1
|
Penaud V, Alahmad A, De Vrieze M, Bouteiller M, Eude M, Bernardon-Mery A, Trinsoutrot-Gattin I, Laval K, Gauthier A. In vitro biocontrol potential of plant extract-based formulation against infection structures of Phytophthora infestans along with lower non-target effects. Front Microbiol 2025; 16:1569281. [PMID: 40297289 PMCID: PMC12034721 DOI: 10.3389/fmicb.2025.1569281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Late blight, caused by Phytophthora infestans, is among the most destructive diseases affecting tomatoes and potatoes. The use of synthetic fungicides is becoming increasingly restricted due to the banning of several active ingredients for environmental and health reasons. Moreover, the rise of fungicide-resistant strains is compromising their effectiveness. Solutions for sustainable crop protection are thus urgently needed. Biocontrol products based on plant extracts appear to be a promising solution. This study aimed to evaluate in vitro inhibitory potential of a plant extract-based biocontrol product on the different stages of P. infestans lifecycle, including mycelial development and, formation and germination of infection structures (sporangia and zoospores). Non-target effects were also assessed using four fungi, three of which were isolated from the phyllosphere, and two ubiquitous bacteria. For this purpose, the formulated product (FV) and the plant extract at different concentrations (PE and CPE) were tested through bioassays. The results show that the mycelial growth of Phytophthora infestans was completely inhibited by the FV and less affected by the CPE. Infection structures were more sensitive to PE than mycelia, although FV was consistently the most effective inhibitor. Interestingly, at non-inhibitory doses, zoospore germination exhibited disturbances, such as an increase in abnormal germination phenotypes. Overall, PE showed significant inhibitory potential against the oomycete. FV exhibited a strong impact on mycelium, sporangia, and zoospores at very low concentrations (0.01-0.05%), suggesting an optimized inhibitory effect of PE. Non-target effects of FV on fungal and bacterial growth were observed only at concentrations substantially higher than those required to inhibit P. infestans in vitro. This study highlights the strong efficacy of the plant extract-based biocontrol product against the target oomycete, with minimal impact on non-target microorganisms. These findings support its potential as a promising anti-Phytophthora agent within integrated late blight management strategies.
Collapse
Affiliation(s)
- Valentin Penaud
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
- Biom InnoV, Saint-Malo, France
- Gaïago SAS, Saint-Malo, France
| | | | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Plant Production Systems, Agroscope, Nyon, Switzerland
| | | | - Miléna Eude
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | | | | | - Karine Laval
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | - Adrien Gauthier
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Liang Z, Ali Q, Wu H, Gu Q, Liu X, Sun H, Gao X. Biocontrol Mechanism of Bacillus thuringiensis GBAC46 Against Diseases and Pests Caused by Fusarium verticillioides and Spodoptera frugiperda. Biomolecules 2025; 15:519. [PMID: 40305259 PMCID: PMC12025000 DOI: 10.3390/biom15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Bacillus thuringiensis (Bt) is widely recognized as the most important microbial pesticide controlling various insect pests and diseases due to its insecticidal crystal proteins (ICPs) and antimicrobial metabolites. The current study investigates the biocontrol potential of B. thuringiensis GBAC46 against the fungal pathogen Fusarium verticillioides and the insect pest Spodoptera frugiperda through multiple mechanisms. Phenotypic experiments revealed that GBAC46 effectively inhibited F. verticillioides growth by inducing reactive oxygen species (ROS) accumulation and showed enhanced larvicidal activity against second instar S. frugiperda larvae. Pot experiments showed that feeding by S. frugiperda enhanced F. verticillioides infection in maize. The Bt strain GBAC46 effectively controlled both pests and diseases in greenhouse maize seedlings. Applying the Bt strain GBAC46 reduced feeding damage from S. frugiperda, decreased leaf yellowing and wilting caused by F. verticillioides, and improved growth indicators such as plant height, fresh weight, and dry weight. RT-qPCR results revealed that the Bt strain GBAC46 induced key defense genes in maize involved in activating salicylic acid, jasmonic acid, and ethylene pathways. The overall study demonstrated and confirmed the GBAC46 strain as a promising microbial agent for disease and pest management.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Ministry of Agriculture, Xuzhou 221131, China;
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Huijun Wu
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Gu
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Ministry of Agriculture, Xuzhou 221131, China;
| | - Xuewen Gao
