1
|
Qiu J, Yu Y, Liu D, Chen S, Wang Y, Peng J, Xie J, Wu C, Zhou F, Fang H, Lai Q, Xie Y. Association between non-insulin-based insulin resistance surrogate makers and Helicobacter pylori infection: a population-based study. BMC Gastroenterol 2025; 25:25. [PMID: 39838324 PMCID: PMC11753134 DOI: 10.1186/s12876-025-03610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Current evidence on the associations between insulin resistance (IR) and Helicobacter pylori (H. pylori) infection remains limited. This study aimed to investigate the association between non-insulin-based surrogate markers of IR, including the triglyceride glucose (TyG) index, triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, and the metabolic score for IR (METS-IR), and H. pylori infection in U.S. POPULATIONS METHODS This cross-sectional study involving 939 U.S. participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. The associations between three IR surrogate markers and H. pylori infection were respectively investigated using logistic regression model, restricted cubic spline (RCS) curve and subgroup analysis. RESULTS Three IR surrogate markers levels were significantly elevated in H. pylori infection participants. There was a positive association between three IR surrogate markers and H. pylori infection, even after adjusting for potential confounding variables by three different models. In subgroup analysis, the adjusted association between three IR surrogate markers and H. pylori infection were more likely to be observed in female and Non-Hispanic White. Additionally, the RCS curve revealed a positive linear correlation between TyG index and H. pylori infection across all three models, and between METS-IR and H. pylori infection in Model 3. However, a positive nonlinear correlation was observed between TG/HDL-C ratio and H. pylori infection in all three models. CONCLUSIONS These findings suggest that non-insulin-based IR surrogate markers including TyG index, TG/HDL-C ratio, and METS-IR were all positively associated with H. pylori infection. These markers may serve as the potential indicators for identifying the risk of H. pylori infection in U.S. POPULATIONS CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiayu Qiu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yueming Yu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Dingwei Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Youhua Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianxiang Peng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinliang Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyun Wu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Feng Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Fang
- Jiangxi Medical College, Huan Kui College of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qirui Lai
- Jiangxi Medical College, Huan Kui College of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Liu W, An J, Jiao C, Guo J, Zhang L, Jin H, Liu G, Zhang Y. Association of triglyceride-glucose index with Helicobacter pylori infection in the 1999-2000 NHANES cross-sectional study. Sci Rep 2025; 15:387. [PMID: 39747541 PMCID: PMC11695683 DOI: 10.1038/s41598-024-84536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection is linked to metabolic syndrome and insulin resistance, with the triglyceride-glucose (TyG) index serving as a reliable marker for the latter. This study investigates the association between the TyG index and H. pylori infection. The study utilized cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2000. Participants underwent serologic testing for H. pylori, and the TyG index was calculated from fasting laboratory measurements. Multivariate logistic regression and restricted cubic spline methods were used to assess the association and explore the dose-response relationship. The analysis included 2984 participants. Elevated TyG index values were associated with an increased likelihood of H. pylori infection. The risk of infection rose with higher TyG index quartiles, with the highest quartile showing the most significant increase (OR = 1.54, 95% CI: 1.15-2.07, P = 0.004). A linear relationship between the TyG index and H. pylori infection was demonstrated. The study findings indicate a significant positive association between the TyG index and H. pylori infection. This association highlights the importance of metabolic health in the context of H. pylori infection and suggests that further research is needed to explore the potential implications for health promotion strategies.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China.
