1
|
Liang Y, Ji W, Sun X, Hao Z, Wang X, Wang Y, Zhang W, Bai Y, Qin X, Luo H, Yao B, Su X, Huang H. Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions. Appl Microbiol Biotechnol 2024; 108:13. [PMID: 38170309 DOI: 10.1007/s00253-023-12832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 01/05/2024]
Abstract
The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. KEY POINTS: • Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. • Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. • Spraying cello-oligosaccharides promoted tomato growth.
Collapse
Affiliation(s)
- Yazhe Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Xianhua Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Zhenzhen Hao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China.
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, No. 2 West Yuanmingyuan Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Boudabbous M, Ben Hmad I, Zaidi M, Saibi W, Jlaiel L, Gargouri A. Biosynthesis and one-step enrichment process of potentially prebiotic cello-oligosaccharides produced by β-glucosidase from Fusarium solani. Arch Microbiol 2024; 206:395. [PMID: 39249579 DOI: 10.1007/s00203-024-04111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Cello-oligosaccharides (COS) become a new type of functional oligosaccharides. COS transglycosylation reactions were studied to enhance COS yield production. Seeking the ability of the free form of Fusarium solani β-glucosidase (FBgl1) to synthesize COS under low substrate concentrations, we found out that this biocatalyst initiates this reaction with only 1 g/L of cellobiose, giving rise to the formation of cellotriose. Cellotriose and cellopentaose were detected in biphasic conditions with an immobilized FBgl1 and when increased to 50 g/L of cellobiose as a starter concentration. After the biocatalyst recycling process, the trans-glycosylation yield of COS was maintained after 5 cycles, and the COS concentration was 6.70 ± 0.35 g/L. The crude COS contained 20.15 ± 0.25 g/L glucose, 23.15 ± 0.22 g/L non-reacting substrate cellobiose, 5.25 ± 0.53 g/L, cellotriose and 1.49 ± 0.32 g/L cellopentaose. A bioprocess was developed for cellotriose enrichment, using whole Bacillus velezensis cells as a microbial purification tool. This bacteria consumed glucose, unreacted cellobiose, and cellopentaose while preserving cellotriose in the fermented medium. This study provides an excellent enzyme candidate for industrial COS production and is also the first study on the single-step COS enrichment process.
Collapse
Affiliation(s)
- Manel Boudabbous
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia.
| | - Ines Ben Hmad
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mariem Zaidi
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Walid Saibi
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Lobna Jlaiel
- Analytical Service Unit, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Inokuma K, Toyohara K, Hamada T, Kondo A, Hasunuma T. One-pot synthesis of cellobiose from sucrose using sucrose phosphorylase and cellobiose phosphorylase co-displaying Pichia pastoris as a reusable whole-cell biocatalyst. Sci Rep 2024; 14:18540. [PMID: 39122907 PMCID: PMC11315685 DOI: 10.1038/s41598-024-69676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Cellobiose has received increasing attention in various industrial sectors, ranging from food and feed to cosmetics. The development of large-scale cellobiose applications requires a cost-effective production technology as currently used methods based on cellulose hydrolysis are costly. Here, a one-pot synthesis of cellobiose from sucrose was conducted using a recombinant Pichia pastoris strain as a reusable whole-cell biocatalyst. Thermophilic sucrose phosphorylase from Bifidobacterium longum (BlSP) and cellobiose phosphorylase from Clostridium stercorarium (CsCBP) were co-displayed on the cell surface of P. pastoris via a glycosylphosphatidylinositol-anchoring system. Cells of the BlSP and CsCBP co-displaying P. pastoris strain were used as whole-cell biocatalysts to convert sucrose to cellobiose with commercial thermophilic xylose isomerase. Cellobiose productivity significantly improved with yeast cells grown on glycerol compared to glucose-grown cells. In one-pot bioconversion using glycerol-grown yeast cells, approximately 81.2 g/L of cellobiose was produced from 100 g/L of sucrose, corresponding to 81.2% of the theoretical maximum yield, within 24 h at 60 °C. Moreover, recombinant yeast cells maintained a cellobiose titer > 80 g/L, even after three consecutive cell-recycling one-pot bioconversion cycles. These results indicated that one-pot bioconversion using yeast cells displaying two phosphorylases as whole-cell catalysts is a promising approach for cost-effective cellobiose production.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Kiyotsuna Toyohara
- Iwakuni Research Center, TEIJIN Limited, 2-1 Hinode, Iwakuni, Yamagichi, 740-8511, Japan
| | - Tomoya Hamada
- Iwakuni Research Center, TEIJIN Limited, 2-1 Hinode, Iwakuni, Yamagichi, 740-8511, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
4
|
De Doncker M, Vleminckx S, Franceus J, Vercauteren R, Desmet T. Converting Bulk Sugars into Functional Fibers: Discovery and Application of a Thermostable β-1,3-Oligoglucan Phosphorylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10497-10505. [PMID: 38659290 DOI: 10.1021/acs.jafc.4c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite their broad application potential, the widespread use of β-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of β-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of β-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable β-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila (AtβOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass β-1,3-glucans up to DP 75. Coupling of AtβOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable β-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into β-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.