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zhu Z, Liu S, Liu Y, Zhang X, Shi Z, Liu S, Zhu Z, Dong P. The Induction of Disease Resistance by Scopolamine and the Application of Datura Extract Against Potato ( Solanum tuberosum L.) Late Blight. Int J Mol Sci 2024; 25:13442. [PMID: 39769210 PMCID: PMC11676833 DOI: 10.3390/ijms252413442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Late blight, caused by Phytophthora infestans, is a devastating disease of potato. Our previous work illustrated that scopolamine, the main bioactive substance of Datura extract, exerts direct inhibitory effects on P. infestans, but it is unclear whether scopolamine and Datura extract can boost resistance to late blight in potato. In this study, P. infestans is used to infect scopolamine-treated potato pieces and leaves, as well as whole potatoes. We found that scopolamine-treated potato is resistant to P. infestans both in vitro and in vivo. The treatment of 4.5 g/L scopolamine reduces the lesion size of whole potato to 54% compared with the control after 20 d of the infection of P. infestans. The disease-resistant substance detection based on the kit method shows that scopolamine triggers the upregulation of polyphenoloxidase, peroxidase, superoxide dismutase activities, and H2O2 contents in potato tubers, and the decline of phenylalanine ammonia lyase and catalase activity. A total of 1682 significantly differentially expressed genes were detected with or without scopolamine treatment through high-throughput transcriptome sequencing and the DESeq2 software (version 1.24.0), including 705 upregulated and 977 downregulated genes. Scopolamine may affect the genes functioning in the cell wall, membrane and the plant-pathogen interaction. The addition of Datura extract could directly inhibit the mycelial growth of P. infestans on rye plate medium. In addition, P. infestans was found to be resistant to late blight in potato pieces treated with Datura extract. Datura extract can also be utilized in combination with the chemical fungicide Infinito in field experiments to lessen late blight symptoms and enhance potato yield. To our knowledge, this is the first study to detect the induction of disease resistance by scopolamine, and it also explores the feasibility of Datura extract in potato disease resistance.
Collapse
Affiliation(s)
- Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
| | - Shicheng Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
| | - Yi Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
| | - Xinze Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
| | - Zhiwen Shi
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shuting Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Z.Z.); (S.L.); (Y.L.); (X.Z.); (Z.S.); (S.L.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
5
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
6
|
Meng XJ, Wang LQ, Ma BG, Wei XH, Zhou Y, Sun ZX, Li YY. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2024; 15:1360173. [PMID: 38751839 PMCID: PMC11094357 DOI: 10.3389/fpls.2024.1360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiang-jia Meng
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Lan-qin Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bai-ge Ma
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Xi-hong Wei
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Zheng-xiang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Yan-yan Li
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
7
|
Walaszczyk A, Jasińska A, Bernat P, Różalska S, Sas-Paszt L, Lisek A, Paraszkiewicz K. The Combined Effects of Azoxystrobin and the Biosurfactant-Producing Bacillus sp. Kol B3 against the Phytopathogenic Fungus Fusarium sambucinum IM 6525. Int J Mol Sci 2024; 25:4175. [PMID: 38673760 PMCID: PMC11049953 DOI: 10.3390/ijms25084175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to evaluate how the combined presence of the synthetic fungicide azoxystrobin (AZ) and the biosurfactant-producing Bacillus sp. Kol B3 influences the growth of the phytopathogenic fungus Fusarium sambucinum IM 6525. The results showed a noticeable increase in antifungal effectiveness when biotic and abiotic agents were combined. This effect manifested across diverse parameters, including fungal growth inhibition, changes in hyphae morphology, fungal membrane permeability and levels of intracellular reactive oxygen species (ROS). In response to the presence of Fusarium and AZ in the culture, the bacteria changed the proportions of biosurfactants (surfactin and iturin) produced. The presence of both AZ and/or Fusarium resulted in an increase in iturin biosynthesis. Only in 72 h old bacterial-fungal co-culture a 20% removal of AZ was noted. In the fungal cultures (with and without the addition of the bacteria), the presence of an AZ metabolite named azoxystrobin free acid was detected in the 48th and 72nd hours of the process. The possible involvement of increased iturin and ROS content in antifungal activity of Bacillus sp. and AZ when used together are also discussed. Biosurfactants were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Microscopy techniques and biochemical assays were also used.
