1
|
Feng J, Ye H, Lu C, Pan L, Chen H, Zhu L, Chen X. Application of protein engineering to ene-reductase for the synthesis of chiral compounds through asymmetric reaction. Crit Rev Biotechnol 2025; 45:665-682. [PMID: 39134447 DOI: 10.1080/07388551.2024.2382957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 04/17/2025]
Abstract
Ene-reductase (ER) has been widely applied for asymmetrical synthesis of chiral intermediates due to its substrate promiscuity, photoexcited reactivity, and excellent property with producing two chiral centers at a time. Natural ERs often exhibit the same stereoselectivity, and they need to be engineered for opposite configuration of chiral compounds. The hydrogenation process toward activated alkenes by ERs is composed of reductive half reaction and oxidative half reaction, which are dependent upon two cofactors NAD(P)H and flavin mononucleotide. The catalytic activity of ERs will be affected by the size of the substrate, the activating strength of the electron-withdrawing groups, redox potential of cofactors, and the loop flexibility around catalytic cavity. Currently, protein engineering to ERs has been successfully employed to enhance various catalytic properties, including photoexcited asymmetric synthesis. This review summarizes the approaches to reverse the stereoselectivity and enhance catalytic activity of ERs and new applications of the engineered ERs in photobiocatalytic asymmetric synthesis, besides the discussion with the existing molecular mechanisms of mutants regarding the improved catalytic performance.
Collapse
Affiliation(s)
- Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Huiru Ye
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Changxin Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linyan Pan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Blue-Lahom TC, Jones SK, Davis KM. Bioinformatic and biochemical analysis uncovers novel activity in the 2-ER subfamily of OYEs. RSC Chem Biol 2025:d4cb00289j. [PMID: 39867842 PMCID: PMC11759058 DOI: 10.1039/d4cb00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization. Herein, we explore the use of pseudo-anaerobic preparation as a route to more widespread study of these enzymes and apply bioinformatics approaches to identify a subset of 2-ERs containing unusual mutations in both a key catalytic residue and the Fe/S cluster-binding motif. Biochemical analysis of a representative member from Burkholderia insecticola (OYEBi) reveals novel N-methyl-proline demethylation activity, which we hypothesize may play a role in osmotic stress regulation based on genomic neighborhood analysis.
Collapse
Affiliation(s)
| | - Stacey K Jones
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | |
Collapse
|
3
|
Li N, Wang Y, Meng Y, Lv Y, Zhang S, Wei S, Ma P, Hu Y, Lin H. Structural and functional characterization of a new thermophilic-like OYE from Aspergillus flavus. Appl Microbiol Biotechnol 2024; 108:134. [PMID: 38229304 PMCID: PMC10787880 DOI: 10.1007/s00253-023-12963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, β-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.
Collapse
Affiliation(s)
- Na Li
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan Wang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yinyin Meng
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yangyong Lv
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shan Wei
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | | | - Yuansen Hu
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Hui Lin
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Guo YY, Tian ZH, Zhang L, Han YC, Zhang BB, Xing Q, Shao T, Liu Y, Jiang Z. Photobiocatalytic Platform for the Efficient Enantio-Divergent Synthesis of β-Fluoromethylated Ketones. J Am Chem Soc 2024; 146:31012-31020. [PMID: 39473165 DOI: 10.1021/jacs.4c10441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
β-Fluoromethyl (CH2F, CHF2, and CF3)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones. Our method highlights substrate-type diversity, excellent enantioselectivity, enzymatic enantio-divergent synthesis, as well as a dicyanopyrazine (DPZ)-type photosensitizer for biocompatible olefin E/Z isomerization in enzymatic stereoconvergent olefin asymmetric reduction, thereby providing a general photobiocatalytic solution to diverse β-fluoromethylated chiral ketones.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Linghong Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bei-Bei Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Xing
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tianju Shao
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiyong Jiang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Cancellieri MC, Nobbio C, Gatti FG, Brenna E, Parmeggiani F. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances. J Biotechnol 2024; 390:13-27. [PMID: 38761886 DOI: 10.1016/j.jbiotec.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.