| | - Jie An
- Department of Pathology, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Cheng Jiao
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Jun Guo
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Lipu Zhang
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Haifeng Jin
- Department of Gastroenterology, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Guangchao Liu
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Yao Zhang
- Department of General Surgery, Bethune International Peace Hospital, No. 398 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Zhang P, Liu Y, Jin X, Hu Z, Yang J, Lu H, Hang T, Song M. Alzheimer's disease-like pathology induced by Porphyromonas gingivalis in middle-aged mice is mediated by NLRP3 inflammasome via the microbiota-gut-brain axis. J Alzheimers Dis 2025; 103:487-505. [PMID: 39639573 DOI: 10.1177/13872877241302498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has been found to enter the brain and induce inflammation, contributing to Alzheimer's disease (AD). P. gingivalis is also closely linked to gut dysbiosis. However, does P. gingivalis induce AD-like pathology through the microbiota-gut-brain axis? There is limited literature on this topic. OBJECTIVE To determine the precise causal link among P. gingivalis, intestinal inflammation, and AD-related pathology. METHODS 12- to 13-month-old female C57BL/6J mice were subjected to ligature placement and oral administration of P. gingivalis over a 24-week period. Then, cognitive performance was evaluated with behavioral tests, while AD neuropathological changes, neuroinflammation, and intestinal inflammation were assessed through qPCR, immunofluorescence, and western blot, and gut microbiota was analyzed by 16S rRNA. RESULTS Mice exposed to P. gingivalis showed impaired behavior in open field test, novel object recognition, and Y-maze tests. The bacterium infiltrated their brains, increasing Aβ42, AβPP, and Aβ fragments, promoting tau phosphorylation and microglial activation, and reducing levels of ZO-1, PSD95, SYP, and NeuN proteins. Inflammatory factors like NLRP3, caspase-1, IL-1β, IL-6, and TNF-α were elevated in both brains and intestine, while ZO-1 and occludin levels decreased in intestine. P. gingivalis also altered gut microbial compositions. CONCLUSIONS P. gingivalis induced gut dysbiosis and activated the NLRP3 inflammasome in the intestine and brains of mice. This led to impairment of both the intestinal and brain-blood barriers, triggering neuroinflammation and promoting the progression of AD. These findings highlight the critical role of NLRP3 inflammasome activation in the microbiota-gut-brain axis in the AD-like pathology induced by P. gingivalis.
Collapse
Affiliation(s)
- Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xin Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhaoliang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jucui Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Haotian Lu
- International Department of High School, AFF to Nanjing Normal University Jiangning Campus, Nanjing, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Zhang Q, Xu Y, Bukvicki D, Peng Y, Li F, Zhang Q, Yan J, Lin S, Liu S, Qin W. Phenolic compounds in dietary target the regulation of gut microbiota: Role in health and disease. FOOD BIOSCI 2024; 62:105107. [DOI: 10.1016/j.fbio.2024.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Park YS, Ahn K, Yun K, Jeong J, Baek KW, Park DJ, Han K, Ahn YJ. Effect of Helicobacter pylori on sleeve gastrectomy and gastric microbiome differences in patients with obesity and diabetes. Int J Obes (Lond) 2024; 48:1664-1672. [PMID: 39179750 PMCID: PMC11502492 DOI: 10.1038/s41366-024-01611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Obesity and diabetes mellitus (DM) have become public health concerns worldwide. Both conditions have severe consequences and are associated with significant medical costs and productivity loss. Additionally, Helicobacter pylori infection may be a risk factor for the development of these conditions. However, whether eradicating H. pylori infection directly causes weight loss or improves insulin sensitivity is unknown. METHODS In this study, we confirmed the effect of sleeve gastrectomy according to the state of the gastric microbiota in 40 patients with obesity, DM, and H. pylori infection. Patients with obesity were divided into four groups: non-DM without H. pylori infection (ND), non-DM with H. pylori infection (ND-HP), DM, and DM with H. pylori infection (DM-HP) using 16S V3-V4 sequencing. RESULTS In the DM group, ALT, hemoglobin, HbA1c, blood glucose, and HSI significantly decreased, whereas high-density lipoprotein significantly increased. However, in the H. pylori-positive group, no significant difference was observed. The diversity of gastric microbiota decreased in the order of the ND > DM > ND-HP > DM-HP groups. We also conducted a correlation analysis between the preoperative microbes and clinical data. In the ND-HP group, most of the top 20 gastric microbiota were negatively correlated with glucose metabolism. However, H. pylori infection was positively correlated with pre-insulin levels. CONCLUSION Therefore, these findings indicate that patients with obesity and diabetes clearly benefit from surgery, but H. pylori infection may also affect clinical improvement.
Collapse
Affiliation(s)
- Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kung Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, Korea
| | - Kyeongeui Yun
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, Korea
| | - Jinuk Jeong
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Korea
| | - Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 1491, Republic of Korea.
| | - Yong Ju Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-ro, Geumcheon-gu, Seoul, Korea.