Collapse
Affiliation(s)
- Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-136 Lodz, Poland;
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Lidia Sas-Paszt
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Anna Lisek
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| |
Collapse
|
8
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
9
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|
10
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Dai MM, Liu R, Jiang H, Zhang XP, Song WW, Zhang J, Liang C, Zhao HH, Shi QQ. Volatile Organic Compounds of Bacillus pumilus Strain S1-10 Exhibit Fumigant Activity Against Meloidogyne incognita. PLANT DISEASE 2023; 107:3057-3063. [PMID: 36916837 DOI: 10.1094/pdis-10-22-2391-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (RKNs) are highly specialized parasites that cause significant yield losses worldwide. In this study, we isolated Bacillus pumilus strain S1-10 from the rhizosphere soil of Zingiber officinale Rosc. plants and evaluated its fumigant activity against Meloidogyne incognita. S1-10 exhibited a strong repellent effect on second-stage juveniles (J2s) of M. incognita, and in vitro assays indicated that S1-10 volatile organic compounds (VOCs) suppressed J2 activity and egg hatching. Under greenhouse conditions, 71 and 79% reductions of nematodes and eggs were detected on plants treated with S-10 VOCs compared with controls. Ten VOCs were identified through gas chromatography and mass spectrometry (GC-MS), of which 2-(methylamino)-ethanol (2-ME) had strong fumigant activity against J2s of M. incognita, with an LC50 value of 1.5 mM at 12 h. These results indicate that S1-10 represents a potential novel biocontrol agent for RKNs.
Collapse
Affiliation(s)
- Ming-Ming Dai
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiao-Ping Zhang
- School of Medical Science, Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Wen-Wen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Jie Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Hong-Hai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| | - Qian-Qian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Shandong 257347, China
| |
Collapse
|
12
|
Zhu Z, Xiong Z, Zou W, Shi Z, Li S, Zhang X, Liu S, Liu Y, Luo X, Ren J, Zhu Z, Dong P. Anti-oomycete ability of scopolamine against Phytophthora infestans, a terrible pathogen of potato late blight. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6416-6428. [PMID: 37209269 DOI: 10.1002/jsfa.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phytophthora infestans causes late blight, threatening potato production. The tropane alkaloid scopolamine from some industrial plants (Datura, Atropa, etc.) has a broad-spectrum bacteriostatic effect, but its effect on P. infestans is unknown. RESULTS In the present study, scopolamine inhibited the mycelial growth of phytopathogenic oomycete P. infestans, and the half-maximal inhibitory concentration (IC50 ) was 4.25 g L-1 . The sporangia germination rates were 61.43%, 16.16%, and 3.99% at concentrations of zero (control), 0.5 IC50 , and IC50 , respectively. The sporangia viability of P. infestans was significantly reduced after scopolamine treatment through propidium iodide and fluorescein diacetate staining, speculating that scopolamine destroyed cell membrane integrity. The detached potato tuber experiment demonstrated that scopolamine lessened the pathogenicity of P. infestans in potato tubers. Under stress conditions, scopolamine showed good inhibition of P. infestans, indicating that scopolamine could be used in multiple adverse conditions. The combination effect of scopolamine and the chemical pesticide Infinito on P. infestans was more effective than the use of scopolamine or Infinito alone. Moreover, transcriptome analysis suggested that scopolamine leaded to a downregulation of most P. infestans genes, functioning in cell growth, cell metabolism, and pathogenicity. CONCLUSION To our knowledge, this is the first study to detect scopolamine inhibitory activity against P. infestans. Also, our findings highlight the potential of scopolamine as an eco-friendly option for controlling late blight in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Ziwen Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Wenjin Zou
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Zhiwen Shi