Collapse
Affiliation(s)
- Marc De Doncker
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Sofie Vleminckx
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jorick Franceus
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Ronny Vercauteren
- Cargill R&D Centre Europe BV, Havenstraat 84, B-1800 Vilvoorde, Belgium
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Franceus J, Rivas-Fernández JP, Lormans J, Rovira C, Desmet T. Evolution of Phosphorylase Activity in an Ancestral Glycosyltransferase. ACS Catal 2024; 14:3103-3114. [PMID: 38449530 PMCID: PMC10913872 DOI: 10.1021/acscatal.3c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
The reconstruction of ancestral sequences can offer a glimpse into the fascinating process of molecular evolution by exposing the adaptive pathways that shape the proteins found in nature today. Here, we track the evolution of the carbohydrate-active enzymes responsible for the synthesis and turnover of mannogen, a critical carbohydrate reserve in Leishmania parasites. Biochemical characterization of resurrected enzymes demonstrated that mannoside phosphorylase activity emerged in an ancestral bacterial mannosyltransferase, and later disappeared in the process of horizontal gene transfer and gene duplication in Leishmania. By shuffling through plausible historical sequence space in an ancestral mannosyltransferase, we found that mannoside phosphorylase activity could be toggled on through various combinations of mutations at positions outside of the active site. Molecular dynamics simulations showed that such mutations can affect loop rigidity and shield the active site from water molecules that disrupt key interactions, allowing α-mannose 1-phosphate to adopt a catalytically productive conformation. These findings highlight the importance of subtle distal mutations in protein evolution and suggest that the vast collection of natural glycosyltransferases may be a promising source of engineering templates for the design of tailored phosphorylases.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre
for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - José Pablo Rivas-Fernández
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Jolien Lormans
- Centre
for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Tom Desmet
- Centre
for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
6
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Biotechnol Bioeng 2024; 121:580-592. [PMID: 37983971 DOI: 10.1002/bit.28602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
7
|
Zhang Y, Li Y, Lin H, Mao G, Long X, Liu X, Chen H. Broadening the Substrate Specificity of Cellobiose Phosphorylase from Clostridium thermocellum for Improved Transformation of Cellodextrin to Starch. Int J Mol Sci 2023; 24:14452. [PMID: 37833899 PMCID: PMC10572201 DOI: 10.3390/ijms241914452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Cellobiose phosphorylase (CBP) catalyzes the reversible phosphorolysis of cellobiose into α-glucose 1-phosphate and glucose. A CBP with a broadened substrate specificity would be more desirable when utilized to convert cellulose into amylose (PNAS, 110: 7182-7187, 2013) and to construct yeast that can phosphorolytically use cellodextrin to produce ethanol. Based on the structure differences in the catalytic loops of CBP and cellodextrin phosphorylase from Clostridium thermocellum (named CtCBP and CtCDP, respectively), CtCBP was mutated to change its substrate specificity. A single-site mutant S497G was identified to exhibit a 5.7-fold higher catalytic efficiency with cellotriose as a substrate in the phosphorolytic reaction compared to the wild type, without any loss of catalytic efficiency on its natural substrate, cellobiose. When the S497G variant was used in the transformation of mixed cellodextrin (cellobiose + cellotriose) to amylose, the amylose yield was significantly increased compared to that of wild-type CtCBP. A structure change in the substrate-binding pocket of the S497G variant accounted for its capacity to accept longer cellodextrins than cellobiose. Taken together, the modified CtCBP, S497G was confirmed to acquire a promising feature favorable to those application scenarios involving cellodextrin's phosphorolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.L.); (H.L.); (G.M.); (X.L.); (X.L.)