| |
Collapse
|
6
|
Kløve S, Stinson SE, Romme FO, Butt J, Graversen KB, Lund MAV, Fonvig CE, Waterboer T, Perez-Perez GI, Hansen T, Holm JC, Andersen SB. Helicobacter pylori seropositivity associates with hyperglycemia, but not obesity, in Danish children and adolescents. BMC Med 2024; 22:379. [PMID: 39256870 PMCID: PMC11389555 DOI: 10.1186/s12916-024-03591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori colonizes the human stomach and may affect the inflammatory response, hormone production related to energy regulation, and gastrointestinal microbiota composition. Previous studies have explored a potential association between H. pylori infection and pediatric obesity with varying results. Considering the immunomodulatory effects of early-life infection with H. pylori that can confer beneficial effects, we hypothesized that we would find an inverse relationship between H. pylori seropositivity and obesity among Danish children and adolescents. METHODS We assessed H. pylori seroprevalence in 713 subjects from an obesity clinic cohort and 990 subjects from a population-based cohort, aged 6 to 19 years, and examined its association with obesity and other cardiometabolic risk factors. RESULTS No association was found between H. pylori and body mass index standard deviation score (BMI SDS). H. pylori seropositivity was, however, significantly associated with higher fasting plasma glucose levels and the prevalence of hyperglycemia. CONCLUSION While we did not find an association between H. pylori seropositivity and BMI SDS, we observed a significant association with higher fasting plasma glucose levels and increased prevalence of hyperglycemia, suggesting that H. pylori infection may contribute to impaired glucose regulation in Danish children and adolescents.
Collapse
Affiliation(s)
- Sigri Kløve
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark.
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Fie O Romme
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Katrine B Graversen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Morten A V Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, 4300, Denmark
| | - Cilius E Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, 4300, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, 4300, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark.
| |
Collapse
|
7
|
Guo Y, Chen Y, Wang D, Liu G, Chen Y, Peng C, Cao T, Liu Y, Hu X, Xu X, Ke Y, Huang S, Wang T, Lv Z. Artemisinin and its derivatives modulate glucose homeostasis and gut microbiota remodeling in a nutritional context. J Nutr Biochem 2024; 131:109687. [PMID: 38866191 DOI: 10.1016/j.jnutbio.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.
Collapse
Affiliation(s)
- Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ying Chen
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dan Wang
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Guangnan Liu
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuhua Chen
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Changfeng Peng
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tingting Cao
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Hu
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xinyue Xu
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yuebin Ke
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Suli Huang
- Medical School of Public Health, Shenzhen University, Shenzhen, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Ziquan Lv
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
8
|
Yang C, You N, Chen Y, Zhang J. Helicobacter pylori infection increases the risk of dyslipidemia in Chinese diabetic Population: a retrospective cross-sectional study. BMC Infect Dis 2024; 24:730. [PMID: 39054452 PMCID: PMC11270938 DOI: 10.1186/s12879-024-09597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In contemporary times, increased prevalence of Helicobacter pylori (H. pylori) infection and elevated dyslipidemia levels present substantial public health challenges. However, the relationship between H. pylori and dyslipidemia remains inconclusive. No studies have yet conducted a population-based classification to investigate the impact of H. pylori infection on dyslipidemia in individuals with diabetes. METHODS A retrospective cohort study was carried out on a total of 60,535 individuals who underwent health check-ups at the Health Examination Center in Taizhou Hospital from 2017 to 2022. Physical measurements, hematological markers and detection of H. pylori were gathered from all patients. The study population was further stratified into diabetic and non-diabetic groups for analysis. RESULTS H. pylori infection was found to be an autonomous risk factor for dyslipidemia based on the results of multivariate logistic regression analysis (OR = 1.13, 95% CI: 1.03-1.24). However, no notable effect on dyslipidemia in the non-diabetic group was observed. Furthermore, at the follow-up, the group with persistent negative showed a significantly lower incidence ratio of dyslipidemia compared to the group with persistent infection (P = 0.006). The persistent negative group exhibited a significantly higher rate of improvement in dyslipidemia compared to the new infection group (P = 0.038). CONCLUSIONS In the diabetic population, the presence of H. pylori infection heightens the propensity for developing dyslipidemia. Therefore, the implementation of efficient eradication strategies for H. pylori infection could potentially lead to a decrease in the occurrence of dyslipidemia among individuals with diabetes.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Ningning You
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
9
|