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Shanying Li
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Xinze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shicheng Liu
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Yi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xunguang Luo
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| |
Collapse
|
13
|
Dobrzyński J, Jakubowska Z, Kulkova I, Kowalczyk P, Kramkowski K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Front Microbiol 2023; 14:1194606. [PMID: 37560520 PMCID: PMC10407110 DOI: 10.3389/fmicb.2023.1194606] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Plant growth-promoting bacteria are one of the most interesting methods of controlling fungal phytopathogens. These bacteria can participate in biocontrol via a variety of mechanisms including lipopeptide production, hydrolytic enzymes (e.g., chitinase, cellulases, glucanase) production, microbial volatile organic compounds (mVOCs) production, and induced systemic resistance (ISR) triggering. Among the bacterial genera most frequently studied in this aspect are Bacillus spp. including Bacillus pumilus. Due to the range of biocontrol traits, B. pumilus is one of the most interesting members of Bacillus spp. that can be used in the biocontrol of fungal phytopathogens. So far, a number of B. pumilus strains that exhibit biocontrol properties against fungal phytopathogens have been described, e.g., B. pumilus HR10, PTB180, B. pumilus SS-10.7, B. pumilus MCB-7, B. pumilus INR7, B. pumilus SE52, SE34, SE49, B. pumilus RST25, B. pumilus JK-SX001, and B. pumilus KUDC1732. B. pumilus strains are capable of suppressing phytopathogens such as Arthrobotrys conoides, Fusarium solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Rhizoctonia solani, and Fagopyrum esculentum. Importantly, B. pumilus can promote plant growth regardless of whether it alters the native microbiota or not. However, in order to increase its efficacy, research is still needed to clarify the relationship between the native microbiota and B. pumilus. Despite that, it can already be concluded that B. pumilus strains are good candidates to be environmentally friendly and commercially effective biocontrol agents.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Zuzanna Jakubowska
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Iryna Kulkova
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
14
|
Xiao P, Tian X, Zhu P, Xu Y, Zhou C. The use of surfactin in inhibiting Botrytis cinerea and in protecting winter jujube from the gray mold. AMB Express 2023; 13:37. [PMID: 37118318 PMCID: PMC10147881 DOI: 10.1186/s13568-023-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
Surfactin has the potential to be used as a food preservative. However, efficiency and action mechanism in various applications need more assessments and research. In this study, the antifungal effects and the mechanism of action of surfactin on the fungus Botrytis cinerea were investigated. The effects of applying surfactin for the removal of gray mold on the quality of winter jujube were investigated based on the changes in fruit fatty acids. The results showed that (1) surfactin significantly inhibited the growth of B. cinerea, the EC50 at 5 d was 46.42 mg/L. (2) Surfactin significantly reduced the disease incidence and diameter of gray mold-inoculated winter jujube in a concentration-dependent manner. For that treated with surfactin at the EC50, the incidence decreased by 38.89%. (3) For B. cinerea under surfactin treatment, the mycelial morphology changed, the levels of total lipids and ergosterol decreased, the reactive oxygen species levels increased, and the cell integrity was completely damaged. (4) For winter jujube inoculated by B. cinerea, the contents of saturated fatty acids decreased and unsaturated fatty acids increased. For those under the surfactin treatments, winter jujube maintained the fatty acid composition at the level of non-inoculated groups. Mechanical injury significantly changed the fatty acid composition of winter jujube; however, surfactin not only was able to inhibit the growth of gray mold but also mitigated the adverse effects from mechanical injury. The present study demonstrated the potential applications of surfactin in the preservation of postharvest fruit quality.