| |
Collapse
|
8
|
Characterization of a New Glucose-Tolerant GH1 β-Glycosidase from Aspergillus fumigatus with Transglycosylation Activity. Int J Mol Sci 2023; 24:ijms24054489. [PMID: 36901919 PMCID: PMC10003650 DOI: 10.3390/ijms24054489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Concern over environmental impacts has spurred many efforts to replace fossil fuels with biofuels such as ethanol. However, for this to be possible, it is necessary to invest in other production technologies, such as second generation (2G) ethanol, in order to raise the levels of this product and meet the growing demand. Currently, this type of production is not yet economically feasible, due to the high costs of the enzyme cocktails used in saccharification stage of lignocellulosic biomass. In order to optimize these cocktails, the search for enzymes with superior activities has been the goal of several research groups. For this end, we have characterized the new β-glycosidase AfBgl1.3 from A. fumigatus after expression and purification in Pichia pastoris X-33. Structural analysis by circular dichroism revealed that increasing temperature destructured the enzyme; the apparent Tm value was 48.5 °C. The percentages of α-helix (36.3%) and β-sheet (12.4%) secondary structures at 25 °C were predicted. Biochemical characterization suggested that the optimal conditions for AfBgl1.3 were pH 6.0 and temperature of 40 °C. At 30 and 40 °C, the enzyme was stable and retained about 90% and 50% of its activity, respectively, after pre-incubation for 24 h. In addition, the enzyme was highly stable at pH between 5 and 8, retaining over 65% of its activity after pre-incubation for 48 h. AfBgl1.3 co-stimulation with 50-250 mM glucose enhanced its specific activity by 1.4-fold and revealed its high tolerance to glucose (IC50 = 2042 mM). The enzyme was active toward the substrates salicin (495.0 ± 49.0 U mg-1), pNPG (340.5 ± 18.6 U mg-1), cellobiose (89.3 ± 5.1 U mg-1), and lactose (45.1 ± 0.5 U mg-1), so it had broad specificity. The Vmax values were 656.0 ± 17.5, 706.5 ± 23.8, and 132.6 ± 7.1 U mg-1 toward p-nitrophenyl-β-D-glucopyranoside (pNPG), D-(-)-salicin, and cellobiose, respectively. AfBgl1.3 displayed transglycosylation activity, forming cellotriose from cellobiose. The addition of AfBgl1.3 as a supplement at 0.9 FPU/g of cocktail Celluclast® 1.5L increased carboxymethyl cellulose (CMC) conversion to reducing sugars (g L-1) by about 26% after 12 h. Moreover, AfBgl1.3 acted synergistically with other Aspergillus fumigatus cellulases already characterized by our research group-CMC and sugarcane delignified bagasse were degraded, releasing more reducing sugars compared to the control. These results are important in the search for new cellulases and in the optimization of enzyme cocktails for saccharification.