He S, He X, Duan Y, Luo Y, Li Y, Li J, Li Y, Yang P, Wang Y, Xie J, Liu M, Sk Cheng A. The impact of diet, exercise, and sleep on Helicobacter pylori infection with different occupations: a cross-sectional study. BMC Infect Dis 2024; 24:692. [PMID: 38992594 PMCID: PMC11241877 DOI: 10.1186/s12879-024-09505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Associations between Helicobacter pylori infection and lifestyle factors vary greatly by geographic location. This study aims to evaluate the prevalence of Helicobacter pylori infection in the Hunan cohort of central China and analyze the associations between Helicobacter pylori infection and lifestyle factors in different occupations. METHODS This was a cross-sectional study. Participants who received an annual physical examination were invited. Helicobacter pylori infection was detected by the 13 C-urea breath test. Self-reported physical examination questionnaires were used to analyze participants' demographic information, diet, exercise status, and sleep situations. RESULTS 23254 participants finished this study. The Helicobacter pylori infection rate in the Hunan area was 25.8%, with the lowest prevalence in students (8.5%) and the highest prevalence in business managers (29.9%). The risk factors for Helicobacter pylori infection were marital status (divorced or married) (OR:1.16, 95%CI:1.090-1.234), overeating (OR:1.105, 95%CI: 1.001-1.220), and consumption of eggs (OR:1.047, 95%CI:1.004-1.092), animal viscera (OR: 1.077, 95%CI:1.014-1.144) and coffee (OR:1.074, 95%CI:1.019-1.132). Participants' education level (OR:0.911, 95%CI:0.881-0942), consumption of midnight snack (OR:0.926, 95%CI:0.877-0.977), and vegetable (OR:0.927, 95%CI: 0.884-0.972) were protective factors against Helicobacter pylori infection. Whether participants exercised regularly or had sleep problems had no significant effect on Helicobacter pylori infection. Different professionals showed significant differences in the rates of overeating, eating three meals on time, midnight snack, and consuming coffee, eggs, animal viscera, and vegetables > 3 times/week (P values < 0.05). CONCLUSIONS Helicobacter pylori infection showed a significant relationship with dietary factors, but not significantly with sleep and exercise factors. Different occupations showed different dietary tendencies related to Helicobacter pylori infection. The design of an occupation-based Helicobacter pylori screening and prevention program is supported.
Collapse
Affiliation(s)
- Shiwen He
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Xue He
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinglong Duan
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Yating Luo
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Yuxuan Li
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Jing Li
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Ying Li
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingting Yang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianfei Xie
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China
| | - Min Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, No. 138, Tongzipo Road, PO Box 410013, Changsha, Hunan, China.
| | - Andy Sk Cheng
- School of Health Sciences, Western Sydney University, Sydney, Australia
| |
Collapse
|
10
|
Chen X, Peng R, Peng D, Xiao J, Liu D, Li R. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol 2023; 13:1282956. [PMID: 38145041 PMCID: PMC10739327 DOI: 10.3389/fcimb.2023.1282956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is thought to impact various extragastric diseases, including nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease. Meanwhile, the pathogenesis of NAFLD needs further research, and effective treatment for this disease remains elusive. In this mini-review, we enumerate and ponder on the evidence demonstrating an association between H. pylori infection and NAFLD. Primarily, we delve into high-quality meta-analyses and clinical randomized controlled trials focusing on the association studies between the two. We also discuss clinical studies that present opposite conclusions. In addition, we propose a mechanism through which H. pylori infection aggravates NAFLD: inflammatory cytokines and adipocytokines, insulin resistance, lipid metabolism, intestinal barrier and microbiota, H. pylori outer membrane vesicles and H. pylori-infected cell-extracellular vesicles. This mini-review aims to further explore NAFLD pathogenesis and extragastric disease mechanisms caused by H. pylori infection.
Collapse
Affiliation(s)
- Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Jia Xiao
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Ye J, Feng T, Su L, Li J, Gong Y, Ma X. Interactions between Helicobacter pylori infection and host metabolic homeostasis: A comprehensive review. Helicobacter 2023; 28:e13030. [PMID: 37871913 DOI: 10.1111/hel.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
The microbiota actively and extensively participates in the regulation of human metabolism, playing a crucial role in the development of metabolic diseases. Helicobacter pylori (H. pylori), when colonizing gastric epithelial cells, not only induces local tissue inflammation or malignant transformation but also leads to systemic and partial changes in host metabolism. These shifts can be mediated through direct contact, toxic components, or indirect immune responses. Consequently, they influence various molecular metabolic events that impact nutritional status and iron absorption in the host. Unraveling the intricate and diverse molecular interaction links between H. pylori and human metabolism modulation is essential for understanding pathogenesis mechanisms and developing targeted treatments for related diseases. However, significant challenges persist in comprehensively understanding the complex association networks among H. pylori itself, the infected host's status, the host microbiome, and the immune response. Previous metabolomics research has indicated that H. pylori infection and eradication may selectively shape the metabolite and microbial profiles of gastric lesions. Yet, it remains largely unknown how these diverse metabolic pathways, including isovaleric acid, cholesterol, fatty acids, and phospholipids, specifically modulate gastric carcinogenesis or affect the host's serum metabolism, consequently leading to the development of metabolic-associated diseases. The direct contribution of H. pylori to metabolisms still lacks conclusive evidence. In this review, we summarize recent advances in clinical evidence highlighting associations between chronic H. pylori infection and metabolic diseases, as well as its potential molecular regulatory patterns.