Collapse
Affiliation(s)
- Peng Xiao
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaoyu Tian
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Peng Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yangyang Xu
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
15
|
Nematicidal lipopeptides from Bacillus paralicheniformis and Bacillus subtilis: A comparative study. Appl Microbiol Biotechnol 2023; 107:1537-1549. [PMID: 36719435 DOI: 10.1007/s00253-023-12391-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
The aim of this work was to develop a comparative study between Bacillus paralicheniformis TB197 and B. subtilis ATCC 21332 strains in terms of growth, cyclic lipopeptide production, nematicidal activity, and active lipopeptide characteristics. Crude lipopeptide extracts (CLEs) from their fermentation broths were obtained, and their nematicidal activity (NA) was estimated as the mean lethal dose (LD50), employing Caenorhabditis elegans. Using a bioguided approach, CLE components were fractionated by semipreparative thin layer chromatography, and active lipopeptides were characterized by mass spectrometry. Both strains produced similar concentrations of CLEs (p ≥ 0.05) (0.99 ± 0.11 and 1.14 ± 0.15 mg/mL by TB197 and ATCC 21332, respectively). The estimated LD50 values of CLEs from the TB197 and ATCC 21332 strains were 3.88 and 8.15 mg/mL, respectively, showing that the NA of the TB197 strain CLE was 2.1-fold higher (p ≤ 0.05). Mass spectrometry revealed that strain TB197 synthesizes several families of lipopeptides, namely, fengycin A (C14-C17), fengycin B (C16-C17), surfactin (C15-C17), and lichenysin (C12, C13, C14, and C16), from which fengycins and lichenysins possess the highest NA (100 and 60% mortality in C. elegans larvae, respectively), while the ATCC 21332 strain produces mainly surfactin (C13-C17) (NA 63% mortality). The main differences found in this study were that the TB197 strain has a higher tolerance to inhibition by the product, and the lipopeptides they synthesize have a higher nematicidal activity due to the diversity of families compared to ATCC 21332. Likewise, it was shown that more polar lipopeptides (fengycins) are more effective at causing mortality in C. elegans larvae. KEY POINTS: • The nematicidal activity of lipopeptides from TB197 is higher than from ATCC 21332 • TB197 produces surfactin, lichenysin, and fengycin, while ATCC 21332 mainly produces surfactin • The most polar lipopeptides (fengycins) cause more mortality in C. elegans L2.
Collapse
|
16
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
17
|
Lu Z, Chen M, Long X, Yang H, Zhu D. Biological potential of Bacillus subtilis BS45 to inhibit the growth of Fusarium graminearum through oxidative damage and perturbing related protein synthesis. Front Microbiol 2023; 14:1064838. [PMID: 36891382 PMCID: PMC9987035 DOI: 10.3389/fmicb.2023.1064838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Fusarium root rot (FRR) caused by Fusarium graminearum poses a threat to global food security. Biological control is a promising control strategy for FRR. In this study, antagonistic bacteria were obtained using an in-vitro dual culture bioassay with F. graminearum. Molecular identification of the bacteria based on the 16S rDNA gene and whole genome revealed that the species belonged to the genus Bacillus. We evaluated the strain BS45 for its mechanism against phytopathogenic fungi and its biocontrol potential against FRR caused by F. graminearum. A methanol extract of BS45 caused swelling of the hyphal cells and the inhibition of conidial germination. The cell membrane was damaged and the macromolecular material leaked out of cells. In addition, the mycelial reactive oxygen species level increased, mitochondrial membrane potential decreased, oxidative stress-related gene expression level increased and oxygen-scavenging enzyme activity changed. In conclusion, the methanol extract of BS45 induced hyphal cell death through oxidative damage. A transcriptome analysis showed that differentially expressed genes were significantly enriched in ribosome function and various amino acid transport pathways, and the protein contents in cells were affected by the methanol extract of BS45, indicating that it interfered with mycelial protein synthesis. In terms of biocontrol capacity, the biomass of wheat seedlings treated with the bacteria increased, and the BS45 strain significantly inhibited the incidence of FRR disease in greenhouse tests. Therefore, strain BS45 and its metabolites are promising candidates for the biological control of F. graminearum and its related root rot diseases.