Collapse
Affiliation(s)
- Maria C Cancellieri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Celeste Nobbio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
6
|
Kattula B, Munakala A, Kashyap R, Nallamilli T, Nagendla NK, Naza S, Mudiam MKR, Chegondi R, Addlagatta A. Strategic enzymatic enantioselective desymmetrization of prochiral cyclohexa-2,5-dienones. Chem Commun (Camb) 2024; 60:6647-6650. [PMID: 38856301 DOI: 10.1039/d4cc02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Asymmetric desymmetrization through the selective reduction of one double bond of prochiral 2,5-cyclohexadienones is highly challenging. A novel method has been developed for synthesizing chiral cyclohexenones by employing an ene-reductase (Bacillus subtilis YqjM) enzyme that belongs to the OYE family. Our strategy demonstrates high substrate scope and enantioselectivity towards substrates containing all-carbon as well as heteroatom (O, N)-containing quaternary centers. The mechanistic studies (kH/D = ∼1.8) indicate that hydride transfer is probably the rate-limiting step. Mutation of several active site residues did not affect the stereochemical outcomes. This work provides a convenient way of synthesizing various enantioselective γ,γ-disubstituted cyclohexanones using enzymes.
Collapse
Affiliation(s)
- Bhavita Kattula
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
| | | | - Tarun Nallamilli
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Narendra Kumar Nagendla
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Surabhi Naza
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anthony Addlagatta
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Nie N, Zhao Z, Li X, Liu Y, Zhang Y. A Proline-Based Artificial Enzyme That Favors Aldol Condensation Enables Facile Synthesis of Aliphatic Ketones via Tandem Catalysis. ACS Synth Biol 2024; 13:1100-1104. [PMID: 38587465 DOI: 10.1021/acssynbio.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A proline-based artificial enzyme is prepared by grafting the l-proline moieties onto the surface of bovine serum albumin (BSA) protein through atom transfer radical polymerization (ATRP). The artificial enzyme, the BSA-PolyProline conjugate, prefers to catalyze the formation of unsaturated ketones rather than β-hydroxy ketones in the reaction between acetone and aldehydes, which is difficult to achieve in free-proline catalysis. The altered reaction selectivity is ascribed to the locally concentrated l-proline moieties surrounding the BSA molecule, indicating a microenvironmental effect-induced switching of the reaction mechanism. Taking advantage of this selectivity, we used this artificial enzyme in conjunction with a natural enzyme, old yellow enzyme 1 (OYE1), to demonstrate a simple synthesis of different aliphatic ketones from acetone and aldehydes via tandem catalysis.
Collapse
Affiliation(s)
- Ning Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziye Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wu S, Ma X, Yan H. Identification and characterization of an ene-reductase from Corynebacterium casei. Int J Biol Macromol 2024; 264:130427. [PMID: 38428763 DOI: 10.1016/j.ijbiomac.2024.130427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The asymmetric reduction of α, β-unsaturated compounds conjugated with electron-withdrawing group by ene-reductases (ERs) is a valuable method for the synthesis of enantiopure chiral compounds. This study introduced an ER from Corynebacterium casei (CcER) which was heterologously expressed in Escherichia coli BL21(DE3), and the purified recombinant CcER was characterized for its biocatalytic properties. CcER exhibited the highest specific activity at 40 °C and pH 6.5, and showcased appreciable stability below 40 °C over a pH range of 6.0-7.0. The enzyme displayed high resistance to methanol. CcER accepted NADH or NADPH as a cofactor and exhibited a broad substrate spectrum towards α, β-unsaturated compounds. It achieved complete conversion of 2-cyclohexen-1-one and good performance for stereoselective reduction of (R)-carvone (conversion 98 %, diastereoselectivity 96 %). This study highlights the robustness and potential of CcER.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaojing Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongde Yan
- College of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo, China.
| |
Collapse
|
9
|
Libardi SH, Ahmad A, Ferreira FB, Oliveira RJ, Caruso ÍP, Melo FA, de Albuquerque S, Cardoso DR, Burtoloso ACB, Borges JC. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. Int J Biol Macromol 2024; 259:129192. [PMID: 38216013 DOI: 10.1016/j.ijbiomac.2023.129192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024]
Abstract
Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Anees Ahmad
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | | | - Ronaldo J Oliveira
- Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, MG, Brazil
| | - Ícaro P Caruso
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis and Centro Nacional para Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernando A Melo
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Dufault-Thompson K, Levy S, Hall B, Jiang X. Bilirubin reductase shows host-specific associations in animal large intestines. THE ISME JOURNAL 2024; 18:wrae242. [PMID: 39658189 DOI: 10.1093/ismejo/wrae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/12/2024]
Abstract
Animal gastrointestinal tracts contain diverse metabolites, including various host-derived compounds that gut-associated microbes interact with. Here, we explore the diversity and evolution of bilirubin reductase, a bacterial enzyme that metabolizes the host-derived tetrapyrrole bilirubin, performing a key role in the animal heme degradation pathway. Through an analysis of the bilirubin reductase phylogeny and predicted structures, we found that the enzyme family can be divided into three distinct clades with different structural features. Using these clade definitions, we analyzed metagenomic sequencing data from multiple animal species, finding that bilirubin reductase is significantly enriched in the large intestines of animals and that the clades exhibit differences in distribution among animals. Combined with phylogenetic signal analysis, we find that the bilirubin reductase clades exhibit significant associations with specific animals and animal physiological traits like gastrointestinal anatomy and diet. These patterns demonstrate that bilirubin reductase is specifically adapted to the anoxic lower gut environment of animals and that its evolutionary history is complex, involving adaptation to a diverse collection of animals harboring bilirubin-reducing microbes. The findings suggest that bilirubin reductase evolution has been shaped by the host environment, providing a new perspective on heme metabolism in animals and highlighting the importance of the microbiome in animal physiology and evolution.