Collapse
Affiliation(s)
- Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ting Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jin Li
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
12
|
You N, Chen Y, Yan X, Gu B, Wang J, Zhang J. Persistent Helicobacter pylori infection leads to elevated fasting plasma glucose level: A retrospective cohort study based on a nondiabetes Chinese population. J Gastroenterol Hepatol 2023; 38:1942-1948. [PMID: 37403267 DOI: 10.1111/jgh.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIM The relationship between Helicobacter pylori (H. pylori) and fast plasma glucose (FPG) on nondiabetes populations is still inconclusive. Nowadays, not only the high infection rate of H. pylori but also the high FPG level is threatening the Chinese people. METHODS A retrospective cohort study has been established to analyze the relationship between H. pylori infection and FPG level, 18 164 individuals performed healthy examination in Taizhou Hospital Health Examination Center from 2017 to 2022 were included, and hematological indicators, body parameters, and H. pylori detection by 13 C-urea breath test were collected from patients. The follow-up intervals were greater than 12 months. RESULTS H. pylori infection was regarded as an independent risk factor for elevated FPG after multivariate logistic regression. Additionally, the average interval time were 33.6 ± 13.3 months. Mean changed FPG values in the persistent infection group were higher than in the subgroup of persistent negative (P = 0.029) as well as eradication infection (P = 0.007). The aforementioned changes began to appear after 2 years of follow-up. Similarly, when compared with the subgroup of persistent infection, mean changed triglyceride/high density lipoprotein (TG/HDL) values were much lower in the subgroup of persistent negative (P = 0.008) and eradication infection (P = 0.018), but the differences appeared after 3 years of follow-up. CONCLUSIONS H. pylori infection is an independent risk factor for elevated FPG in non-diabetes mellitus (DM) individuals. Persistent H. pylori infection causes an increase in FPG level and TG/HDL, which may be a risk factor for diabetes mellitus.
Collapse
Affiliation(s)
- Ningning You
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xiaodan Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Binbin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
13
|
Wang Y, Rong X, Guan H, Ouyang F, Zhou X, Li F, Tan X, Li D. The Potential Effects of Isoleucine Restricted Diet on Cognitive Impairment in High-Fat-Induced Obese Mice via Gut Microbiota-Brain Axis. Mol Nutr Food Res 2023; 67:e2200767. [PMID: 37658490 DOI: 10.1002/mnfr.202200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/15/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Obesity induced by high-fat diet (HFD) can cause lipid metabolism disorders and cognitive impairment. Isoleucine restriction can effectively alleviate lipid metabolism disorders caused by HFD but the underlying mechanisms on cognition are unknown. METHODS AND RESULTS Thirty 3-month-old C57BL/6J mice are divided equally into the following groups: the control group, HFD group, and HFD Low Ile group (67% reduction in isoleucine in high fat feeds). Feeding for 11 weeks with behavioral testing, which shows that isoleucine restriction attenuates HFD-induced cognitive dysfunction. As observed by staining, isoleucine restriction inhibits HFD-induced neuronal damage and microglia activation. Furthermore, isoleucine restriction significantly increases the relative abundance of gut microbiota, decreases the proportion of Proteobacteria, and reduces the levels of lipopolysaccharide (LPS) in serum and brain. Isoleucine restriction reduces protein expression of TLR4/MyD88/NF-κB signaling pathway and inhibits upregulation of proinflammatory cytokine genes and protein expression in mice brain. In addition, isoleucine restriction significantly improves insulin resistance in the brain as well as synaptic plasticity impairment. CONCLUSION Isoleucine restriction may be a potential intervention to reduce HFD-induced cognitive impairment by altering gut microbiota, reducing neuroinflammation, insulin resistance, and improving synaptic plasticity in mice brain.