Collapse
Affiliation(s)
- Ziyun Lu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Meiling Chen
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Xinyi Long
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
18
|
Shao X, Xie W, Liang Y, Luo G, Li L, Zheng W, Xu Q, Xu H. Algicidal characteristics of novel algicidal compounds, cyclic lipopeptide surfactins from Bacillus tequilensis strain D8, in eliminating Heterosigma akashiwo blooms. Front Microbiol 2022; 13:1066747. [PMID: 36532506 PMCID: PMC9748430 DOI: 10.3389/fmicb.2022.1066747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 04/17/2024] Open
Abstract
Heterosigma akashiwo blooms have caused severe damage to marine ecosystems, the aquaculture industry and human health worldwide. In this study, Bacillus tequilensis D8 isolated from an H. akashiwo bloom area was found to exert high algicidal activity via extracellular metabolite production. This activity remained stable after exposure to different temperatures and light intensities. Scanning electron microscopy observation and fluorescein diacetate staining indicated that the algicidal substances rapidly destroyed algal plasma membranes and decreased esterase activity. Significant decreases in the maximum photochemical quantum yield and relative electron transfer rate were observed, which indicated photosynthetic membrane destruction. Subsequently, the algicidal compounds were separated and purified by high-performance liquid chromatography and identified as three surfactin homologues by interpreting high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy data. Among these, surfactin-C13 and surfactin-C14 exhibited strong algicidal activity against three HAB-causing species, namely, H. akashiwo, Skeletonema costatum, and Prorocentrum donghaiense, with 24 h-LC50 values of 1.2-5.31 μg/ml. Surfactin-C15 showed strong algicidal activity against S. costatum and weak algicidal activity against H. akashiwo but little activity against P. donghaiense. The present study illuminates the algicidal characteristics and mechanisms of action of surfactins on H. akashiwo and their potential applicability in controlling harmful algal blooms.
Collapse
Affiliation(s)
- Xueping Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wanxin Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yiling Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guiying Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Feng RY, Chen YH, Lin C, Tsai CH, Yang YL, Chen YL. Surfactin secreted by Bacillus amyloliquefaciens Ba01 is required to combat Streptomyces scabies causing potato common scab. FRONTIERS IN PLANT SCIENCE 2022; 13:998707. [PMID: 36388520 PMCID: PMC9664162 DOI: 10.3389/fpls.2022.998707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Potato common scab, which is mainly caused by the bacterium Streptomyces scabies, occurs in key potato growing regions worldwide. It causes necrotic or corky symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological control for combating potato common scab in Taiwan. It can only reduce the occurrence by cultivation control, but the efficacy is limited. Previously we found that Bacillus amyloliquefaciens Ba01 could control potato common scab in pot assay and in the field. The potential anti-S. scabies mechanism was associated with surfactin secretion, but further molecular dissection was not conducted. Thus, in this study we aimed to determine whether surfactin is the main compound active against S. scabies by knocking out the srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion. Two independent Δsrf mutants were obtained and confirmed by specific primers and mass spectrometry. The swarming ability and S. scabies inhibition was significantly decreased (P<0.001) in Δsrf mutants. The swarming ability of Δsrf mutants could be restored by the addition of surfactin. Furthermore, we found that Ba01 formed wrinkled biofilm in MSgg liquid medium, while Δsrf mutants formed biofilm abnormally. Furthermore, the α-amylase, protease and phosphate-solubilizing ability of Δsrf mutants was decreased, and the mutants could not inhibit the growth and sporulation of S. scabies on potato tuber slices. In conclusion, srf gene cluster of B. amyloliquefaciens Ba01 is responsible for the secretion of surfactin and inhibition of S. scabies.