Collapse
Affiliation(s)
- Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, 8125 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|
11
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
López MB, Oterino MB, González JM. The Structural Biology of Catalase Evolution. Subcell Biochem 2024; 104:33-47. [PMID: 38963482 DOI: 10.1007/978-3-031-58843-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.
Collapse
Affiliation(s)
- María Belén López
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María Belén Oterino
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Javier M González
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
13
|
Kang SW, Antoney J, Frkic RL, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F 420-Dependent Oxidoreductases A Enzymes from Mycobacterium smegmatis. Biochemistry 2023; 62:873-891. [PMID: 36637210 DOI: 10.1021/acs.biochem.2c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The stereoselective reduction of alkenes conjugated to electron-withdrawing groups by ene-reductases has been extensively applied to the commercial preparation of fine chemicals. Although several different enzyme families are known to possess ene-reductase activity, the old yellow enzyme (OYE) family has been the most thoroughly investigated. Recently, it was shown that a subset of ene-reductases belonging to the flavin/deazaflavin oxidoreductase (FDOR) superfamily exhibit enantioselectivity that is generally complementary to that seen in the OYE family. These enzymes belong to one of several FDOR subgroups that use the unusual deazaflavin cofactor F420. Here, we explore several enzymes of the FDOR-A subgroup, characterizing their substrate range and enantioselectivity with 20 different compounds, identifying enzymes (MSMEG_2027 and MSMEG_2850) that could reduce a wide range of compounds stereoselectively. For example, MSMEG_2027 catalyzed the complete conversion of both isomers of citral to (R)-citronellal with 99% ee, while MSMEG_2850 catalyzed complete conversion of ketoisophorone to (S)-levodione with 99% ee. Protein crystallography combined with computational docking has allowed the observed stereoselectivity to be mechanistically rationalized for two enzymes. These findings add further support for the FDOR and OYE families of ene-reductases displaying general stereocomplementarity to each other and highlight their potential value in asymmetric ene-reduction.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Colin Scott
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
14
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
15
|
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. PLANT DIRECT 2023; 7:e480. [PMID: 36685735 PMCID: PMC9840898 DOI: 10.1002/pld3.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Abstract
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
Collapse
Affiliation(s)
- Stefanie Böhmer
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Christina Marx
- SolarBioproducts RuhrBusiness Development Agency HerneHerneGermany
| | - Reimund Goss
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Matthias Gilbert
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
16
|
Feng J, Xue Y, Wang J, Xie X, Lu C, Chen H, Lu Y, Zhu L, Chu D, Chen X. Enhancing the asymmetric reduction activity of ene-reductases for the synthesis of a brivaracetam precursor. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
18
|
Colombo D, Albergati A, Ferrandi EE, Tessaro D, Gatti FG, Brenna E, Monti D, Parmeggiani F. Chemo‐enzymatic synthesis of enantioenriched (R)‐ and (S)‐aryloxyalkanoic herbicides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Danilo Colombo
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta CMIC ITALY
| | | | | | - Davide Tessaro
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta CMIC ITALY
| | - Francesco Gilberto Gatti
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta CMIC ITALY
| | - Elisabetta Brenna
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta CMIC ITALY
| | - Daniela Monti
- CNR: Consiglio Nazionale delle Ricerche SCITEC ITALY
| | - Fabio Parmeggiani
- Polytechnic of Milan: Politecnico di Milano Dipartimento di Chimica, Materiali e Ingegneria Chimica Via Mancinelli 7 20131 Milano ITALY
| |
Collapse
|
19
|
Ibrahim ES, Ohlsen K. The Old Yellow Enzyme OfrA Fosters Staphylococcus aureus Survival via Affecting Thiol-Dependent Redox Homeostasis. Front Microbiol 2022; 13:888140. [PMID: 35656003 PMCID: PMC9152700 DOI: 10.3389/fmicb.2022.888140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs’ physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host–pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.