Collapse
Affiliation(s)
- Yuli Wang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xue Rong
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Fangxin Ouyang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xing Zhou
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| |
Collapse
|
14
|
Jiang Y, Cui W, Zhang Y, Wang T, Zheng X, Li H, Shang J. FG-4592 relieves diabetic kidney disease severity by influencing metabolic profiles via gut microbiota reconstruction in both human and mouse models. Front Physiol 2023; 14:1195441. [PMID: 37654676 PMCID: PMC10465800 DOI: 10.3389/fphys.2023.1195441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Objective: Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is highly associated with devastating outcomes. Hypoxia-inducible factor (HIF), the main transcription factor that regulates cellular responses to hypoxia, plays an important role in regulating erythropoietin (EPO) synthesis. FG-4592 is the HIF stabilizer that is widely used in patients with renal anemia. We investigated the effect of FG-4592 on DKD phenotypes and the pharmacologic mechanism from the perspective of gut microbiota and systemic metabolism. Design: We collected the clinical data of 73 participants, including 40 DKD patients with combined renal anemia treated with FG-4592, and 33 clinical index-matched DKD patients without FG-4592 treatment from The First Affiliated Hospital of Zhengzhou University at the beginning and after a 3-6-month follow-up period. We established DKD mouse models treated by FG-4592 and performed fecal microbiota transplantation from FG-4592-treated DKD mice to investigate the effects of FG-4592 on DKD and to understand this mechanism from a microbial perspective. Untargeted metabolome-microbiome combined analysis was implemented to globally delineate the mechanism of FG-4592 from both microbial and metabolomic aspects. Result: DKD phenotypes significantly improved after 3-6 months of FG-4592 treatment in DKD patients combined with renal anemia, including a decreased level of systolic blood pressure, serum creatinine, and increased estimated glomerular infiltration rate. Such effects were also achieved in the DKD mouse model treated with FG-4592 and can be also induced by FG-4592-influenced gut microbiota. Untargeted plasma metabolomics-gut microbiota analysis showed that FG-4592 dramatically altered both the microbial and metabolic profiles of DKD mice and relieved DKD phenotypes via upregulating beneficial gut microbiota-associated metabolites. Conclusion: FG-4592 can globally relieve the symptoms of DKD patients combined with renal anemia. In the animal experiment, FG-4592 can reconstruct the intestinal microbial profiles of DKD to further upregulate the production of gut-associated beneficial metabolites, subsequently improving DKD phenotypes.
Collapse
Affiliation(s)
- Yumin Jiang
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Zang H, Wang J, Wang H, Guo J, Li Y, Zhao Y, Song J, Liu F, Liu X, Zhao Y. Metabolic alterations in patients with Helicobacter pylori-related gastritis: The H. pylori-gut microbiota-metabolism axis in progression of the chronic inflammation in the gastric mucosa. Helicobacter 2023:e12984. [PMID: 37186092 DOI: 10.1111/hel.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE To characterize the serum metabolism in patients with Helicobacter pylori-positive and H. pylori-negative gastritis. METHODS Clinical data and serum gastric function parameters, PGI (pepsinogen I), PGII, PGR (PGI/II), and G-17 (gastrin-17) of 117 patients with chronic gastritis were collected, including 57 H. pylori positive and 60 H. pylori negative subjects. Twenty cases in each group were randomly selected to collect intestinal mucosa specimens and serum samples. The gut microbiota profiles were generated by 16S rRNA gene sequencing, and the serum metabolites were analyzed by a targeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) technology. RESULTS Altered expression of 20 metabolites, including isovaleric acid, was detected in patients with HPAG. Some taxa of Bacteroides, Fusobacterium, and Prevotella in the gut microbiota showed significant correlations with differentially expressed metabolites between H. pylori positive and H. pylori negative individuals. As a result, an H. pylori-gut microbiota-metabolism (HGM) axis was proposed. CONCLUSION Helicobacter pylori infection may influence the progression of mucosal diseases and the emergence of other complications in the host by altering the gut microbiota, and thus affecting the host serum metabolism.
