1
|
Achleitner L, Winter M, Aguilar PP, Lingg N, Jungbauer A, Klausberger M, Satzer P. Robust and resource-efficient production process suitable for large-scale production of baculovirus through high cell density seed train and optimized infection strategy. N Biotechnol 2024; 80:46-55. [PMID: 38302001 DOI: 10.1016/j.nbt.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The aim of this study was the development of a scalable production process for high titer (108 pfu/mL and above) recombinant baculovirus stocks with low cell line-derived impurities for the production of virus-like particles (VLP). To achieve this, we developed a high cell density (HCD) culture for low footprint cell proliferation, compared different infection strategies at multiplicity of infection (MOI) 0.05 and 0.005, different infection strategies and validated generally applicable harvest criteria of cell viability ≤ 80%. We also investigated online measurable parameters to observe the baculovirus production. The infection strategy employing a very low virus inoculum of MOI 0.005 and a 1:2 dilution with fresh medium one day after infection proved to be the most resource efficient. There, we achieved higher cell-specific titers and lower host cell protein concentrations at harvest than other tested infection strategies with the same MOI, while saving half of the virus stock for infecting the culture compared to other tested infection strategies. HCD culture by daily medium exchange was confirmed as suitable for seed train propagation, infection, and baculovirus production, equally efficient as the conventionally propagated seed train. Online measurable parameters for cell concentration and average cell diameter were found to be effective in monitoring the production process. The study concluded that a more efficient VLP production process in large scale can be achieved using this virus stock production strategy, which could also be extended to produce other proteins or extracellular vesicles with the baculovirus expression system.
Collapse
Affiliation(s)
- Lena Achleitner
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Martina Winter
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Nico Lingg
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Miriam Klausberger
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Peter Satzer
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Puente-Massaguer E, Gòdia F. Recombinant Protein Production in Suspension Mammalian Cells Using the BacMam Baculovirus Expression System. Methods Mol Biol 2024; 2829:329-339. [PMID: 38951347 DOI: 10.1007/978-1-0716-3961-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Francesc Gòdia
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Lavado-García J, Pérez-Rubio P, Cervera L, Gòdia F. The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnol Adv 2022; 60:108017. [PMID: 35809763 DOI: 10.1016/j.biotechadv.2022.108017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Sullivan E, Sung PY, Wu W, Berry N, Kempster S, Ferguson D, Almond N, Jones IM, Roy P. SARS-CoV-2 Virus-like Particles Produced by a Single Recombinant Baculovirus Generate Anti-S Antibody and Protect against Variant Challenge. Viruses 2022; 14:914. [PMID: 35632656 PMCID: PMC9143203 DOI: 10.3390/v14050914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has highlighted the need for the rapid generation of efficient vaccines for emerging disease. Virus-like particles, VLPs, are an established vaccine technology that produces virus-like mimics, based on expression of the structural proteins of a target virus. SARS-CoV-2 is a coronavirus where the basis of VLP formation has been shown to be the co-expression of the spike, membrane and envelope structural proteins. Here we describe the generation of SARS-CoV-2 VLPs by the co-expression of the salient structural proteins in insect cells using the established baculovirus expression system. VLPs were heterologous ~100 nm diameter enveloped particles with a distinct fringe that reacted strongly with SARS-CoV-2 convalescent sera. In a Syrian hamster challenge model, non-adjuvanted VLPs induced neutralizing antibodies to the VLP-associated Wuhan S protein and reduced virus shedding and protected against disease associated weight loss following a virulent challenge with SARS-CoV-2 (B.1.1.7 variant). Immunized animals showed reduced lung pathology and lower challenge virus replication than the non-immunized controls. Our data suggest SARS-CoV-2 VLPs offer an efficient vaccine that mitigates against virus load and prevents severe disease.
Collapse
Affiliation(s)
- Edward Sullivan
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Po-Yu Sung
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Weining Wu
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| |
Collapse
|
5
|
Transduction of HEK293 Cells with BacMam Baculovirus Is an Efficient System for the Production of HIV-1 Virus-like Particles. Viruses 2022; 14:v14030636. [PMID: 35337043 PMCID: PMC8954388 DOI: 10.3390/v14030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100–200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.