Collapse
Affiliation(s)
- Ru-Ying Feng
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Tsai
- Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying-Lien Chen
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Liu W, Wang J, Zhang H, Qi X, Du C. Transcriptome analysis of the production enhancement mechanism of antimicrobial lipopeptides of Streptomyces bikiniensis HD-087 by co-culture with Magnaporthe oryzae Guy11. Microb Cell Fact 2022; 21:187. [PMID: 36088378 PMCID: PMC9464393 DOI: 10.1186/s12934-022-01913-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
The lipopeptides produced by Streptomyces bikiniensis have a significant inhibitory effect on Magnaporthe oryzae, but the low yield limits its application. In this study, the anti-M. oryzae activity of the broth of S. bikiniensis HD-087 co-cultured with M. oryzae Guy11 mycelium has risen by 41.22% compared with pure culture, and under induction conditions of adding Guy11-inducer (cell-free supernatant of M. oryzae Guy11), the activity of strain HD-087 improved 61.76%. The result proved that the enhancement effect of Guy11 on the antimicrobial activity of HD-087 was mainly related to metabolites but mycelium cells. Under optimum induction conditions, NRPS gene expression levels of HD-087 were significantly increased by induction with Guy11-inducer, the biomass of HD-087 had no significant change, but crude extract of lipopeptide (CEL) production was 107.4% higher than pure culture, and TLC result under acid hydrolysis showed that the induced culture has one component more than pure culture. To clarify the regulation mechanism of improving lipopeptide production of HD-087 with Guy11-inducer, transcriptomic analysis was performed using RNAseq to compare the induced culture and pure culture. In the induced culture, 943 genes were up-regulated, while 590 genes were down-regulated in DEGs (differentially expressed genes). KEGG results showed that the expression of genes related to amino acid synthesis, fatty acid metabolism, TCA cycle and pyruvate metabolism pathway were significantly increased. The increased expression of genes related to these metabolic pathways provided sufficient precursors for lipopeptide synthesis. Accordingly, key enzyme genes responsible for the synthesis of lipopeptides Srf and NRPS was significantly increased. Quorum sensing related genes OppA and MppA were significantly up-regulated, and then ComP was activated and promoted lipopeptide synthesis. These results provided a scientific basis for using M. oryzae to induce the increase of the production of Streptomyces lipopeptides, and also laid a foundation for further exploring the co-culture mechanisms among different genera.
Collapse
Affiliation(s)
- Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, Heilongjiang, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, Heilongjiang, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Huaqian Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, Heilongjiang, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, Heilongjiang, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, Heilongjiang, China.
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
21
|
Liu H, Jiang J, An M, Li B, Xie Y, Xu C, Jiang L, Yan F, Wang Z, Wu Y. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022; 13:840318. [PMID: 35966697 PMCID: PMC9366745 DOI: 10.3389/fmicb.2022.840318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of plant diseases is closely associated with the imbalance of plant tissue microecological environment. The regulation of the phyllosphere microbial communities has become a new and alternative approach to the biological control of foliar diseases. In this study, Bacillus velezensis SYL-3 isolated from Luzhou exhibited an effective inhibitory effect against Alternaria alternata and tobacco mosaic virus (TMV). The analysis of phyllosphere microbiome by PacBio sequencing indicated that SYL-3 treatment significantly altered fungal and bacterial communities on the leaves of Nicotiana tabacum plants and reduced the disease index caused by A. alternata and TMV. Specifically, the abundance of P. seudomo, Sphingomonas, Massilia, and Cladosporium in the SYL-3 treatment group increased by 19.00, 9.49, 3.34, and 12.29%, respectively, while the abundances of Pantoea, Enterobacter, Sampaiozyma, and Rachicladosporium were reduced. Moreover, the abundance of beneficial bacteria, such as Pseudomonas and Sphingomonas, was negatively correlated with the disease indexes of A. alternata and TMV. The PICRUSt data also predicted the composition of functional genes, with significant differences being apparent between SYL-3 and the control treatment group. Further functional analysis of the microbiome also showed that SYL-3 may induce host disease resistance by motivating host defense-related pathways. These results collectively indicate that SYL-3 may suppress disease progression caused by A. alternata or TMV by improving the microbial community composition on tobacco leaves.
Collapse
Affiliation(s)
- He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jun Jiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sichuan Province Tobacco Company, Luzhou, China
| | | | - Fangfang Yan
- Sichuan Province Tobacco Company, Panzhihua, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zhiping Wang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
22
|
Fu R, Tang W, Zhang H, Zhang Y, Wang D, Chen W. Study on the mechanism of inhibiting patulin production by fengycin. Open Life Sci 2022; 17:372-379. [PMID: 35528279 PMCID: PMC9019426 DOI: 10.1515/biol-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Penicillium expansum is the main cause of apple rot. Besides, it can also produce mycotoxin patulin (PAT). Therefore, the search for substances that can inhibit the activity and toxigenicity of P. expansum has become a hot research topic. This study investigates the inhibitory effects of fengycin on patulin production in P. expansum. P. expansum was cultured under different environments with different concentrations of fengycin. The patulin content produced per unit weight of P. expansum mycelium was detected and determined by high pressure liquid chromatography (HPLC). Synergy brands (SYBR) GreenI Real-time PCR was used to detect the expression levels of 6-methylsalicylic acid synthase (6-MSAS) and isoepoxydon dehydrogenase (IDH), which were the key genes of producing patulin of P. expansum mycelium, in the conditions treated by fengycin and untreated. After fengycin treatments, not only the patulin content in every unit weight of P. expansum mycelium but also the expression level of 6-MSAS decreased significantly. The expression level of 6-MSAS of treatment was 0.11 folds of control. However, the expression level of IDH treated by fengycin decreased slightly. Fengycin could inhibit the P. expansum from producing patulin by downregulating the expression of key synthetic genes 6-MSAS.