Collapse
Affiliation(s)
- Hongmin Zang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Wang
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiaxuan Guo
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuchan Li
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yinuo Zhao
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jinzhong Song
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Fengshuang Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xuzhao Liu
- North China University of Science and Technology, Tangshan, China
| | - Yubin Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- North China University of Science and Technology, Tangshan, China
- Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
16
|
Tian S, Zhao Y, Qian L, Jiang S, Tang Y, Han T. DHA-enriched phosphatidylserine alleviates high fat diet-induced jejunum injury in mice by modulating gut microbiota. Food Funct 2023; 14:1415-1429. [PMID: 36644847 DOI: 10.1039/d2fo03019e] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A long-term high-fat diet (HFD) is one of the high-risk factors for intestinal barrier damage. Docosahexaenoic acid-enriched phosphatidylserine (DHA-PS) has multiple biological activities, while its protective effect on HFD-caused jejunum injury remains unknown. Thus, the present study investigated the protective effect of DHA-PS on HFD-induced jejunum injury in mice. Our results showed that DHA-PS (100 mg per kg per d) could protect against HFD-caused jejunum injury by decreasing the levels of inflammatory factors such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in the serum and jejunum tissues, with histological analysis confirming this injury amelioration. Additionally, DHA-PS alleviated the HFD-caused oxidative stress by decreasing malondialdehyde (MDA) and increasing total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) levels in the jejunum. Moreover, DHA-PS significantly increased the expression of tight junction proteins (ZO-1, occludin, and claudin-4) in the jejunum, and modulated the HFD-induced gut microbiota disorder by decreasing the Firmicutes and Bacteroidetes ratio, and reducing the relative abundance of Lachnoclostridium, Coriobacteriaceae, Desulfovibrionaceae, and Helicobacter, while increasing the relative abundance of Lachnospiraceae_NK4A136_group, Alistipes, norank_f__Muribaculaceae, and Bacteroides. Overall, these results support that DHA-PS can alleviate the HFD-caused jejunum injury.
Collapse
Affiliation(s)
- Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yanfeng Zhao
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, 310008, China
| | - Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Su Jiang
- ECA Healthcare Inc., Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
17
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun 2022; 13:4291. [PMID: 35879296 PMCID: PMC9314339 DOI: 10.1038/s41467-022-32000-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Whether amino acids act on cellular insulin signaling remains unclear, given that increased circulating amino acid levels are associated with the onset of type 2 diabetes (T2D). Here, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or phenylalanine-producing aspartame or overexpressing human phenylalanyl-tRNA synthetase (hFARS) develop insulin resistance and T2D symptoms. Mechanistically, FARS phenylalanylate lysine 1057/1079 of IRβ (F-K1057/1079), inactivating IRβ and preventing insulin from promoting glucose uptake by cells. SIRT1 reverse F-K1057/1079 and counteract the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels in white blood cells from T2D patients are positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitizes insulin signaling and relieves T2D symptoms in hFARS-transgenic and db/db mice. These findings shed light on the activation of insulin signaling and T2D progression through inhibition of phenylalanylation. Whether amino acids act on cellular insulin signaling remains unclear. Here, the authors find that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake and positively correlated with T2D onset.
Collapse
|
19
|
Thinned peach polyphenols alleviate obesity in high fat mice by affecting gut microbiota. Food Res Int 2022; 157:111255. [DOI: 10.1016/j.foodres.2022.111255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023]
|
20
|
Hu Y, Xu X, Ouyang YB, He C, Li NS, Xie C, Peng C, Zhu ZH, Shu X, Xie Y, Lu NH, Zhu Y. Altered Gut Microbiota and Short-Chain Fatty Acids After Vonoprazan-Amoxicillin Dual Therapy for Helicobacter pylori Eradication. Front Cell Infect Microbiol 2022; 12:881968. [PMID: 35719338 PMCID: PMC9201212 DOI: 10.3389/fcimb.2022.881968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The combination of vonoprazan (VPZ) and amoxicillin (VA therapy) has been shown to achieve acceptable eradication rates for Helicobacter pylori (H. pylori). Herein, our aim was to explore the short-term effect of VA therapy on the gut microbiota and short-chain fatty acids (SCFAs) using human fecal samples. A total of 119 H. pylori-positive patients were randomized into low- or high-dose VA therapy (i.e., amoxicillin 1 g b.i.d. or t.i.d. and VPZ 20 mg b.i.d.) for 7 or 10 days. Thirteen H. pylori-negative patients served as controls. Fecal samples were collected from H. pylori-positive and H. pylori-negative patients. The gut microbiota and SCFAs were analyzed using 16S rRNA gene sequencing and gas chromatography-mass spectrometry, respectively. The gut microbiota in H. pylori-positive patients exhibited increased richness, diversity, and better evenness than matched patients. Fifty-three patients studied before and after H. pylori eradication were divided into low (L-VA) and high (H-VA) amoxicillin dose groups. The diversity and composition of the gut microbiota among L-VA patients exhibited no differences at the three time points. However, among H-VA patients, diversity was decreased, and the microbial composition was altered immediately after H-VA eradication but was restored by the confirmation time point. The decreased abundance of Anaerostipes, Dialister, and Lachnospira induced by H-VA was associated with altered SCFA levels. VA dual therapy for H. pylori eradication has minimal negative effects on gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yi Hu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Xin Xu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yao-Bin Ouyang