Collapse
Affiliation(s)
- Eslam S Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Li YX, Wang JZ, Kato A, Shimadate Y, Kise M, Jia YM, Fleet GWJ, Yu CY. Stereocomplementary synthesis of casuarine and its 6- epi-, 7- epi-, and 6,7-di epi-stereoisomers. Org Biomol Chem 2021; 19:9410-9420. [PMID: 34668913 DOI: 10.1039/d1ob01725j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four diastereomers belonging to the family of casuarines, including casuarine (1), 6-epi-casuarine (2), 7-epi-casuarine (13) and 6,7-diepi-casuarine (14), have been synthesized from D-arabinose-derived cyclic nitrone 7 and nitrone-derived aldehyde 4 by a stereocomplementary strategy. Glycosidase inhibition comparison showed that 6-epi-casuarine (2) exhibits enhanced inhibition of trehalase (IC50 = 9.7 μM) and 6,7-diepi-casuarine (14) leads to specific inhibition of trehalase.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Parmeggiani F, Brenna E, Colombo D, Gatti FG, Tentori F, Tessaro D. "A Study in Yellow": Investigations in the Stereoselectivity of Ene-Reductases. Chembiochem 2021; 23:e202100445. [PMID: 34586700 PMCID: PMC9292831 DOI: 10.1002/cbic.202100445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Ene‐reductases from the Old Yellow Enzyme (OYE) superfamily are a well‐known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron‐withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE‐mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.
Collapse
Affiliation(s)
- Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Danilo Colombo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco G Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesca Tentori
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Davide Tessaro
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
22
|
Shi Q, Jia Y, Wang H, Li S, Li H, Guo J, Dou T, Qin B, You S. Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives. Enzyme Microb Technol 2021; 150:109880. [PMID: 34489033 DOI: 10.1016/j.enzmictec.2021.109880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
The ene reductases (ERs) from the old yellow enzymes (OYEs) family have the ability to reduce activated alkenes to generate up to two stereocenters, therefore they have been received extensive attention as powerful biocatalysts. In this study, through gene mining, four ERs were identified from the genomes of Ensifer adhaerens, Pseudomonas fluorescens, and Pseudomonas veronil. The biocatalytic properties of these four ERs were identified, and their applications in the synthesis process of dihydrocarvone and profen derivatives were further evaluated. Among them, three ERs (EaER2, PvER1, and PvER2) belonging to the classic OYEs showed the best catalytic activity at 30 °C and pH 7.0 (100 mM potassium phosphate buffer) and the PfER2, which belongs to the thermophilic-like OYEs exhibited the best catalytic at 40 °C and pH 7.0 (100 mM potassium phosphate buffer). When exploring the influence of organic solvents on the catalytic efficiency, it was found that the four ERs were more sensitive to toluene and had tolerance to several other selected organic solvents. In addition, EaER2, PfER2, PvER1 and PvER2 showed excellent catalytic activity toward carvone, and the stereoselectivity of PvER2 toward carvone could reach up to 88.7 % de. EaER2 and PfER2 can catalyze the synthesis of a variety of profen derivatives with a stereoselectivity over 99 % ee. Moreover, through homology modeling and molecular docking, we preliminarily explained the mechanism of catalytic activity and stereoselectivity of the four ERs, which provided a solid base on the rational design of their stereo-preference in the future. The discovery of EaER2, PfER2, PvER1, and PvER2 provides four new enzyme sources for the study of the OYEs family and enriches the biocatalytic toolbox of ERs. Our exploration of the enzymatic properties of these four ERs will provide the sufficient data basis for future research and industrialization progress.