Collapse
Affiliation(s)
- Ruimin Fu
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| | - Wei Tang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Hong Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Yulian Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Ding Wang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Wuling Chen
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| |
Collapse
|
23
|
Hashemi M, Tabet D, Sandroni M, Benavent-Celma C, Seematti J, Andersen CB, Grenville-Briggs LJ. The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Wang CY, Lou XY, Cai Z, Zhang MZ, Jia C, Qin JC, Yang YW. Supramolecular Nanoplatform Based on Mesoporous Silica Nanocarriers and Pillararene Nanogates for Fungus Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32295-32306. [PMID: 34196538 DOI: 10.1021/acsami.1c08582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthetic fungicides have been widely used to protect crops from fungal diseases. However, excessive use of synthetic fungicides leads to the generation of fungicide resistance in fungal pathogens. Recently, smart cargo delivery systems have been introduced for the construction of a pesticide delivery nanoplatform, benefiting from their controlled release performance. Herein, a fungal pathogen microenvironment-responsive supramolecular fungicide nanoplatform has been designed and constructed, using quaternary ammonium salt (Q)-modified mesoporous silica nanoparticles (MSN-Q NPs) as nanocarriers loaded with berberine hydrochloride (BH) and carboxylatopillar[5]arene (CP[5]A) as nanogates to form BH-loaded CP[5]A@MSN-Q NPs for effective inhibition of Botrytis cinerea. CP[5]A as nanogates can endow the fungicide nanoplatform with pH stimuli-responsive release features for the control of fungicide release. The loaded BH, as a natural plant fungicide, provides an ecofriendly alternative to synthetic fungicides for controlling B. cinerea. Interestingly, we use oxalic acid (OA) secreted by B. cinerea as a trigger so that BH can be released from the fungicide nanoplatform on demand under pathogen microenvironments for controlling B. cinerea. The experimental results indicate that the fabricated fungicide nanoplatform could effectively inhibit the mycelial growth and spore germination, providing a new way for the management of B. cinerea in actual application.
Collapse
Affiliation(s)
- Chao-Yi Wang
- College of Chemistry and College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Xin-Yue Lou
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ming-Zhe Zhang
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
25
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Yang HX, He J, Zhang FL, Zhang XD, Li ZH, Feng T, Ai HL, Liu JK. Trichothecrotocins D-L, Antifungal Agents from a Potato-Associated Trichothecium crotocinigenum. JOURNAL OF NATURAL PRODUCTS 2020; 83:2756-2763. [PMID: 32870001 DOI: 10.1021/acs.jnatprod.0c00695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new merosesquiterpenoids, trichothecrotocins D-J (1-7), two new trichothecene sesquiterpenoids, trichothecrotocins K (12) and L (13), and six known compounds (8-11, 14, and 15), were isolated from a potato-associated fungus, Trichothecium crotocinigenum. Compounds 5 and 6 were racemates which were further separated as pure enantiomers. Structures together with absolute configurations were established by extensive spectroscopic analysis, as well as quantum chemistry calculations on ECD and optical rotations. Compounds 1-4 are rare meroterpenoids featuring a seco-phenyl group, while 1 and 2 possessed a novel 6-6/5 fused ring system. Compounds 1-4, 8, 11, and 12 showed antifungal activity against four plant pathogens with MIC values of 8-128 μg/mL. It is suggested that the meroterpenoids produced by T. crotocinigenum may play an important role in the antifungal property of the fungus, thereby protecting the host plant, i.e., potato.
Collapse
Affiliation(s)
- Hui-Xiang Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Fa-Lei Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Xian-Dong Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Hong-Lian Ai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| |
Collapse
|