Collapse
|
6
|
González-Domínguez I, Puente-Massaguer E, Lavado-García J, Cervera L, Gòdia F. Micrometric DNA/PEI polyplexes correlate with higher transient gene expression yields in HEK 293 cells. N Biotechnol 2022; 68:87-96. [DOI: 10.1016/j.nbt.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022]
|
7
|
Lavado-García J, Jorge I, Boix-Besora A, Vázquez J, Gòdia F, Cervera L. Characterization of HIV-1 virus-like particles and determination of Gag stoichiometry for different production platforms. Biotechnol Bioeng 2021; 118:2660-2675. [PMID: 33844274 DOI: 10.1002/bit.27786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022]
Abstract
The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Arnau Boix-Besora
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
8
|
Puente-Massaguer E, Grau-Garcia P, Strobl F, Grabherr R, Striedner G, Lecina M, Gòdia F. Accelerating HIV-1 VLP production using stable High Five insect cell pools. Biotechnol J 2020; 16:e2000391. [PMID: 33247883 DOI: 10.1002/biot.202000391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Stable cell pools are receiving a renewed interest as a potential alternative system to clonal cell lines. The shorter development timelines and the capacity to achieve high product yields make them an interesting approach for recombinant protein production. In this study, stable High Five cell pools are assessed for the production of a simple protein, mCherry, and the more complex HIV-1 Gag-eGFP virus-like particles (VLPs). Random integration coupled to fluorescence-activated cell sorting (FACS) in suspension conditions is applied to accelerate the stable cell pool generation process and enrich it with high producer cells. This methodology is successfully transferred to a bioreactor for VLP production, resulting in a 2-fold increase in VLP yields with respect to shake flask cultures. In these conditions, maximum viable cell concentration improves by 1.5-fold, and by-product formation is significantly reduced. Remarkably, a global increase in the uptake of amino acids in the Gag-eGFP stable cell pool is observed when compared with parental High Five cells, reflecting the additional metabolic burden associated with VLP production. These results suggest that stable High Five cell pools are a robust and powerful approach to produce VLPs and other recombinant proteins, and put the basis for future studies aiming to scale up this system.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Paula Grau-Garcia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Florian Strobl
- Austrian Centre of Industrial Biotechnology (acib GmbH), Vienna, 1010, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, 08017, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
9
|
Development of a non-viral platform for rapid virus-like particle production in Sf9 cells. J Biotechnol 2020; 322:43-53. [DOI: 10.1016/j.jbiotec.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/31/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022]
|
10
|
PEI-Mediated Transient Transfection of High Five Cells at Bioreactor Scale for HIV-1 VLP Production. NANOMATERIALS 2020; 10:nano10081580. [PMID: 32806511 PMCID: PMC7466501 DOI: 10.3390/nano10081580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
High Five cells are an excellent host for the production of virus-like particles (VLPs) with the baculovirus expression vector system (BEVS). However, the concurrent production of high titers of baculovirus hinder the purification of these nanoparticles due to similarities in their physicochemical properties. In this study, first a transient gene expression (TGE) method based on the transfection reagent polyethylenimine (PEI) is optimized for the production of HIV-1 VLPs at shake flask level. Furthermore, VLP production by TGE in High Five cells is successfully demonstrated at bioreactor scale, resulting in a higher maximum viable cell concentration (5.1 × 106 cell/mL), the same transfection efficiency and a 1.8-fold increase in Gag-eGFP VLP production compared to shake flasks. Metabolism analysis of High Five cells indicates a reduction in the consumption of the main metabolites with respect to non-transfected cell cultures, and an increase in the uptake rate of several amino acids when asparagine is depleted. Quality assessment by nanoparticle tracking analysis and flow virometry of the VLPs produced shows an average size of 100–200 nm, in agreement with immature HIV-1 viruses reported in the literature. Overall, this work demonstrates that the High Five/TGE system is a suitable approach for the production of VLP-based vaccine candidates and other recombinant proteins.
Collapse
|
11
|
Puente-Massaguer E, Saccardo P, Ferrer-Miralles N, Lecina M, Gòdia F. Coupling Microscopy and Flow Cytometry for a Comprehensive Characterization of Nanoparticle Production in Insect Cells. Cytometry A 2020; 97:921-932. [PMID: 32515126 DOI: 10.1002/cyto.a.24033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Advancements in the field of characterization techniques have broadened the opportunities to deepen into nanoparticle production bioprocesses. Gag-based virus-like particles (VLPs) have shown their potential as candidates for recombinant vaccine development. However, comprehensive characterization of the production process is still a requirement to meet the desired critical quality attributes. In this work, the production process of Gag VLPs by baculovirus (BV) infection in the reference High Five and Sf9 insect cell lines is characterized in detail. To this end, the Gag polyprotein was fused in frame to the enhanced green fluorescent protein (eGFP) to favor process evaluation with multiple analytical tools. Tracking of the infection process using confocal microscopy and flow cytometry revealed a pronounced increase in the complexity of High Five over Sf9 cells. Cryogenic transmission electron microscopy (cryo-TEM) characterization determined that changes in cell complexity could be attributed to the presence of occlusion-derived BV in High Five cells, whereas Sf9 cells evidenced a larger proportion of the budded virus phenotype (23-fold). Initial evaluation of the VLP production process using spectrofluorometry showed that higher levels of the Gag-eGFP polyprotein were obtained in High Five cells (3.6-fold). However, comparative analysis based on nanoparticle quantification by flow virometry and nanoparticle tracking analysis (NTA) proved that Sf9 cells were 1.7- and 1.5-fold more productive in terms of assembled VLPs, respectively. Finally, analytical ultracentrifugation coupled to flow virometry evidenced a larger sedimentation coefficient of High Five-derived VLPs, indicating a possible interaction with other cellular compounds. Taken together, these results highlight the combined use of microscopy and flow cytometry techniques to improve vaccine development processes using the insect cell/BV expression vector system. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Paolo Saccardo
- Plataforma de Producción de Proteínas, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Plataforma de Producción de Proteínas, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
12
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: From VLP budding to nanoparticle analysis. Biotechnol Bioeng 2020; 117:1929-1945. [PMID: 32242921 DOI: 10.1002/bit.27345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Eduard Puente-Massaguer
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
13
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quality Assessment of Virus-Like Particles at Single Particle Level: A Comparative Study. Viruses 2020; 12:E223. [PMID: 32079288 PMCID: PMC7077327 DOI: 10.3390/v12020223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.
Collapse
|