Collapse
|
9
|
Storani A, Guerrero SA, Iglesias AA. Insights to improve the activity of glycosyl phosphorylases from Ruminococcus albus 8 with cello-oligosaccharides. Front Chem 2023; 11:1176537. [PMID: 37090251 PMCID: PMC10119399 DOI: 10.3389/fchem.2023.1176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The phosphorolysis of cello-oligosaccharides is a critical process played in the rumen by Ruminococcus albus to degrade cellulose. Cellodextrins, made up of a few glucosyl units, have gained lots of interest by their potential applications. Here, we characterized a cellobiose phosphorylase (RalCBP) and a cellodextrin phosphorylase (RalCDP) from R. albus 8. This latter was further analyzed in detail by constructing a truncated mutant (Ral∆N63CDP) lacking the N-terminal domain and a chimeric protein by fusing a CBM (RalCDP-CBM37). RalCBP showed a typical behavior with high activity on cellobiose. Instead, RalCDP extended its activity to longer soluble or insoluble cello-oligosaccharides. The catalytic efficiency of RalCDP was higher with cellotetraose and cellopentaose as substrates for both reaction directions. Concerning properties of Ral∆N63CDP, results support roles for the N-terminal domain in the conformation of the homo-dimer and conferring the enzyme the capacity to catalyze the phosphorolytic reaction. This mutant exhibited reduced affinity toward phosphate and increased to glucose-1-phosphate. Further, the CBM37 module showed functionality when fused to RalCDP, as RalCDP-CBM37 exhibited an enhanced ability to use insoluble cellulosic substrates. Data obtained from this enzyme's binding parameters to cellulosic polysaccharides agree with the kinetic results. Besides, studies of synthesis and phosphorolysis of cello-saccharides at long-time reactions served to identify the utility of these enzymes. While RalCDP produces a mixture of cello-oligosaccharides (from cellotriose to longer oligosaccharides), the impaired phosphorolytic activity makes Ral∆N63CDP lead mainly toward the synthesis of cellotetraose. On the other hand, RalCDP-CBM37 remarks on the utility of obtaining glucose-1-phosphate from cellulosic compounds.
Collapse
|
10
|
Schwaiger KN, Voit A, Wiltschi B, Nidetzky B. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production. Microb Cell Fact 2022; 21:61. [PMID: 35397553 PMCID: PMC8994397 DOI: 10.1186/s12934-022-01781-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Soluble cello-oligosaccharides (COS, β-1,4-D-gluco-oligosaccharides with degree of polymerization DP 2-6) have been receiving increased attention in different industrial sectors, from food and feed to cosmetics. Development of large-scale COS applications requires cost-effective technologies for their production. Cascade biocatalysis by the three enzymes sucrose-, cellobiose- and cellodextrin phosphorylase is promising because it enables bottom-up synthesis of COS from expedient substrates such as sucrose and glucose. A whole-cell-derived catalyst that incorporates the required enzyme activities from suitable co-expression would represent an important step towards making the cascade reaction fit for production. Multi-enzyme co-expression to reach distinct activity ratios is challenging in general, but it requires special emphasis for the synthesis of COS. Only a finely tuned balance between formation and elongation of the oligosaccharide precursor cellobiose results in the desired COS. RESULTS Here, we show the integration of cellodextrin phosphorylase into a cellobiose-producing whole-cell catalyst. We arranged the co-expression cassettes such that their expression levels were upregulated. The most effective strategy involved a custom vector design that placed the coding sequences for cellobiose phosphorylase (CbP), cellodextrin phosphorylase (CdP) and sucrose phosphorylase (ScP) in a tricistron in the given order. The expression of the tricistron was controlled by the strong T7lacO promoter and strong ribosome binding sites (RBS) for each open reading frame. The resulting whole-cell catalyst achieved a recombinant protein yield of 46% of total intracellular protein in an optimal ScP:CbP:CdP activity ratio of 10:2.9:0.6, yielding an overall activity of 315 U/g dry cell mass. We demonstrated that bioconversion catalyzed by a semi-permeabilized whole-cell catalyst achieved an industrial relevant COS product titer of 125 g/L and a space-time yield of 20 g/L/h. With CbP as the cellobiose providing enzyme, flux into higher oligosaccharides (DP ≥ 6) was prevented and no insoluble products were formed after 6 h of conversion. CONCLUSIONS A whole-cell catalyst for COS biosynthesis was developed. The coordinated co-expression of the three biosynthesis enzymes balanced the activities of the individual enzymes such that COS production was maximized. With the flux control set to minimize the share of insolubles in the product, the whole-cell synthesis shows a performance with respect to yield, productivity, product concentration and quality that is promising for industrial production.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Alena Voit
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Birgit Wiltschi
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
11
|
Bai S, Yang L, Wang H, Yang C, Hou X, Gao J, Zhang Z. Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms. Sci Rep 2022; 12:3978. [PMID: 35273293 PMCID: PMC8913831 DOI: 10.1038/s41598-022-08036-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
In the process of yielding biofuels from cellulose degradation, traditional enzymatic hydrolysis, such as β-glucosidase catalyzing cellobiose, can barely resolve the contradiction between cellulose degradation and bioenergy conservation. However, it has been shown that cellobiose phosphorylase provides energetic advantages for cellobiose degradation through a phosphorolytic pathway, which has attracted wide attention. Here, the cellobiose phosphorylase gene from Caldicellulosiruptor bescii (CbCBP) was cloned, expressed, and purified. Analysis of the enzymatic properties and kinetic mechanisms indicated that CbCBP catalyzed reversible phosphorolysis and had good thermal stability and broad substrate selectivity. In addition, the phosphorolytic reaction of cellobiose by CbCBP proceeded via an ordered Bi Bi mechanism, while the synthetic reaction proceeded via a ping pong Bi Bi mechanism. The present study lays the foundation for optimizing the degradation of cellulose and the synthesis of functional oligosaccharides.
