential for the functioning of ecosystems, but the extent to which microorganisms respond to different environmental variables in their natural habitats is not clear. In the current study, we present a methodological framework to quantify the covariation of the microbial community of a habitat and environmental variables of this habitat. It is built on theoretical considerations of systems ecology, makes use of state-of-the-art machine learning techniques and can be used to identify bioindicators. We apply the framework to a data set containing operational taxonomic units (OTUs) as well as more than twenty physicochemical and geographic variables measured in a large-scale survey of European lakes. While a large part of variation (up to 61%) in many environmental variables can be explained by microbial community composition, some variables do not show significant covariation with the microbial lake community. Moreover, we have identified OTUs that act as "multitask" bioindicators, i.e., that are indicative for multiple environmental variables, and thus could be candidates for lake water monitoring schemes. Our results represent, for the first time, a quantification of the covariation of the lake microbiome and a wide array of environmental variables for lake ecosystems. Building on the results and methodology presented here, it will be possible to identify microbial taxa and processes that are essential for functioning and stability of lake ecosystems.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Nico Kreuder
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Georges Hattab
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Jens Boenigk
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| |
Collapse
|
35
|
Wang W, Li J, Ye Z, Wang J, Qu L, Zhang T. Spatial factors and plant attributes influence soil fungal community distribution patterns in the lower reaches of the Heihe River Basin, Northwest China. Environ Microbiol 2021; 23:2499-2508. [PMID: 33728751 DOI: 10.1111/1462-2920.15466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Inland river basins include critical habitats and provide various ecosystem services in extremely arid lands. However, we know little about the distribution patterns of soil fungal communities in these river basins. We investigated the distribution patterns of soil fungal communities from the riparian oasis zone (ROZ) to the circumjacent desert zone (CDZ) at the lower reaches of the Heihe River. The results indicated that soil fungal communities were mainly dominated by the phyla Ascomycota and Basidiomycota across all samples. The dominant soil fungi taxa were significantly different between ROZ and CDZ habitats at both the phylum and genus levels. Fungal alpha diversity was mainly affected by spatial factors and plant functional traits, and Pearson correlation analysis revealed that fungal alpha diversity was more closely related to plant functional traits than soil properties. Furthermore, fungal community structure was best explained by spatial factors and plant attributes (including plant diversity and plant functional traits). Together, our findings provide new insights into the significance of spatial factors and plant attributes for predicting distributions of fungal communities in arid inland river basins, which will help us better understand the functions and services of these ecosystems.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Ye
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tianhan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
36
|
Marie B. Disentangling of the ecotoxicological signal using "omics" analyses, a lesson from the survey of the impact of cyanobacterial proliferations on fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139701. [PMID: 32497891 DOI: 10.1016/j.scitotenv.2020.139701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Omics technologies offer unprecedented perspectives for the rational investigation of complex biological systems. Indeed, omics present the ability of offering an extensive perception of the biochemistry and physiology of the cell and of any perturbing consequences of contaminants through the joint investigation of thousands of molecular responses simultaneously; then it has recently conducted to a fervent attention by research ecotoxicologists. Beyond the presentation of latest advances, exemplified here by omics investigation of cyanobacterial deleterious effects on various fishes (at various experimental and biological scales and with various analytical tools and pipeline), the present review paper re-explores the promising perspectives and also the pitfalls of such holistic investigations of the ecotoxicological response of organisms for environmental assessment.
Collapse
Affiliation(s)
- Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS, MNHN Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon, CP 39, 75231 Paris Cedex 05, France.
| |
Collapse
|
37
|
Reis MP, Suhadolnik MLS, Dias MF, Ávila MP, Motta AM, Barbosa FAR, Nascimento AMA. Characterizing a riverine microbiome impacted by extreme disturbance caused by a mining sludge tsunami. CHEMOSPHERE 2020; 253:126584. [PMID: 32278186 DOI: 10.1016/j.chemosphere.2020.126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Studies on disturbance events in riverine systems caused by environmental disasters and their effects on microbial diversity are scarce. Here, we evaluated the impact of the collapse of an iron ore dam holding approximately 50 million cubic meters of waste on both water and sediment microbiomes by deeply sequencing the 16S rRNA gene. Samples were taken from two impacted rivers and one reference river 7, 30 and 150 days postdisturbance. The impacted community structure changed greatly over spatiotemporal scales, being less diverse and more uneven, particularly on day 7 for the do Carmo River (the closest to the dam). However, the reference community structure remained similar between sampling events. Moreover, the impacted sediments were positively correlated with metals. The taxa abundance varied greatly over spatiotemporal scales, allowing for the identification of several potential bioindicators, e.g., Comamonadaceae, Novosphingobium, Sediminibacterium and Bacteriovorax. Our results showed that the impacted communities consisted mostly of Fe(II) oxidizers and Fe(III) reducers, aromatic compound degraders and predator bacteria. Network analysis showed a highly interconnected microbiome whose interactions switched from positive to negative or vice versa between the impacted and reference communities. This work revealed potential molecular signatures associated with the rivers heavily impacted by metals that might be useful sentinels for predicting riverine health.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Luíza S Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcela F Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Ávila
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda M Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco A R Barbosa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
38
|
Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G. Using soil bacterial communities to predict physico-chemical variables and soil quality. MICROBIOME 2020; 8:79. [PMID: 32487269 PMCID: PMC7268603 DOI: 10.1186/s40168-020-00858-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Soil ecosystems consist of complex interactions between biological communities and physico-chemical variables, all of which contribute to the overall quality of soils. Despite this, changes in bacterial communities are ignored by most soil monitoring programs, which are crucial to ensure the sustainability of land management practices. We applied 16S rRNA gene sequencing to determine the bacterial community composition of over 3000 soil samples from 606 sites in New Zealand. Sites were classified as indigenous forests, exotic forest plantations, horticulture, or pastoral grasslands; soil physico-chemical variables related to soil quality were also collected. The composition of soil bacterial communities was then used to predict the land use and soil physico-chemical variables of each site. RESULTS Soil bacterial community composition was strongly linked to land use, to the extent where it could correctly determine the type of land use with 85% accuracy. Despite the inherent variation introduced by sampling across ~ 1300 km distance gradient, the bacterial communities could also be used to differentiate sites grouped by key physico-chemical properties with up to 83% accuracy. Further, individual soil variables such as soil pH, nutrient concentrations and bulk density could be predicted; the correlations between predicted and true values ranged from weak (R2 value = 0.35) to strong (R2 value = 0.79). These predictions were accurate enough to allow bacterial communities to assign the correct soil quality scores with 50-95% accuracy. CONCLUSIONS The inclusion of biological information when monitoring soil quality is crucial if we wish to gain a better, more accurate understanding of how land management impacts the soil ecosystem. We have shown that soil bacterial communities can provide biologically relevant insights on the impacts of land use on soil ecosystems. Furthermore, their ability to indicate changes in individual soil parameters shows that analysing bacterial DNA data can be used to screen soil quality. Video Abstract.