Collapse
Affiliation(s)
- Qinghua Shi
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Yutian Jia
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Huibin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Shang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Hengyu Li
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Jiyang Guo
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Tong Dou
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
23
|
Engineering of Yeast Old Yellow Enzyme OYE3 Enables Its Capability Discriminating of ( E)-Citral and ( Z)-Citral. Molecules 2021; 26:molecules26165040. [PMID: 34443627 PMCID: PMC8399149 DOI: 10.3390/molecules26165040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
The importance of yeast old yellow enzymes is increasingly recognized for direct asymmetric reduction of (E/Z)-citral to (R)-citronellal. As one of the most performing old yellow enzymes, the enzyme OYE3 from Saccharomyces cerevisiae S288C exhibited complementary enantioselectivity for the reduction of (E)-citral and (Z)-citral, resulting in lower e.e. value of (R)-citronellal in the reduction of (E/Z)-citral. To develop a novel approach for the direct synthesis of enantio-pure (R)-citronellal from the reduction of (E/Z)-citral, the enzyme OYE3 was firstly modified by semi-rational design to improve its (R)-enantioselectivity. The OYE3 variants W116A and S296F showed strict (R)-enantioselectivity in the reduction of (E)-citral, and significantly reversed the (S)-enantioselectivity in the reduction of (Z)-citral. Next, the double substitution of OYE3 led to the unique variant S296F/W116G, which exhibited strict (R)-enantioselectivity in the reduction of (E)-citral and (E/Z)-citral, but was not active on (Z)-citral. Relying on its capability discriminating (E)-citral and (Z)-citral, a new cascade reaction catalyzed by the OYE3 variant S296F/W116G and glucose dehydrogenase was developed, providing the enantio-pure (R)-citronellal and the retained (Z)-citral after complete reduction of (E)-citral.
Collapse
|
24
|
Cascading Old Yellow Enzyme, Alcohol Dehydrogenase and Glucose Dehydrogenase for Selective Reduction of (E/Z)-Citral to (S)-Citronellol. Catalysts 2021. [DOI: 10.3390/catal11080931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Citronellol is a kind of unsaturated alcohol with rose-like smell and its (S)-enantiomer serves as an important intermediate for organic synthesis of (-)-cis-rose oxide. Chemical methods are commonly used for the synthesis of citronellol and its (S)-enantiomer, which suffers from severe reaction conditions and poor selectivity. Here, the first one-pot double reduction of (E/Z)-citral to (S)-citronellol was achieved in a multi-enzymatic cascade system: N-ethylmaleimide reductase from Providencia stuartii (NemR-PS) was selected to catalyze the selective reduction of (E/Z)-citral to (S)-citronellal, alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) performed the further reduction of (S)-citronellal to (S)-citronellol, meanwhile a variant of glucose dehydrogenase from Bacillus megaterium (BmGDHM6), together with glucose, drove efficient NADPH regeneration. The Escherichia coli strain co-expressing NemR-PS, YsADH, and BmGDHM6 was successfully constructed and used as the whole-cell catalyst. Various factors were investigated for achieving high conversion and reducing the accumulation of the intermediate (S)-citronellal and by-products. 0.4 mM NADP+ was essential for maintaining high catalytic activity, while the feeding of the cells expressing BmGDHM6 effectively eliminated the intermediate and by-products and shortened the reaction time. Under optimized conditions, the bio-transformation of 400 mM citral caused nearly complete conversion (>99.5%) to enantio-pure (S)-citronellol within 36 h, demonstrating promise for industrial application.
Collapse
|
25
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
26
|
Liu G, Li S, Shi Q, Li H, Guo J, Ouyang J, Jia X, Zhang L, You S, Qin B. Engineering of Saccharomyces pastorianus old yellow enzyme 1 for the synthesis of pharmacologically active (S)-profen derivatives. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
González JM. Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis. Heliyon 2021; 7:e05867. [PMID: 33426353 PMCID: PMC7785958 DOI: 10.1016/j.heliyon.2020.e05867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protein sequence similarity networks (SSNs) constitute a convenient approach to analyze large polypeptide sequence datasets, and have been successfully applied to study a number of protein families over the past decade. SSN analysis is herein combined with traditional cladistic and phenetic phylogenetic analysis (respectively based on multiple sequence alignments and all-against-all three-dimensional protein structure comparisons) in order to assist the ancestral reconstruction and integrative revision of the superfamily of metallo-β-lactamases (MBLs). It is shown that only 198 out of 15,292 representative nodes contain at least one experimentally obtained protein structure in the Protein Data Bank or a manually annotated SwissProt entry, that is to say, only 1.3 % of the superfamily has been functionally and/or structurally characterized. Besides, neighborhood connectivity coloring, which measures local network interconnectivity, is introduced for detection of protein families within SSN clusters. This approach provides a clear picture of how many families remain unexplored in the superfamily, while most MBL research is heavily biased towards a few families. Further research is suggested in order to determine the SSN topological properties, which will be instrumental for the improvement of automated sequence annotation methods.
Collapse
|