Collapse
Affiliation(s)
- Shaowei Bai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Chao Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xuechen Hou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingjie Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Wang L, Zheng P, Hu M, Tao Y. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6548896. [PMID: 35289917 PMCID: PMC9142195 DOI: 10.1093/jimb/kuac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/20/2022] [Indexed: 11/14/2022]
Abstract
Cellobiose, a natural disaccharide, attracts extensive attention as a potential functional food/feed additive. In this study, we present an inorganic phosphate (Pi) self-sufficient biotransformation system to produce cellobiose by co-expressing sucrose phosphorylase (SP) and cellobiose phosphorylase (CBP). The Bifidobacterium adolescentis SP (BASP) and Cellvibrio gilvus CBP (CGCBP) were co-expressed in Escherichia coli. Escherichia coli cells containing BASP and CGCBP were used as whole-cell catalysts to convert sucrose and glucose to cellobiose. The effects of reaction pH, temperature, Pi concentration, and substrate concentration were investigated. In the optimum biotransformation conditions, 800 mM cellobiose was produced from 1.0 M sucrose, 1.0 M glucose, and 50 mM Pi, within 12 hr. The by-product fructose and residual substrate (sucrose and glucose) were efficiently removed by treatment with yeast, to help purify the product cellobiose. The wider applicability of this Pi self-sufficiency strategy was demonstrated in the production of laminaribiose by co-expressing SP and laminaribiose phosphorylase. This study suggests that the Pi self-sufficiency strategy through co-expressing two phosphorylases has the advantage of great flexibility for enhanced production of cellobiose (or laminaribiose).
Collapse
Affiliation(s)
- Lei Wang
- Correspondence should be addressed to: Lei Wang, E-mail:
| | - Peng Zheng
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- Correspondence should be addressed to: Yong Tao, E-mail:
| |
Collapse
|
13
|
De Doncker M, De Graeve C, Franceus J, Beerens K, Křen V, Pelantová H, Vercauteren R, Desmet T. Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. Chembiochem 2021; 22:3319-3325. [PMID: 34541742 DOI: 10.1002/cbic.202100401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Indexed: 11/05/2022]
Abstract
The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-β-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-β-d-glucosyl-d-galactose and 4-O-β-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.
Collapse
Affiliation(s)
- Marc De Doncker
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Chloé De Graeve
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Ronny Vercauteren
- Cargill R&D Centre Europe BVBA, Havenstraat 84, 1800, Vilvoorde, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| |
Collapse
|
14
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
15
|
β-Glucan phosphorylases in carbohydrate synthesis. Appl Microbiol Biotechnol 2021; 105:4073-4087. [PMID: 33970317 PMCID: PMC8140972 DOI: 10.1007/s00253-021-11320-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Abstract β-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of β-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of β-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 (www.cazy.org). Since the discovery of β-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of β-glucan and associated β-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. Key points • Discovery, characteristics, and applications of β-glucan phosphorylases. • β-Glucan phosphorylases in the production of functional carbohydrates.
Collapse
|
16
|
Franceus J, Lormans J, Cools L, D’hooghe M, Desmet T. Evolution of Phosphorylases from N-Acetylglucosaminide Hydrolases in Family GH3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matthias D’hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|