Collapse
Affiliation(s)
- Syrie M Hermans
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland, 1010, New Zealand
| | - Bradley S Case
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland, 1010, New Zealand
| | - Fiona Curran-Cournane
- Ministry for the Environment - Manatū Mō Te Taiao, 45 Queen Street, Auckland, 1010, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 401 Grey Street, Hamilton, 3216, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand.
| |
Collapse
|
39
|
Case BS, Pannell JL, Stanley MC, Norton DA, Brugman A, Funaki M, Mathieu C, Songling C, Suryaningrum F, Buckley HL. The roles of non‐production vegetation in agroecosystems: A research framework for filling process knowledge gaps in a social‐ecological context. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Bradley S. Case
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Jennifer L. Pannell
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Margaret C. Stanley
- Te Kura Mātauranga Koiora - School of Biological Sciences University of Auckland Auckland New Zealand
| | - David A. Norton
- Te Kura Ngahere - School of Forestry University of Canterbury Christchurch New Zealand
| | - Anoek Brugman
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Matt Funaki
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Chloé Mathieu
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Cao Songling
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
- College of Life Science Neijiang Normal University Neijiang China
| | - Febyana Suryaningrum
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| | - Hannah L. Buckley
- Te Kura Pūtaiao - School of Science Auckland University of Technology Auckland New Zealand
| |
Collapse
|
40
|
Hagy Iii JD, Houghton KA, Beddick DL, James JB, Friedman SD, Devereux R. Quantifying stream periphyton assemblage responses to nutrient amendments with a molecular approach. FRESHWATER SCIENCE (PRINT) 2020; 39:292-308. [PMID: 35498625 PMCID: PMC9044509 DOI: 10.1086/708935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nutrient (nitrogen [N] and phosphorus [P]) pollution is a pervasive water quality issue in the USA for small streams and rivers. The effect of nutrients on the biotic condition of streams is often evaluated with biological indicators such as macroinvertebrate assemblages or periphyton assemblages, particularly diatoms. Molecular approaches facilitate the use of periphyton assemblages as bioindicators because periphyton is diverse and its composition as a whole, rather than just diatoms, soft-bodied algae, or any single group, may convey additional information about responses to nutrients. To further develop the concept that a taxonomically-broad evaluation of periphyton assemblages could be useful for developing stream bioindicators, we examined microbial assemblage composition with both 16S and 18S rRNA genes, enabling us to evaluate composition in 3 domains. We measured otherwise unknown nutrient responses of different periphyton groups in situ with experiments that used glass fiber filters to allow diffusion of amended nutrients into a stream. We deployed these experimental setups in 2 streams that differ in the extent of agricultural land-use in their catchments in the southeastern USA. Experiments consisted of controls, N amendments, P amendments, and both N and P amendments. Periphyton assemblages that grew on the filters differed significantly by stream, date or season, and nutrient treatment. Assemblage differences across treatments were more consistent among Bacteria and Archaea than among eukaryotes. Effects of nutrient amendments were more pronounced in the stream with less agricultural land use and, therefore, lower nutrient loading than in the stream with more agricultural land use and higher nutrient loading. Combined N and P amendments decreased species richness and evenness for Bacteria and Archaea by ∼36 and ∼9%, respectively, compared with controls. Indicator species analysis revealed that specific clades varied in their response to treatments. Indicators based on the responses of these indicator clades were related to nutrient treatments across sites and seasons. Analyses that included all the taxa in a domain did not resolve differences in responses to N vs P. Instead, better resolution was achieved with an analysis focused on diatoms, which responded more strongly to P than N. Overall, our results showed that in situ nutrient-diffusing substrate experiments are a useful approach for describing assemblage responses to nutrients in streams. This type of molecular approach may be useful to environmental agencies and stakeholders responsible for assessing and managing stream water quality and biotic condition.
Collapse
Affiliation(s)
- James D Hagy Iii
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
| | - Katelyn A Houghton
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
- Present address: Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329 USA,
| | - David L Beddick
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
| | - Joseph B James
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
| | - Stephanie D Friedman
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
| | - Richard Devereux
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Environmental Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, Florida 32561 USA
| |
Collapse
|
41
|
Jiao S, Lu Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol 2019; 22:1052-1065. [DOI: 10.1111/1462-2920.14815] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Shuo Jiao
- College of Urban and Environmental SciencesPeking University Beijing 100871 P. R. China
| | - Yahai Lu
- College of Urban and Environmental SciencesPeking University Beijing 100871 P. R. China
| |
Collapse
|