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Cong He
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Nian-Shuang Li
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Chuan Xie
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Chao Peng
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Zhen-Hua Zhu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Xu Shu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Nong-Hua Lu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yin Zhu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
21
|
Shang J, Cui W, Guo R, Zhang Y, Wang P, Yu W, Zheng X, Wang T, Dong Y, Zhao J, Ding S, Xiao J, Ren Z, Zhao Z. The harmful intestinal microbial community accumulates during DKD exacerbation and microbiome-metabolome combined validation in a mouse model. Front Endocrinol (Lausanne) 2022; 13:964389. [PMID: 36601003 PMCID: PMC9806430 DOI: 10.3389/fendo.2022.964389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is associated with gut microbial dysbiosis. We aim to build a diagnostic model to aid clinical practice and uncover a crucial harmful microbial community that contributes to DKD pathogenesis and exacerbation. DESIGN A total of 528 fecal samples from 180 DKD patients and 348 non-DKD populations (138 DM and 210 healthy volunteers) from the First Affiliated Hospital of Zhengzhou University were recruited and randomly divided into a discovery phase and a validation phase. The gut microbial composition was compared using 16S rRNA sequencing. Then, the 180 DKD patients were stratified into four groups based on clinical stages and underwent gut microbiota analysis. We established DKD mouse models and a healthy fecal microbiota transplantation (FMT) model to validate the effects of gut microbiota on DKD and select the potential harmful microbial community. Untargeted metabolome-microbiome combined analysis of mouse models helps decipher the pathogenetic mechanism from a metabolic perspective. RESULTS The diversity of the gut microbiome was significantly decreased in DKD patients when compared with that of the non-DKD population and was increased in the patients with more advanced DKD stages. The DKD severity in mice was relieved after healthy gut microbiota reconstruction. The common harmful microbial community was accumulated in the subjects with more severe DKD phenotypes (i.e., DKD and DKD5 patients and DKD mice). The harmful microbial community was positively associated with the serum injurious metabolites (e.g., cholic acid and hippuric acid). CONCLUSION The fecal microbial community was altered markedly in DKD. Combining the fecal analysis of both human and animal models selected the accumulated harmful pathogens. Partially recovering healthy gut microbiota can relieve DKD phenotypes via influencing pathogens' effect on DKD mice's metabolism.
Collapse
Affiliation(s)
- Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yijun Dong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jing Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Zhengzhou University, Zhengzhou, China
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
|
23
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
24
|
Costa Dos Santos G, Renovato-Martins M, de Brito NM. The remodel of the "central dogma": a metabolomics interaction perspective. Metabolomics 2021; 17:48. [PMID: 33969452 PMCID: PMC8106972 DOI: 10.1007/s11306-021-01800-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In 1957, Francis Crick drew a linear diagram on a blackboard. This diagram is often called the "central dogma." Subsequently, the relationships between different steps of the "central dogma" have been shown to be considerably complex, mostly because of the emerging world of small molecules. It is noteworthy that metabolites can be generated from the diet through gut microbiome metabolism, serve as substrates for epigenetic modifications, destabilize DNA quadruplexes, and follow Lamarckian inheritance. Small molecules were once considered the missing link in the "central dogma"; however, recently they have acquired a central role, and their general perception as downstream products has become reductionist. Metabolomics is a large-scale analysis of metabolites, and this emerging field has been shown to be the closest omics associated with the phenotype and concomitantly, the basis for all omics. AIM OF REVIEW Herein, we propose a broad updated perspective for the flux of information diagram centered in metabolomics, including the influence of other factors, such as epigenomics, diet, nutrition, and the gut- microbiome. KEY SCIENTIFIC CONCEPTS OF REVIEW Metabolites are the beginning and the end of the flux of information.
Collapse
Affiliation(s)
- Gilson Costa Dos Santos
- Laboratory of NMR Metabolomics, IBRAG, Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| | - Mariana Renovato-Martins
- Department of Cellular and Molecular Biology, IB, Federal Fluminense University, Niterói, 24210-200, Brazil
| | - Natália Mesquita de Brito
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Department of Cell Biology, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| |
Collapse
|